Skema Add Math P2 Trial Spm Zon A Kuching 2008

  • Uploaded by: Bid Hassan
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Skema Add Math P2 Trial Spm Zon A Kuching 2008 as PDF for free.

More details

  • Words: 1,583
  • Pages: 16
3472/2 Matematik Tambahan Kertas 2 2 ½ jam Sept 2008

SEKOLAH MENENGAH ZON A KUCHING LEMBAGA PEPERIKSAAN PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2008

MATEMATIK TAMBAHAN Kertas 2 Dua jam tiga puluh minit

JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU

MARKING SCHEME

Skema Pemarkahan ini mengandungi 15 halaman bercetak

2

ADDITIONAL MATHEMATICS MARKING SCHEME TRIAL ZON A KUCHING 2007 – PAPER 2 QUESTION NO.

1

SOLUTION

p  1 m @ m  1 p

MARKS

5

P1

*  1  m   2m 2  *  1  m  m  8 2

@

Eliminate p or m

K1

p 2  2*  1  p   p  1  *  1  p    8

m

2

  1 

@ p

K1

Solve the quadratic equation by using quadratic formula @ completing the square

 1  4  2   7  2  2

  3 

2

 3  4  2   6  2  2 2

m  2.138, m  1.637 @ N1 p  1.137, p  2.637 OR p  1.137, p  2.637 N1 @ m  2.138, m  1.637 2 (a)

K1

Note : OW-1 if the working of solving quadratic equation is not shown.

5

dS = 8 r or dr

dS dS dr =  dt dr dt

K1 8 (3)  0.2 N1

4.8 @ 15.08

3

3 QUESTION NO.

(b)

SOLUTION

MARKS

P1

4

dy d2y  2 x  3 and 2 dx dx 2

2 + (2x  3) 2 + 14x  11 = x  3x + 2 K1 (3x  1)(x + 2) = 0

x=

3 (a)

1 , 2 3

x  2.9 or



N1 7 fx 2  291 291  (2.9) 2 30

  1 1358

(b) (i)

(ii)

K1

3

P1

K1

Use the formula

N1

Or equivalent

2(2.9)  c  2.8

K1

c=3

N1

21.1358* = 22716*

N1

3

6

4 QUESTION NO. 4 (a)

SOLUTION

cos 

3 or 4

MARKS

P1

= 4141 @ 4125

2

N1

07227 rad 7937 or 12(07227)

or

8672

3

K1

(b)

7937 + 12(07227) + 3 K1

19609

(c)

N1

1 1 (12) 2  0 7227  @  9  7 937 2 2 1 1 (12) 2  0 7227    9  7 937 2 2

K1

K1 N1

1631 5 (a)

3

K1

4a(2)9 = 10 240 a=5

8

6

N1

(b)

a = 1, r = 4(both correct) 410  1 4 1 

or

410  1 44  1  4 1 4 1

 349 440

K1

44  1 4 1

K1

K1 N1

6

5 QUESTION NO.

6 (a) (i) (ii)

SOLUTION

CQ =

(b) (i)

P1

BP = 3 y − 4 x CQ =

2 CB 3

or

3

K1

Equivalent

8 x − 4y 3

N1

 1  BR =   BP  m + 1

P1

(

 1  BR =   − 4x + 3y  m + 1

(

MARKS

)

5 P1

)

2 3  1    − 4 x + 3 y = (− x + y) m + 1 3 4   −4 2 =− m +1 3

m=5

@

3 1 = m +1 2

K1

K1 N1 8

N1

N1

6 QUESTION NO. 7

(a)

SOLUTION

MARKS

y 2.88 2.30 1. 92 1.64 1.44

10

xy 2.88 4.6 5.76 6.56 7.2

N1

All values of xy correct (accept correct to 2 decimal places)

xy = −dy + c

P1

Refer to the graph.

K1

Plot xy against y

(b)(i) (ii)

N1

(iii)

N1

6 points mark correctly

Line of best fit

10 m = −c

K1

7

p = 11⋅5 ± 0⋅2

QUESTION NO.

y = 2⋅16

K1

2⋅315

N1

N1

SOLUTION

d = 3 ± 0⋅2

N1

MARKS

8

8 (a)

sin x cos 2 x + cos x sin 2 x

1

K1

sin x 1 − 2 sin 2 x + cos x 2 sin x cos x

K1

1 2 sin x cos x K1 1 or sin 2 x

cosec 2x

N1

y

(b) (i) & (ii)

6

3

1 x 2

1

Shape of sine curve

P1

Amplitude of 2 and 1 period

P1

0 Translation    2

P1

2x 1 

N1

y

Draw the straight line correctly Number of solutions = 2

K1 N1

10

9

QUESTION NO.

