Simplicius-on-aristotle-on-the-heavens-1-3-4 (1).pdf

  • Uploaded by: constanza
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Simplicius-on-aristotle-on-the-heavens-1-3-4 (1).pdf as PDF for free.

More details

  • Words: 98,614
  • Pages: 232
SIMPLICIUS On Aristotle On the Heavens 1.3-4

IAN MUELLER Ian Mueller’s unexpected death in August 2010 is a great loss to the profession as well as to his family, friends and students. He contributed no fewer than eleven volumes of translation (two of them part-volumes) to the Ancient Commentators on Aristotle translation series; three will be published after his death. He wrote at a very steady pace and his complete mastery of the philosophy of the exact sciences in antiquity was established by his 1981 book on Euclid, and by some 50 articles in the subject. He wrote with exemplary clarity, and was always patient and kind in explaining to those who were slower to follow. Ian would typically visit the office of the Ancient Commentators project at King’s College, London, to finalise his volumes with the research associates, and he always dealt with complications in a calm and helpful manner. His colleagues were looking forward to welcoming him as a visiting research fellow in King’s, as he had planned to spend more time in London. He had made other contributions to the Ancient Commentators project, including a seminal article, ‘Aristotle’s doctrine of abstraction in the commentators’, in the project’s collected volume, Aristotle Transformed, and a number of translations in its three-volume Sourcebook on the commentators. He gave generous advice over the years to the editor and to a large number of translators to whom he sent comments on request. His contribution will be sadly missed. The Editor

SIMPLICIUS On Aristotle On the Heavens 1.3-4 Translated by Ian Mueller

LON DON • N E W DE L H I • N E W YOR K • SY DN EY

Bloomsbury Academic An imprint of Bloomsbury Publishing Plc 50 Bedford Square London WC1B 3DP UK

1385 Broadway New York NY 10018 USA

www.bloomsbury.com Bloomsbury is a registered trade mark of Bloomsbury Publishing Plc First published in 2011 Paperback edition first published 2014 © 2011 by Ian Mueller Ian Mueller has asserted his right under the Copyright, Designs and Patents Act, 1988, to be identified as Author of this work. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system, without prior permission in writing from the publishers. No responsibility for loss caused to any individual or organization acting on or refraining from action as a result of the material in this publication can be accepted by Bloomsbury Academic or the author.

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. ISBN HB: 978-0-7156-4063-0 PB: 978-1-4725-5795-7 ePDF: 978-1-4725-0170-7 Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress. Acknowledgements The present translations have been made possible by generous and imaginative funding from the following sources: the National Endowment for the Humanities, Division of Research Programs, an independent federal agency of the USA; the Leverhulme Trust; the British Academy; the Jowett Copyright Trustees; the Royal Society (UK); Centro Internazionale A. Beltrame di Storia dello Spazio e del Tempo (Padua); Mario Mignucci; Liverpool University; the Leventis Foundation; the Arts and Humanities Research Council; Gresham College; the Esmée Fairbairn Charitable Trust; the Henry Brown Trust; Mr and Mrs N. Egon; the Netherlands Organisation for Scientific Research (NWO/GW); the Ashdown Trust; Dr Victoria Solomonides, the Cultural Attaché of the Greek Embassy in London. The editor wishes to thank Dirk Baltzly, Ian Crystal, Sebastian Gertz, Pantelis Golitsis, and Alan Lacey for their comments, Michael Griffin for preparing the volume for press, and Deborah Blake at Bristol Classical Press, who has been the publisher responsible for every volume since the first.

Typeset by Ray Davies Printed and bound in Great Britain

Contents Abbreviations

vii

Introduction Translation of the text commented on (On the Heavens 1.3, 270a12-4); outline of the commentary

1 25

Translation of the commentary

33

Notes Appendix 1. The ‘fragments’ of Philoponus, Against Aristotle Appendix 2. The ‘fragments’ of Alexander’s commentary on De Caelo Appendix 3. On the purity of the elements Appendix 4. The signs of the zodiac Bibliography Textual Questions English-Greek Glossary Greek-English Index Index of Passages (a) Passages quoted by Simplicius (b) Early texts cited in the notes Index of Names (a) Names mentioned by Simplicius (b) Scholars cited in the Introduction and Notes to the Translation Subject Index

v

145 169 171 175 176 177 181 185 203 213 213 213 217 217 220 223

This page intentionally left blank

Abbreviations In most cases works are referred to by author or editor’s name and date of publication, full information being provided in the Bibliography. However, the following abbreviations are used: Against Proclus = Hugo Rabe (ed.), Ioannes Philoponus, De Aeternitate Mundi contra Proclum, Leipzig: Teubner, 1899. CAG = Commentaria in Aristotelem Graeca, 23 vols, Berlin: G. Reimer, 1882-1909. DK = Hermann Diels and Walther Kranz (ed. and tr.), Die Fragmente der Vorsokratiker, 6th edn, 3 vols, Berlin: Weidmann, 1954. LSJ = George Henry Liddell and Robert Scott (comps), Henry StuartJones (rev.), A Greek-English Lexicon, Oxford: Clarendon Press and New York: Oxford University Press, 1966. RE = Paulys Realencyclopaedie der Classischen Altertumswissenschaft, 51 vols, Stuttgart: J.B. Metzler, 1893-1997. In addition the following names are used without dates: Bessarion for emendations by the Renaissance humanist recorded in Heiberg’s apparatus. Hankinson for Hankinson (2002). Heiberg for Heiberg (1894) Karsten for Karsten (1865). Moerbeke for Latin readings found in Bossier (2004). Moraux for Moraux (1965). Rescigno for Rescigno (2004). Rivaud for Rivaud (1925). Ross for Ross (1936).

