3472/2 Matematik Tambahan Kertas 2 2 ½ jam Sept 2008
SEKOLAH MENENGAH ZON A KUCHING LEMBAGA PEPERIKSAAN PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2008
MATEMATIK TAMBAHAN Kertas 2 Dua jam tiga puluh minit
JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU
MARKING SCHEME
Skema Pemarkahan ini mengandungi 15 halaman bercetak
2
ADDITIONAL MATHEMATICS MARKING SCHEME TRIAL ZON A KUCHING 2007 – PAPER 2 QUESTION NO.
1
SOLUTION
p 1 m @ m 1 p
MARKS
5
P1
* 1 m 2m 2 * 1 m m 8 2
@
Eliminate p or m
K1
p 2 2* 1 p p 1 * 1 p 8
m
2
1
@ p
K1
Solve the quadratic equation by using quadratic formula @ completing the square
1 4 2 7 2 2
3
2
3 4 2 6 2 2 2
m 2.138, m 1.637 @ N1 p 1.137, p 2.637 OR p 1.137, p 2.637 N1 @ m 2.138, m 1.637 2 (a)
K1
Note : OW-1 if the working of solving quadratic equation is not shown.
5
dS = 8 r or dr
dS dS dr = dt dr dt
K1 8 (3) 0.2 N1
4.8 @ 15.08
3
3 QUESTION NO.
(b)
SOLUTION
MARKS
P1
4
dy d2y 2 x 3 and 2 dx dx 2
2 + (2x 3) 2 + 14x 11 = x 3x + 2 K1 (3x 1)(x + 2) = 0
x=
3 (a)
1 , 2 3
x 2.9 or
N1 7 fx 2 291 291 (2.9) 2 30
1 1358
(b) (i)
(ii)
K1
3
P1
K1
Use the formula
N1
Or equivalent
2(2.9) c 2.8
K1
c=3
N1
21.1358* = 22716*
N1
3
6
4 QUESTION NO. 4 (a)
SOLUTION
cos
3 or 4
MARKS
P1
= 4141 @ 4125
2
N1
07227 rad 7937 or 12(07227)
or
8672
3
K1
(b)
7937 + 12(07227) + 3 K1
19609
(c)
N1
1 1 (12) 2 0 7227 @ 9 7 937 2 2 1 1 (12) 2 0 7227 9 7 937 2 2
K1
K1 N1
1631 5 (a)
3
K1
4a(2)9 = 10 240 a=5
8
6
N1
(b)
a = 1, r = 4(both correct) 410 1 4 1
or
410 1 44 1 4 1 4 1
349 440
K1
44 1 4 1
K1
K1 N1
6
5 QUESTION NO.
6 (a) (i) (ii)
SOLUTION
CQ =
(b) (i)
P1
BP = 3 y − 4 x CQ =
2 CB 3
or
3
K1
Equivalent
8 x − 4y 3
N1
1 BR = BP m + 1
P1
(
1 BR = − 4x + 3y m + 1
(
MARKS
)
5 P1
)
2 3 1 − 4 x + 3 y = (− x + y) m + 1 3 4 −4 2 =− m +1 3
m=5
@
3 1 = m +1 2
K1
K1 N1 8
N1
N1
6 QUESTION NO. 7
(a)
SOLUTION
MARKS
y 2.88 2.30 1. 92 1.64 1.44
10
xy 2.88 4.6 5.76 6.56 7.2
N1
All values of xy correct (accept correct to 2 decimal places)
xy = −dy + c
P1
Refer to the graph.
K1
Plot xy against y
(b)(i) (ii)
N1
(iii)
N1
6 points mark correctly
Line of best fit
10 m = −c
K1
7
p = 11⋅5 ± 0⋅2
QUESTION NO.
y = 2⋅16
K1
2⋅315
N1
N1
SOLUTION
d = 3 ± 0⋅2
N1
MARKS
8
8 (a)
sin x cos 2 x + cos x sin 2 x
1
K1
sin x 1 − 2 sin 2 x + cos x 2 sin x cos x
K1
1 2 sin x cos x K1 1 or sin 2 x
cosec 2x
N1
y
(b) (i) & (ii)
6
3
1 x 2
1
Shape of sine curve
P1
Amplitude of 2 and 1 period
P1
0 Translation 2
P1
2x 1
N1
y
Draw the straight line correctly Number of solutions = 2
K1 N1
10
9
QUESTION NO.