9 (a) (i)

SOLUTION

p=

30 = 0.3 100

q = 0.7

K1

= 0.1585

(b)(i)

N1

P[X = 0] + P[X = 1] + P[X = 2] 12 1 11 12 2 10 = (0⋅7)12 + C1 (0.3) (0.7) + C2 (0.3) (0.7)

K1

= 0⋅2528

N1

42 − 40   P Z >  5  

P  X  m   0.15

5

K1

= 0.3446

(ii)

5

P1

∴ P[ X = 5] = 12C5 (0.3)5 (0.7)7

(ii)

MARKS

N1

K1

m  40  1.036 5 m  45.180

K1

N1

10

10

QUESTION NO.

10 (a)

SOLUTION

mBC = −

1 2

mAD × −

or

y – 7 = 2(x – 7)

or

1 = −1 2

or

MARKS

mAD = 2

7 = 2(7) + c

N1

1 y= − x+8 2

P1

1 2x – 7 = − x + 8 2

or

equivalent

x + 7(2) =6 1+ 2

N1

or

y + 7(2) =5 1+ 2

E(4, 1)

(d)

3 K1

D(6, 5)

(c)

3

K1

y = 2x − 7

(b)

K1

( x − 12) 2 + ( y − 2) 2 = 5

x² + y² – 24x – 4y + 123 = 0

K1

2

N1

K1

2

N1

10

11

QUESTION NO. 11 (a)

SOLUTION

MARKS

N1

x = 0, 5 125  3

6 K1

5





2 1  (5) 2 (5)    x 2  4 x dx 3 4

 x5 x3    2 x 4  16  3   5

K1

5

K1 4

  55   45   16 16    2(5) 4  (5)3    2(4) 4  (4)3     5  3 3   5    

34

(b) (i)

K1

2  15

= 2px – q

N1

or

5 = 2p – q @ equivalent

or

2=pq

4

K1 N1

p=3,q=1

Gradient of normal = − (ii)

5y + x = 11

or

1 5

equivalent

K1 K1

N1

10

12

QUESTION NO. 12 (a) (b)

SOLUTION

Vo  3

MARKS

P1

1

K1 Use v = 0

4t 2  8t  3  0

2

(2t  3)(2t  1)  0 t

(c)

3 1 , 2, 2

N1

3

4  [ t 3  4t 2  3t ] 12 3 2

Integrate

4 3 3 3 4 1 1 1  [ ( ) 3  4( ) 2  3( )]  [ ( )  4( ) 2  3( )] 3 2 2 2 3 2 2 2 2  m 3

(d)

a  8t  8

 15ms 1

v dt

K1

3

K1

N1

4

K1

t  3s V3  4(3)2  8(3)  3



N1 K1 N1

10 QUESTION

SOLUTION

MARKS

13 NO. 13 (a)

52  62  72 cos BCD  2(5)(6) ∠BCD = 78⋅46° @ 78°28′

N1

sin CAE sin 78 46o  8 10

(b)

*

3

K1

CAE = 5161 @ 5137

N1 N1

*AEC  49 93o AC  102  82  2(10)(8) cos 49 93o

(c)

AC = 7⋅8105

2

K1

N1

1 1 o Area of ∆BDE =   5  6  sin 78 46 3 2

(d)

2

K1

1

K1

K1

3

Use of the formula

1

= 4⋅8989

N1 (a)

2

ab sin C

10

x  y  60 1 y x 2

I. II.

4 x  3 y  360

III. (b)

3

Refer to the graph, 1 or 2 straight lines correct 3 st. lines correct Correct shaded area

Answer for question 14

y

100 30 40 20

10

N1

(c) (i) (10, 50)

N1 Max balance after purchase = RM[3 600  1900] N1

20

30

40

= RM 1 700

50

60

70

80

14

K1 N1 N1

90

N1

K1

K1

80

N1

40(10) + 30(50) @ 1900 10

70 60 50

(10, 50)

15

x

15 (a)

Use of formula I 

Q1  100 Q0

5

K1

p = 109.1 q = 200

N 2, 1, 0

r = 486

(b)

I

=

130  6  109.1 5  125  3  135  4 18

2240.5 18

K1

N1

= 124.5

(c)

Monthly expenditure for Year 2007 = 1986 x  100  128 1986 RM2542.08

K1

K1

K1

N1

10 Answer for question 7

xy

16 12

(a)

11

y

2.88

2.30

xy

2.88

4.6

1.9 2 5.76

1.64

1.44

6.56

7.2

10

9

8

×

7

× 6 × 5 × 4

3

×

2

1

0

0⋅4

0.88

1⋅2

1.6

2⋅0

2.4

2.8

3.2

y

Related Documents


More Documents from "Bid Hassan"