vii

This page intentionally left blank

Introduction This volume translates the second half of Simplicius of Cilicia’s commentary on Aristotle’s De Caelo 1.2-4, in which Aristotle argues that the world is everlasting;1 the first half is in Mueller (2010). Approximately 29% of this material is commentary in the ordinary sense, that is passage-by-passage explication of what Aristotle is saying. Another 11% (20,1-25,22 and 92,22-109,15) is more general philosophical discussion and treatment of some alternative views. The explications and general discussions, roughly 40% of 1.2-4, have already been translated into English in Hankinson (2002), a work to which I am much indebted. The other 60% is Simplicius’ discussion of the objections raised by his Christian contemporary John Philoponus2 (in a lost work which I shall call Against Aristotle) to Aristotle’s attempt to prove the everlastingness of the world. About 40% of that material containing Philoponus’ objections (roughly a fourth of 1.2-4) is translated in Wildberg (1987), another work to which I am much indebted. So what is new in this translation, somewhat more than one third of the whole, could be characterised as Simplicius’ responses to Philoponus. Since the debate between Simplicius and Philoponus is an extremely important item in the late stages of the transition from paganism to Christianity in the Byzantine Empire, it seemed desirable to include Simplicius’ responses in the Ancient Commentators on Aristotle series. But to print them in isolation did not seem reasonable since they obviously have to be read in connection with what they are responses to. Moreover, it is clear that a considerable portion of the material translated by Hankinson, e.g., the long excursus on coming to be at 92,22-109,15, is introduced by Simplicius in anticipation of his attack on Philoponus. The possibility of incorporating the two earlier translations into this one was considered, but it was decided that this was not feasible because of (hardly unexpected or surprising) differences in predilections between the two previous translators and between them and myself. Hence the decision to make a new translation which could rely on its predecessors for discussions of many issues3 and give readers direct access to a historically and philosophically important document in its entirety.

1

2

Introduction 1. The disputes between Simplicius and Philoponus

Aristotle begins chapter 2 by asserting that all motions are either simple, that is rectilinear or circular, or composed of simple motions because the only simple magnitudes are straight and circular lines. He characterises circular motion as motion around the centre, rectilinear motion as motion up or down, up being away from the centre, down to the centre. He then introduces a distinction between ‘simple’4 bodies and compounds of them, and says that the simple bodies necessarily have simple motions and that it is necessary that there be a simple body which moves naturally in a circle by its own nature. This simple body is heaven, the world above the moon, the substance of which is a fifth element or aithêr, and for Simplicius Aristotle’s principal goal in 1.2-4 is to establish the difference between heaven, the only change in which is uniform motion in a circle, and the sublunary world which is composed of the four simple bodies or elements which move in a straight line, earth and water, which move down, and air and fire, which move up.5 For Simplicius the motions of the four simple bodies are inseparably connected with their continual change into one another, their acting on and being acted on by one another, a kind of change from which heaven is free. For Simplicius and Aristotle both heaven and the sublunary world are everlasting, but for Philoponus both came into existence in roughly 5500 BC when god created them and will end when god in some sense destroys them, an event thought to be imminent by Philoponus and his Christian contemporaries. However, the focus of the debate between Philoponus and Simplicius is heaven since that is the focus of 1.2-4, and one might say that they take for granted that the universe or cosmos is eternal if and only if heaven is. Simplicius takes it that prior to the texts which are commented on in this volume Aristotle has established not only the distinction between heaven and the sublunary world, but also the fact that heaven is more complete or perfect than the sublunary world, prior to it, and without weight or lightness. Although Philoponus would accept that there is a sense in which heaven is more complete than, better than, and prior to the sublunary world, he does not accept these assertions in the strong sense in which Aristotle and Simplicius intend them, and he raises explicit objections6 to Aristotle’s arguments against heaven being without weight or lightness. However, although Philoponus is ultimately interested in defending a Christian cosmological picture in opposition to Aristotle’s, his concern in Against Aristotle is, as this appellation suggests, merely to argue that Aristotle’s own arguments are inconclusive. To put this another way Philoponus’ concerns are eristic, and one cannot assume that an argument he makes represents a position to which he subscribes as

Introduction

3

opposed to a flourish he hopes will be persuasive. Since we don’t have anything like the full text of Against Aristotle we cannot be certain about its overall character, but Philoponus’ parallel work Against Proclus suggests that my characterisation is correct. If what I have said is true of Philoponus, it is even more true of Simplicius, whose argumentation is frequently both eristic and ad hominem. In responding to Philoponus’ arguments he freely casts aspersions on his opponent’s intelligence and motivation, and makes whatever counterarguments he can think of, whether or not they represent a consistent position. In this sense one might say that the dispute between Simplicius and Philoponus is a combat between rhetoricians rather than a philosophical, cosmological, or theological debate. There are, to be sure, philosophical, cosmological, and theological issues in the debate, but the overlay of rhetoric cannot and should not be disregarded. The structure of the part of De Caelo treated here is relatively simple, and can be seen by looking at ‘The text commented on’ section below. Aristotle argues first that heaven does not come to be or perish (270a12-22), from which he infers that it does not increase or decrease in size (270a22-5) or change in quality (270a25-35). If we can trust to Simplicius’ silence, Philoponus did not even discuss these further inferences, perhaps because he was only concerned to defend his Christian view that the world came to be (and will perish). Simplicius summarises the argument that heaven does not come to be or perish briefly at 92,4-7: I. The body which moves in a circle, i.e. heaven, does not have a contrary; II. what comes to be or perishes has a contrary from which it comes to be and into which it perishes; III. therefore, the body which moves in a circle does not come to be or perish. At 270a17-20 Aristotle suggests an argument for I, the premisses of which Simplicius presents as follows at 92,12-17: IV. There is no contrary to circular motion; V. ‘what has a contrary also has a motion which is contrary to its natural motion, namely the motion with which its contrary moves naturally’. For Simplicius the rather contorted V is clearly true (enargês) since, as he puts it rather opaquely, ‘since the natures of contrary natural forms are contrary, their motions are as well because nature is a starting point of motion’.7 Given V as ‘clearly true’, I follows from IV, the proof of which takes up chapter 4. It remains only to establish II, which Aristotle formulates in the following remark:

4

Introduction Everything which comes to be comes to be from a contrary and some substratum and it likewise perishes by the action of a contrary and into a contrary with something underlying, as was said in our first discussions. (270a14-17)