9 (a) (i)
SOLUTION
p=
30 = 0.3 100
q = 0.7
K1
= 0.1585
(b)(i)
N1
P[X = 0] + P[X = 1] + P[X = 2] 12 1 11 12 2 10 = (0⋅7)12 + C1 (0.3) (0.7) + C2 (0.3) (0.7)
K1
= 0⋅2528
N1
42 − 40 P Z > 5
P X m 0.15
5
K1
= 0.3446
(ii)
5
P1
∴ P[ X = 5] = 12C5 (0.3)5 (0.7)7
(ii)
MARKS
N1
K1
m 40 1.036 5 m 45.180
K1
N1
10
10
QUESTION NO.
10 (a)
SOLUTION
mBC = −
1 2
mAD × −
or
y – 7 = 2(x – 7)
or
1 = −1 2
or
MARKS
mAD = 2
7 = 2(7) + c
N1
1 y= − x+8 2
P1
1 2x – 7 = − x + 8 2
or
equivalent
x + 7(2) =6 1+ 2
N1
or
y + 7(2) =5 1+ 2
E(4, 1)
(d)
3 K1
D(6, 5)
(c)
3
K1
y = 2x − 7
(b)
K1
( x − 12) 2 + ( y − 2) 2 = 5
x² + y² – 24x – 4y + 123 = 0
K1
2
N1
K1
2
N1
10
11
QUESTION NO. 11 (a)
SOLUTION
MARKS
N1
x = 0, 5 125 3
6 K1
5
2 1 (5) 2 (5) x 2 4 x dx 3 4
x5 x3 2 x 4 16 3 5
K1
5
K1 4
55 45 16 16 2(5) 4 (5)3 2(4) 4 (4)3 5 3 3 5
34
(b) (i)
K1
2 15
= 2px – q
N1
or
5 = 2p – q @ equivalent
or
2=pq
4
K1 N1
p=3,q=1
Gradient of normal = − (ii)
5y + x = 11
or
1 5
equivalent
K1 K1
N1
10
12
QUESTION NO. 12 (a) (b)
SOLUTION
Vo 3
MARKS
P1
1
K1 Use v = 0
4t 2 8t 3 0
2
(2t 3)(2t 1) 0 t
(c)
3 1 , 2, 2
N1
3
4 [ t 3 4t 2 3t ] 12 3 2
Integrate
4 3 3 3 4 1 1 1 [ ( ) 3 4( ) 2 3( )] [ ( ) 4( ) 2 3( )] 3 2 2 2 3 2 2 2 2 m 3
(d)
a 8t 8
15ms 1
v dt
K1
3
K1
N1
4
K1
t 3s V3 4(3)2 8(3) 3
N1 K1 N1
10 QUESTION
SOLUTION
MARKS
13 NO. 13 (a)
52 62 72 cos BCD 2(5)(6) ∠BCD = 78⋅46° @ 78°28′
N1
sin CAE sin 78 46o 8 10
(b)
*
3
K1
CAE = 5161 @ 5137
N1 N1
*AEC 49 93o AC 102 82 2(10)(8) cos 49 93o
(c)
AC = 7⋅8105
2
K1
N1
1 1 o Area of ∆BDE = 5 6 sin 78 46 3 2
(d)
2
K1
1
K1
K1
3
Use of the formula
1
= 4⋅8989
N1 (a)
2
ab sin C
10
x y 60 1 y x 2
I. II.
4 x 3 y 360
III. (b)
3
Refer to the graph, 1 or 2 straight lines correct 3 st. lines correct Correct shaded area
Answer for question 14
y
100 30 40 20
10
N1
(c) (i) (10, 50)
N1 Max balance after purchase = RM[3 600 1900] N1
20
30
40
= RM 1 700
50
60
70
80
14
K1 N1 N1
90
N1
K1
K1
80
N1
40(10) + 30(50) @ 1900 10
70 60 50
(10, 50)
15
x
15 (a)
Use of formula I
Q1 100 Q0
5
K1
p = 109.1 q = 200
N 2, 1, 0
r = 486
(b)
I
=
130 6 109.1 5 125 3 135 4 18
2240.5 18
K1
N1
= 124.5
(c)
Monthly expenditure for Year 2007 = 1986 x 100 128 1986 RM2542.08
K1
K1
K1
N1
10 Answer for question 7
xy
16 12
(a)
11
y
2.88
2.30
xy
2.88
4.6
1.9 2 5.76
1.64
1.44
6.56
7.2
10
9
8
×
7
× 6 × 5 × 4
3
×
2
1
0
0⋅4
0.88
1⋅2
1.6
2⋅0
2.4
2.8
3.2
y