The first discussions are undoubtedly the discussion of the principles of coming to be in the first book of the Physics. Simplicius tells us at 121,4-8 that Philoponus argued against both IV and II, and later, at 157,21-5, that he also objected to V. I shall consider these propositions in the order in which Simplicius discusses them, first II, then V, then IV. The issues involved with II are not so much the truth or falsity of a clearly understood Aristotelian doctrine as an interpretation of what he says on the question of coming to be and perishing and whether what he says entitles him to the premiss he needs for his argument. On the question of interpretation Philoponus is concerned with what the Aristotelian commentators Alexander and Themistius have to say as well as with Aristotle’s pronouncements. His discussion depends upon a distinction between what are called contraries in the strict sense (kuriôs), which I will call ordinary contraries, and cases of the contrasting pair form/privation. A simple and representative case of coming to be and perishing involving ordinary contraries is an ordinary object or piece of material (an ordinary substratum) coming to be warm from being cold. Philoponus implies that Aristotle and Alexander only recognise this kind of coming to be and perishing, and he accepts that if this were the only kind of coming to be and perishing, the cosmos as a substratum undergoing changes between ordinary contraries would be everlasting. Philoponus argues that if Aristotle had acknowledged coming to be and perishing involving forms and their privations he could not infer that the cosmos does not come to be or perish. One of the strong points of Philoponus’ argumentation is the fact that Aristotle mentions only contraries and not form and privation in his formulation of II. Simplicius, however, has no interest in defending the view that the cosmos does not come to be by restricting coming to be to cases involving ordinary contraries. He argues, with extensive quotation, that Aristotle does not believe that all coming to be involves ordinary contraries. He even claims (125,20-2) that Aristotle posits form and privation as principles of coming to be and perishing ‘more than’ (mallon hêper) contraries. At 128,16-129,3 he attempts to explain why Aristotle formulated II using the word ‘contrary’ rather than speaking of form and privation, when in Simplicius’ view he clearly intends to include the latter.8 We will see that this conception introduces other difficulties for Simplicius, but now I wish to look at the arguments of Philoponus designed to force acceptance of the view that there is coming to be involving form and privation as well as9

Introduction

5

other cases in which ordinary contraries are involved, a position which Simplicius, of course, accepts. I list here Philoponus’ arguments (123,11-124,17) with Simplicius’ responses (129,4-131,17) in parentheses: 1. Substances come to be, but, according to Aristotle in the Categories, substance has no contrary (Simplicius quotes two passages from Physics 1 to show that Aristotle says that substances do come to be.) 2. Irrational souls come to be, but they have no contrary. (Simplicius expresses agnosticism on the question whether irrational souls come to be, but, he says, if they do their doing so is a matter of a body taking on a form which it did not have previously.) 3. Geometrical figures come to be, but Aristotle holds that figures are not contrary to one another. (Simplicius argues both that Aristotle recognises contrariety among figures and that he can get along with figures and their privations.) 4. Left comes to be from right, but these are relatives, not contraries. (Simplicius insists that left and right are contraries (as well as relatives).) 5. Individuals in any of the categories in which there are no contraries do not come to be from contraries. (Simplicius says that even in such cases there is the opposition of form and privation.) 6. Air has no colour or flavour, but things with colour or flavour, e.g. water, come to be from it. (Simplicius insists that air does have some colour, but also finds nothing problematic in the idea that something without a quality in one range, e.g. colour, might come to be something which does have such a quality.) 7. Light comes to be from dark, which is the privation of light. (Simplicius sees no difficulty here.) Philoponus goes on to argue that if (as Simplicius thinks) Aristotle himself intends to include form and privation as contraries, then he cannot maintain the view that the cosmos did not come to be. Philoponus would be in a stronger position if he restricted himself to this negative formulation (‘cannot maintain’), but in Simplicius’ representation he appears to slip into the positive claim that Aristotle must accept that the cosmos came to be, although Philoponus is in no position to establish this:10 For every natural form which has its being in a substratum and matter there is always an opposite privation, from which it has come to be and into which it is resolved when it perishes. But both heaven and the whole cosmos have been given form by a

6

Introduction natural form, so that they, too, will have a privation from which they have come to be and into which they perish. For just as human being comes to be from not human being and house from not house and, to speak generally, each natural or manufactured form comes to be from not such and such, so too heaven, since it is also a natural form, has come to be from not heaven and the cosmos has come to be from not cosmos. But this argument presumably requires that before the cosmos came to be there existed some substratum and matter in which the privation of heaven and cosmos existed and from which, when it had changed, heaven and the cosmos came to be, but it would not necessitate that heaven have no beginning and not come to be, as the Philosopher proposed to prove, but rather the contrary, that it comes to be and has a beginning of existence. (132,4-17)

Simplicius’ rejoinder to this argument seems rather weak. He claims that Aristotle does not hold that ‘for every natural form which has its being in a substratum or matter there is always an opposite privation’ but only that this is true of every natural form which comes to be, and Aristotle obviously holds that the cosmos does not come to be, since he argues in Physics 8 that heavenly motion is eternal. Simplicius agrees with Philoponus that the cosmos is a natural form existing in matter. This might seem to commit him to the view that the cosmos could conceivably come to be in the way Philoponus describes, but, according to Simplicius, there simply is no privation from which the cosmos might come to be. Where, he asks, does Aristotle say that every natural form has an opposite privation? ‘Would Aristotle be so superficial as to think that there is a privation opposed to heaven and nevertheless to try to demonstrate that it is everlasting and to demonstrate this from its not having an opposite?’ (133,1-311). But, of course, the real issue is not whether Aristotle believed the cosmos came to be, but whether his doctrine of coming to be leaves open the possibility that it might have. Simplicius gives at least some indications that he is aware of the weakness of his position. At 122,29 he says that even if there were a privation of heaven and the whole cosmos, one would need a further demonstration that it came to be and will perish. And at the end of his discussion of chapter 4 (200,14-18) he admits that Aristotle might have done better to ‘argue’ for the everlastingness of the cosmos on the basis of Neoplatonic ideas about the dependence of heavenly motion on Soul, Mind or Being, and ultimately the One, ideas of which he gives a thorough exposition at 93,23-98,15 and which he associates with the argument in Physics 8 that heavenly motion is everlasting. When Philoponus says that heaven and the whole cosmos have also been given form by a natural form, he means or implies that the

Introduction

7

cosmos or heaven is a compound of matter and form. Simplicius accepts this characterisation, and says it is ‘not at all disputed’ (133,25), but he proposes to look at what Philoponus says in support of this truth. The discussion is mainly of interest because it touches on the difficult question of the nature of matter. For Simplicius the ultimate substratum of everything in the cosmos is what he would call prime matter. He tells us that Philoponus thinks that what the Peripatetics call the second substratum is the ultimate substratum. Philoponus himself explains the difference between Aristotle’s conception of prime matter and the second substratum at 83,14-18 of his commentary on the Categories (CAG 13.1): ‘Prime matter ... is incorporeal and without form or shape before it is filled out and receives the three dimensions and becomes three-dimensional (what Aristotle calls second substratum), and then it receives qualities and produces the elements ....’ The second substratum or three-dimensional is also called qualityless body, but for Philoponus it is the true ultimate substratum and a substratum common to all things, heavenly and sublunary, the ‘prime matter’ of the Peripatetics (and Simplicius) being an incomprehensible fantasy.12 Simplicius quotes Philoponus as deriding those who say that heaven is immaterial, assuming that they mean it is an intelligible object. Simplicius responds that what these people mean is that the matter of heaven is superior to the matter of the sublunary world in which things come to be and perish. He cites Aristotle’s suggestion that everlasting natural substances either have no matter or have matter which can only change place but does not come to be or change in quality or in size (Metaphysics 8.4.1044b6-8). Thus we have a situation in which Philoponus insists that there is an ultimate matter which is the common substratum of everything material and Simplicius responds that there are two such matters, one for the heavens, the other for the sublunary world.13 To Philoponus’ suggestion that if there are two such matters they ought to have both something in common which makes them matters and some differentiating characteristics, Simplicius responds that the two matters should not be thought of as two species of a genus, but as two stages in the declination of things from the One in which heaven has a priority over the sublunary world. Clearly Philoponus’ identification of a single universal substratum is a fundamental part of his claim that heaven is as perishable as things in the sublunary world. Simplicius insists that there cannot be one common matter because there are no interchanges between the two domains, a fact which he says in a rhetorical remark14 Philoponus could not possibly deny. In the last passage quoted Philoponus concedes that his argumentation would imply that the cosmos comes to be from a pre-existing substratum. But that is not a conclusion acceptable to Philoponus, who at 136,17 refers to his Against Proclus for arguments against it.

8

Introduction

If one can trust Simplicius’ representation, in Against Aristotle Philoponus did not repeat the arguments of Against Proclus, but only argued against what he took to be a misunderstanding of the Christian doctrine that the cosmos came to be from what is not as the view that what is not is an enduring substratum for the cosmos in the way that wood is an enduring substratum from which a wooden ship is created. Simplicius denies the existence of this misunderstanding. For him the important point is the requirement that coming to be must be from a substratum and have an efficient cause. Simplicius also tells us that Philoponus gave many arguments that divine creation involves the simultaneous creation of form and substratum, but he does not describe them or answer them directly.15 Instead he gives his own account of eternal creation as the only way of avoiding a question to which the Christians have no satisfactory answer: why was the cosmos created at one time rather than another? Starting at 270b4 Aristotle gives what Simplicius calls three corroborations (marturiai) or confirmations (pisteis) of his view of the character of heaven: the fact that people always assign heaven to the divine (270b4-11), the fact that no changes have ever been observed in heaven (270b11-16), the use of the word aithêr, allegedly derived from aei thein (‘always running’),16 to refer to heaven. Simplicius does not report any comment by Philoponus on the third of these considerations, but it appears from Simplicius’ discussion at 139,23-141,11 that Philoponus took the opportunity to point out, citing Aristotle as an authority, that important Greek thinkers did not think that the cosmos was everlasting: Plato said that it came to be (although it will not perish because of the will of god), Empedocles and Heraclitus that it alternates between existence and non-existence through time. Simplicius cannot deny that Aristotle says these things, but he insists that Philoponus misconstrues their meaning. Aristotle is stating the superficial sense of what these people said, while being aware that their true doctrine was the same as his own: the cosmos is everlasting and dependent on a timeless reality for its existence. Philoponus also denies the significance of people’s assigning heaven to the divine and of the fact that no change has been observed in heaven. Even if people do assign heaven to the divine, they also think that gods inhabit sacred places on earth, but they do not assume such places to be everlasting. Simplicius replies that considering these places to be sacred is not incompatible with assigning heaven to the divine, and he cites the prophet David as making such an assignment and for the belief that the cosmos is everlasting. Against Aristotle’s remark that heaven has never been observed to change, Philoponus says that many things in the sublunary world exist for a long time without being observed to change, and that heaven is subject to destruction if god wills it since it is a finite body

Introduction

9

with finite power. Simplicius appears to adopt a kind of Heracliteanism, according to which anything which is subject to change is changing all the time, so that if anything goes without changing for an hour it is everlasting. Moreover, although the cosmos is a finite body with finite power, it is held in everlasting existence by an unchanging and eternal creator. In chapter 4 Aristotle turns to the proof of IV: there is no contrary to circular motion.17 But, as we have seen, Aristotle also needs V, which I shall now formulate as ‘if two things are contrary they have contrary motions’ or, since the relevant things are substances: V. If two substances are contrary they have contrary motions. Simplicius gives his own presentation of the arguments for IV at 144,5-156,24 before turning to Philoponus, where, after belittling him for objecting to the arguments for either IV or V when he is willing to concede the conclusion Aristotle wants to get from them, namely I (heaven or the cosmos has no contrary), he turns at 157,26 to Philoponus’ objections to V. The discussion is made complicated by the fact that several independent points are intertwined. First, Philoponus weakens his rhetorical position by formulating V as: V’. If two substances have contrary motions they are contrary (157,26-7). Second, Philoponus argues that Aristotle should have taken into account other kinds of change in addition to change of place, so that the relevant principles should be: V*. If two substances are contrary they admit of contrary changes, or, in Philoponus’ formulation: V*’. If two substances admit of contrary changes they are contraries. Philoponus invokes Aristotle’s dictum in the Categories that: A. The same substance can admit contraries to argue that V’ or V*’ imply that the same substance will be contrary to itself, which is not only itself impossible, but also incompatible with another dictum of the Categories: B. Substance has no contrary.

10

Introduction

In the course of his discussion Philoponus mentions both qualitative and quantitative change (a substance can become hotter or colder, larger or smaller) and change of place (air rises and sinks). Simplicius does not get around to pointing out Philoponus’ logical mistake in substituting V’ or V*’ for V or V* until 162,20 (cf. 163,34164,27), and he himself is sometimes somewhat cavalier about the difference between them.18 Blocking the substitution would by itself eliminate Philoponus’ argument, but Simplicius chooses to explain why A and V’ or V*’ are both true, that is why the same substance can admit contraries and not be contrary to itself. He does this by invoking a distinction between active and passive changes. Active changes include the natural motions of the elements, which are due to the nature inherent in them, and, e.g., fire heating other things; passive changes include constrained motion and being heated by fire. Simplicius first says (159,34-160,9) that any of V, V’, V*, V*’ are to be understood in terms of active changes, but that the changes relevant to A are all passive. But since he, like Philoponus, is convinced that Aristotle is only thinking about change of place, he ultimately decides (160,21-30) that Aristotle intends V only to apply to motion and not to, e.g., causing something to get warmer. Simplicius’ position means that he has to deny the relevance of Philoponus’ claim (158,13-10) that air moves both up and down naturally, a claim which Philoponus supports by saying that in either case air moves to fill a void. Simplicius responds (160,31-161,21; 161,28-162,14) by claiming that the motion of air up to fill a void is natural, but its motion down is due to the need to fill the void. At 163,14 Philoponus considers the possibility of escaping the difficulty he has adduced by replacing V’ with: V**’. If two substances have contrary motions they have contrary qualities. Philoponus concedes that V**’ would entail that if something has no contrary qualities (as Aristotle is taken to have believed of heaven), then there would be no contrary to its motion, but he denies (correctly) that V**’ would be entitled to assert: V**. If two substances have contrary qualities they have contrary motions. Philoponus points out that this proposition should be false for Aristotle since he believes that the hupekkauma moves in a circle and so should, according to Aristotle (IV), have no contrary to its motion, but, being fire, it does have contrary qualities. Simplicius responds by saying that the motion of the hupekkauma is irrelevant because its motion is not natural (as Philoponus believes) but ‘hypernatural’.

Introduction

11

Simplicius takes Philoponus’ proposal to consider V**’ in place of V’ as an indication that he thinks that for substances having contrary qualities, in particular contrary ‘substantial’ qualities, is incompatible with being themselves contraries. This claim, which is repeated at 165,21-3, seems unjustified, since all Philoponus looks to be doing is considering an alternative interpretation without suggesting that it is or is not compatible with another alternative.19 However, Simplicius sees his main task as countering Philoponus’ ‘misapprehension’ by explaining why Aristotle can call substances, such as fire and water, with contrary qualities contraries (as he does most explicitly at 2.3, 331a3-6 of On Coming to be and Perishing) while maintaining in the Categories that substance has no contrary (B). Unfortunately, Simplicius’ exposition starting at 166,14 does not make any reference to Philoponus, so that we have no idea of what features in it he might have objected to. And what Simplicius says is a variation on common themes in the commentary tradition, and the position he adopts is hardly distinguishable from the one expressed by Philoponus in his commentary on the passage in On Coming to be and Perishing just referred to. Simplicius begins by explaining that in the Categories primary substance20 is a composite of form and matter, which itself is taken as a substratum. He distinguishes sharply between this substratum and the ‘accidental’ contraries which belong to it, contraries which underlie Aristotle’s A. And B is true because substance is being taken as a substratum: The statement in the Categories that there is no contrary to substance is true. For there is no contrary with respect to matter, which is only a substratum. And there is none with respect to form } (for
is also substance, even if it is in matter); rather, together with matter, underlies contraries. And much more is it true that there is no contrary with respect to the composite of form and matter, since this is still more a substratum for contraries. (166,24-30) However, form itself has contraries as components, e.g., the form of fire includes heat, dryness, and lightness. Simplicius makes, but does not explain, a distinction between these ‘substantial’ contraries in the form and the accidental contraries invoked to explain A. It is the substantial contraries which Aristotle has in mind when in On the Heavens he speaks (implicitly) of contrary substances: But here he has taken the differentiae which belong substantially, each contrary contributing to the filling out of a different substance and the differentiae belonging per se and not accidentally to the sub-

12

Introduction stances. And he said that substances are contrary to each other with respect to those differentiae which belong per se to the different substances. For differentiae which belong accidentally exist in the same substance in turn. And so, when he says ‘the motions of contrary things are contrary’, he is calling substances which have substantial differentiae which are contrary to one another contrary substances, but he is not doing so insofar as they are substances and exist per se, but insofar as they are constituted by the contrary differentiae from which contrary motions follow; for upward motion is conjoined with heat and lightness, downward motion with coldness and heaviness. (167,14-24)

I turn finally to Aristotle’s arguments in chapter 4 for IV, which, despite their mathematical overlay, are really quite nebulous. I shall content myself with stating Simplicius’ understanding of them, the most important of Philoponus’ objections to them, which sometimes invoke Alexander and Themistius, and Simplicius’ replies. According to argument 1 (270b32-271a5), the most obvious candidate to be the contrary of motion in a circle is motion in a straight line. ‘But the motions in a straight line are opposed to one another by places, since up/down is a differentiation and contrariety with respect to place.’ For Simplicius Aristotle is here invoking the principle that a thing can have at most one contrary and the fact that for him the only simple rectilinear motions are from above to below and from below to above, and those two motions are contrary. Equally important for Simplicius’ understanding of Aristotle’s reasoning is the idea that ‘above and below are contrarieties of place, and the motions from those regions have contrariety most of all; for the motions which go from contrary places into contrary places are contrary’ (146,4-7), an idea which he bases on 271a27-8 (‘the contrarieties of motion are derived from the contrarieties of places’). In responding to this argument Philoponus first21 says that even if motions up and down and circular motion do not ‘conflict’ (makhetai) with respect to contrariety of places, they do conflict in other ways: In the case of the motions in a straight line motion is from one point to another and is unbroken in all its parts, but in the case of motion in a circle it is from and into the same thing with not even a chance part remaining unbroken. And motion in a circle conflicts with motion in a straight line because it is impossible for a motion on the same straight line to occur twice without having stopped, but motion in a circle can go around the same line infinitely many times without stopping. (171,27-31) In response Simplicius points out that (according to Aristotle) ‘con-

Introduction

13

trariety of places’ is fundamental to the idea of contrariety of motion, and he insists on the connection between this kind of contrariety of motion and the conflict among the sublunary bodies which produces their coming to be and perishing: Things which naturally go to places which are contrary to one another are always given form by contrary qualities, heat and coldness, lightness and heaviness; and things which are given form by these contrary qualities, which cause different impulsions, go to contrary places. These, and not ‘unbroken’ and ‘broken’, are the contraries which come to be from one another. For a circle does not change into a straight line, nor does what moves in a circle change into what moves in a straight line, nor does what moves from and to the same point change into what moves from one point to another, nor does what is separated by rest change into what moves continuously.22 For these are not contrarieties relating to qualities which act and are acted on, and they do not have the same substratum, since if they did it would result that sublunary things change into heavenly ones and heavenly things into sublunary ones. (172,7-18) Simplicius’ association of rectilinear motion with the kind of contraries involved in coming to be and perishing enables him to set aside Philoponus’ invocation of the contrariety convex/concave, which is found in heaven, as irrelevant to the unchangingness of heaven, which also exhibits many other contrarieties such as motion/rest, odd/even, same/different, one/many. Aristotle’s second argument (271a5-10) is very obscure. I quote it in full: Moreover, if someone assumes that the same statement which holds of the straight line also holds of the circular one (namely that motion from A toward B is contrary to motion from B toward A), he is <still> speaking about motion in a straight line, since such motion is finite, but the circular motions between the same points are infinite. Simplicius takes Aristotle to be arguing that motion from A to B on a circular arc greater or less than a semicircle is not contrary to motion from B to A on such an arc on the grounds that infinitely many such arcs can be drawn through two points. Prior to considering Philoponus’ objections he explains Aristotle’s reasoning as follows: From what he said before Aristotle has obtained that motions from contrary places are contrary, and that contrary places are those which are at the greatest distance, and that the greatest

14

Introduction distance is determinate, just as the least is, and that every distance which has a determinate size is measured by the straight line between the distances; for that straight line is one and determinate because it is the least line having the same limits, but circular arcs which are joined to the same points are infinite and so indeterminate; and consequently these arcs do not determine the distance between A and B, and consequently the greatest distance itself is not derived from the circular arcs; and consequently the places of A and B are not contrary; and consequently the motions from A and B are not contraries if they occur on an arc and not on a straight line. (176,15-26)

Philoponus, perhaps with understandable exasperation, suggests that Aristotle’s argument is intended as a joke and turns to refuting the accounts of it given by Themistius and Alexander. Themistius construed the argument as saying that motions on the infinitely many arcs from A to B will be contrary to the one rectilinear motion from B to A, contradicting the dictum that a single thing has a single contrary. Philoponus replies by saying that the motion from A to B on a given arc will be contrary only to the motion from B to A on the same arc. Although not endorsing Themistius’ position as an interpretation of Aristotle, Simplicius insists that his position is correct. Philoponus raises a perhaps more interesting issue when he points out that the same difficulty should arise for rectilinear motion since there are infinitely many upward motions from centre to periphery and infinitely many downward ones. He also claims that these upward or downward motions are not of the same kind whereas the circular motions between two points are of the same kind because they all have the same pair of end points, so that all the motions from A to B on circular arcs treated as one can be taken as contrary to all the motions from B to A taken as one. Simplicius responds: In the case of straight lines from the centre, all of which are equal, the interval between up and down, which is the greatest in this extension, is determinate, so that all the points on the periphery of the upper region, taken as one, are opposite to what is down.23 But, since the arcs between A and B are unequal and make the intervals between A and B unequal, they do not make the place A be at the greatest distance from the place B in terms of all the arcs. Consequently the places are not contrary, since they do not have the greatest distance between them one and determinate. ... But it is clear from what has been said that in the case of the straight lines everything which is up, taken as one, being at the same distance from what is down, is opposite to what is down taken as one, but that in the case of arcs, in which the kinds of distances are different, there is neither one

Introduction

15

kind, as he thinks, nor a contrariety of A to B with respect to these arcs at all. (177,25-178,7) Alexander appears to have given an exegesis similar to Simplicius’. In response Philoponus invokes a contrast between what is true in mathematics and what is true in nature. In mathematics it is true that there is no greatest circle on which two points lie, but in reality there is a greatest circle, e.g., the celestial equator. Philoponus goes on to argue that the inner limit of the sphere of the fixed stars and the outer limit of the sphere of the planets move in contrary directions. Simplicius does not address this claim until 194,21-198,6, but here he responds to Philoponus’ attempt to make something a determinate circular distance between two points: what Philoponus says is perhaps an adequate riposte to the claim that there is no greatest circle through two points, but it does not suffice to rule out there being infinitely many circular arcs through the points, even if the arcs are mathematical or conceptual and not physical things. As Simplicius puts it: Even if it is not possible to take a greater arc drawn on the same points than the one this person mentions, it would still always be possible to take a lesser one in the inner spheres. And even if such arcs drawn in the heavenly body are not natural things, the distances between the points would be different - conceptualisation is also sufficient to determine this. For when the points fall outside the straight line between them, the distance between them remains indefinite, so that they are not at the greatest distance from each other, their places are not contrary to one another, and the motions from them are not contrary, and the bodies moving with them are not contrary. (179,14-22) In the third argument (271a10-13) Aristotle considers the case in which the arc with endpoints A and B is a semicircle and therefore unique. He claims that motion on this arc is the same as motion on the straight line AB since ‘we always suppose that each thing is distant by a straight line’. Simplicius realises that this argument could have been used in the previous case, and he seems to think of it as in some sense the real argument in both cases. As he puts it: If contrary motions are contrary because they are from places which are most widely distant from one another, and the greatest distance is determinate, and we judge a determinate distance by reference to the least line of those having the same limits, and this is the straight line, it is clear that also on this hypothesis the contrary motions will occur as on a straight line. (148,1-5) Simplicius’ confrontation of Philoponus on the third argument, start-

16

Introduction

ing at 179,24, is long and difficult. He first tells us that Philoponus took Aristotle to be claiming that the straight line is the measure of the length of an arc and argued against this claim. Simplicius simply denies that Aristotle made such a claim; he only said that the distance between two points is measured by the straight line between them. As he puts it now: The person who takes the motions from C and D as contrary takes them as occurring on the diameter, since the determinate distance is determined by the diameter, the greatest distance is determinate, and the contrary distance is greatest. (181,4-7) At 181,20 we are told that Philoponus went on to argue that even if it is granted that the distance between two points is measured by the straight line between them, it remains the case that we can define the greatest distance between two points on an arc in terms of the arc. Philoponus’ argument invokes the signs of the zodiac, but it can be understood in terms of the hours on a clock face. According to Philoponus the most distant hours are the diametrically opposed ones such as 9 and 3 o’clock. It may be the case that 2 is at a greater distance from 9 in terms of the arc through 6, but it is at a lesser distance in terms of the arc through 12. ‘Therefore only points which divide a circle into two equal parts are separated by the greatest distance in every direction.’ No doubt Philoponus is right that we could define the greatest distance between points on a circle in this way, but there would not seem to be any compelling reason to do so. Simplicius’ response is that, if Philoponus is taking the distance between points in terms of the circumference, then contiguous points such as 8 and 9 are at the greatest distance, but if he is taking the distance between points in terms of the straight line joining them, he is in agreement with Aristotle. And if he wants to take them in both ways, he is adding a way which has nothing to do with the determination of contrary places. At 182,17 the discussion turns to an argument of Alexander’s, which, Simplicius tells us, is accurately recorded by Philoponus: Every interval is measured by what is least; in every case the interval on a straight line is least; therefore, the straight line and the on the straight line are the measure of every interval; however, it is for the measure to find what is most distant and contrary; therefore, the contrary in intervals is with the straight line and on it;

Introduction

17

and so is not on an arc. (182,31183,2) Philoponus objects to Alexander’s addition of the words ‘and on it’ in the next-to-last proposition of the argument. Simplicius, who paraphrases this proposition as ‘What is at a greatest distance in intervals and contrary is found with the straight line and the interval on it’, first responds to Philoponus with an argument which would seem to be aimed at showing that Alexander does not need the addition: But if is found with , it is clear that contrary intervals are defined in terms of and are <what they are> by reference to it; and a thing is defined in terms of that from which it is found, and a thing is <what it is> by reference to what it is defined in terms of. (183,12-14) But it turns out that Philoponus really wants to argue against a claim which might be formulated as ‘the points which are at the greatest distance in a measured interval are in the stick which does the measuring’. Simplicius responds (correctly it would seem) that the points are in the distance which is measured not in the measuring stick. This leads Simplicius into a disquisition on the way measurement and the application of criteria in general works. I move on to 185,2324 where the interpretation of Alexander is again the issue. As we have seen, in Simplicius’ understanding the third argument only concerns the motions in reverse directions on one semicircle. However, Alexander, presumably interested in arguing generally against the idea that the distance between two points might be specified in terms of an arc, pointed out that one might draw a greater arc between two close points and a lesser one between two points further apart. Philoponus, adhering to his position that points at the limits of a semicircle can be taken to be at a greatest distance, takes Alexander’s statement to be trivially true and irrelevant. Simplicius concedes that Alexander’s statement is of no use for the third argument, which concerns only two given points and a semicircle connecting them, but insists, again correctly, that Alexander shows that the distance between two points is not specified in a determinate way in terms of arcs. The fourth argument (271a13-19) is, in fact, two for Simplicius. In the first, which is really a repetition of the third, Aristotle asserts that ‘similarly’ in a circle ACBD with diameter AB a motion from A to B through C is not contrary to a motion from B to A through D. In the second Aristotle points to what, for Simplicius, is the real concern of the whole of chapter 4 when he says that even if the motions on the two semicircles are contraries, still the motions in reverse directions

18

Introduction

on one circle are not contrary. Philoponus does not appear to have had much to say about this passage. At 188,3 he says that if the argument is the same as the third argument there is no need for him to say any more. However, he really thinks that the two arguments are different and censures Themistius for taking them to be the same, as Simplicius also does. Philoponus’ grounds are that the arguments concern different cases and, more significantly, he thinks that Aristotle’s conclusion in the fourth argument is correct since, for example, the sun’s motion above the earth from an eastern point to a western point is not contrary to its motion under the earth from the western point back to the eastern one. Simplicius agrees that these motions are not contrary, but he thinks that Aristotle is considering the case of two separate motions on the two semicircles, and for that case the reasoning of the third argument suffices: The arcs do not define the greatest distance in terms of which contraries are characterised; but rather the greatest distance is defined in terms of the diameter ... . And consequently again if the motions are taken as contraries, they are taken as moving the distance on the straight line, not the distance on the arc. (149,6-10) Hence, for Simplicius, Philoponus’ acceptance of the fourth argument is wrong-headed because based on a misunderstanding. In the fifth argument (271a19-22) Aristotle proves what for Simplicius is the only essential point: reverse motions on the same circle are not contraries ‘since these motions are from and into the same thing, but contrary motion is defined as from a contrary into a contrary’. Alexander explains why this argument is different from its predecessors: It would have been possible to use this argument also in the case of the motions previously discussed. For none of them was from a contrary into a contrary. But this is more evident in the case of the circle, motion on which is not just not from a contrary into a contrary, but not even from one thing into another, but from and into the same thing. And that is why he also has set out the argument for this case. (150,15-19) Before considering Philoponus’ response to this argument it is necessary to look at the final passage in chapter 4 (271a23-33) because, whereas Philoponus treats it as a sixth argument, Simplicius considers it a ‘part’ (194,8) of the fifth argument, another way of proving the same thing. For simplicity I shall refer to it as the sixth argument. The argument is very problematic textually.25 Here I quote the version of the text I use.

Introduction

19

But also if a motion in a circle were contrary to another motion in a circle, one of them would be pointless because it is necessary that what moves in a circle, wherever it begins from, reach all the contrary places in the same way; but the contrarieties of place are above and below, front and back, and right and left, and the contrarieties of motion are derived from the contrarieties of places. For if they were equal, they would not move, and if one of the motions were dominant, the other would not exist. Consequently, if both were, one of the bodies would be pointless, because not moving with its motion. For we say that a sandal which is not worn is pointless. But god and nature do nothing pointless. For Simplicius this passage is a reductio ad absurdum of the assumption that reverse motions on a circle are contrary. For if they were they would be from contrary places, and so things moving with them would have ‘contrary natures’ and so come into conflict when they meet. But then the two things would either cancel each other so that both would be pointless or one would dominate the other, in which case the other would be pointless. 26 After his discussion of the sixth argument at 154,18, Simplicius, thinking specifically of the sphere of the planets and the sphere of the fixed stars, raises the question whether motions on two different circles might be contrary. He says that one might think so on the grounds that the two spheres move from contrary places, the sphere of the fixed stars from the east, that of the planets from the west. Simplicius does his best to refute this argument, which is obviously specious since ‘from the east’ and ‘from the west’ as applied here specify directions not places of origin. Simplicius also claims that if the two motions were contrary the things moving with them ought to be contrary in nature, meet with one another, and change into one another, something which is, of course, not true of the fixed stars and the planets. In this passage Simplicius looks forward to an objection of Philoponus at 195,14-17 that Aristotle ought to have considered the question whether the two spheres move in contrary ways. Simplicius responds there that it is perfectly obvious that the spheres do not move in contrary ways in the relevant respect since they don’t affect one another, and he repeats the arguments he has already used. In connection with the fifth argument Philoponus raises objections to the definition of contrary motion as from and into a contrary, although Simplicius insists that Aristotle has been relying on the definition all along. Philoponus’ position is that, although this definition does apply to rectilinear motion and ordinary changes, there is no reason why it should apply to circular motion, for which another definition might be appropriate. He argues by trying to show that the

20

Introduction

Aristotelian definition leads to impossibilities. Simplicius’ responses are inadequate because he ignores the fact that Philoponus’ immediate goal is refutation of Aristotle’s claims, not establishing an alternative to them.27 Ultimately Simplicius is in the position of saying that Aristotle is not willing to call the opposition clockwise/counterclockwise a contrariety (192,10-11; 196,2-4). In connection with the sixth argument Philoponus asks at 197,10 why it is not true in the case of two contrary rectilinear motions on the same straight line that either one or both is pointless. Simplicius acknowledges the force of this objection, while implying that Philoponus borrowed it from someone else. His response is, however, rather weak: sublunary things, unlike heavenly ones, are naturally constituted to conflict and overpower one another, and the result is a good for the universe as a whole. 2. The text This translation is based on Heiberg’s edition of Simplicius’ commentary (Heiberg (1894)), which I wish to discuss briefly here. My remarks are based on Heiberg’s preface to his edition (cited here by Roman numeral page) and his earlier, more detailed but slightly discrepant report to the Berlin Academy (Heiberg (1892)). They relate only to book 1. For Heiberg the most important manuscript is: A Mutinensis III E 8, thirteenth-fourteenth century, in the Este Library in Modena (Wartelle (1963), no. 1052). Heiberg ((1892), p. 71) singles out A for its correctness and purity. But he admits that it is badly deficient and hastily written, with frequent incorrect divisions of words, misunderstandings of abbreviations, arbitrary use of accents and breathing marks, extremely many omissions, and frequent insertions in a wrong place of words occurring in the vicinity. A glance at the apparatus on almost any page of Heiberg’s edition makes clear how often he feels forced to depart from A. On the whole these departures seem justified, but there are some cases where he follows A and produces a text which seems to me impossible or at least very difficult. Heiberg thought that A and another text derived independently from a lost archetype. That other text is: B Ottobonianus gr. 83, sixteenth century, in the Vatican Library (Wartelle (1963), no. 1896). B stops in book 1 (at 292,25 in Heiberg’s text), the remaining pages

Introduction

21

being torn out. Heiberg stresses its defective quality. Among the other manuscripts which Heiberg cites are:28 C Coislinianus 169, fifteenth century, in the National Library in Paris (Wartelle (1963), no. 1560). D Coislinianus 166, fourteenth century, in the National Library in Paris (Wartelle (1963), no. 1558). E Marcianus 491, thirteenth century, in the library of San Marco in Venice (Mioni (1985), pp. 299-300; not in Wartelle (1963)). Heiberg took D and E to be significantly different from A and B, and C to be intermediate between D and E, on the one hand, and A and B, on the other. C and D are, in fact, not complete texts of Simplicius’ commentary, but texts of De Caelo with extensive marginalia, the majority of which are derived from Simplicius’ commentary (not necessarily word-for-word quotations). According to Heiberg E, which is a complete (although lacunose) text, and D were copied from the same prototype, E being copied by an uneducated scribe. E was corrected by Bessarion (E2), using the Latin translation of William Moerbeke, a work to which I shall return shortly. Heiberg also cites three printed versions of the commentary in his apparatus: (a) The editio princeps of the Greek text. Simplicii Commentarii in Quatuor Libros de Coelo, cum Textu Ejusdem, Venice: Aldus Romanus and Andrea Asulani, 1526. (b) The editio princeps of the Latin translation of William Moerbeke. Simplicii philosophi acutissimi, Commentaria in Quatuor Libros De coelo Aristotelis. Venice: Hieronymus Scotus, 1540. (c) Karsten (1865). Citations of (a) are rare because Heiberg ((1892), 75) realised that it was a translation back into Greek of Moerbeke’s Latin translation.29 However, he did not realise that (b) was ‘corrected’ in the light of (a). In my reports on what is in Heiberg’s apparatus criticus I omit what he says about (b), but, when it seems to me useful, I do cite as ‘Moerbeke’ the readings in the recent edition of Moerbeke’s translation of Simplicius’ commentary on book 1 (Bossier (2004)). Karsten’s edition was published one year after his death. It includes no critical apparatus, and has no preface by Karsten.

22

Introduction

Throughout it is based on single manuscripts. For 1-94,16 Karsten relied on a ms. Heiberg took to be descended from B: Taurinensis C.I.13, sixteenth century, in the National Library in Turin (Wartelle (1963), no. 2086). And for the rest of book 1 he relied on a ms. Heiberg took to be derived from E: Parasinus, gr. 1910, fifteenth century, in the National Library in Paris (Wartelle (1963), no. 1396). In the absence of a critical apparatus or inspection of these manuscripts, it is impossible to tell what alterations of his source Karsten made, but there is little doubt that he made ‘improvements’.30 I have sometimes thought it desirable to adopt them rather than what Heiberg prints. For Karsten’s readings I have relied on Heiberg’s apparatus, which includes an extensive, although not complete, record of Karsten’s text. My departures from Heiberg’s text are recorded in the footnotes and in the ‘Textual Questions’. For the text of De Caelo itself I have relied on Moraux. 3. Brackets and parentheses Square brackets are placed around lower case Roman numerals which I have inserted for clarification. Angle brackets are used to set off major and possibly debatable insertions made for clarification. (Many minor insertions such as the substitution of a noun for a pronoun are made without remark when they are judged to be relatively certain; in particular I have frequently inserted a proper name where Simplicius has only a ‘he’ or a third person singular verb.) If an insertion represents an addition to the Greek text a footnote explaining this is attached. Parentheses are used as punctuation marks and to enclose Greek words inserted as information. Occasionally they are used to mark an insertion by Simplicius in a quotation. Notes 1. That is, has no temporal beginning or end. For the most part discussion focuses on the question of whether the cosmos had a temporal beginning. 2. There is some discussion of Philoponus and Simplicius with references in the Introduction to Mueller (2010). 3. In particular I refer the reader to Hankinson’s translation for discussion of the philosophical meaning and merits of what is said by both Aristotle and Simplicius. The notes in Wildberg’s translation are largely textual, but Wildberg (1988) is essentially a philosophical commentary on the fragments

Introduction

23

of Against Aristotle; to facilitate the reader’s use of this material I have provided an index to the fragments found in the text translated in this volume as Appendix 1. I would also like to record here my indebtedness to Rescigno (2004), which provides a text, Italian translation, and analysis of the fragments of Alexander’s commentary on book 1 of De Caelo. In Appendix 2 I give an index to those fragments found in the text translated in this volume. 4. I use the quotation marks here because Simplicius holds that what we (and Aristotle) call simple bodies are really composites the motions of which are determined by their dominant component; see Appendix 3 on the purity of the elements. 5. This description is rendered much more complex by considering the ‘entireties’ of the four elements, which form concentric layers, with a spherical earth at the centre of the cosmos, followed by water, air (divided into a stagnant air beneath the mountain tops and a pure air above them, and fire). For Simplicius (and at least for the sake of argument Philoponus) and (according to Simplicius) Aristotle, the entireties of earth, water, and stagnant air are at rest, whereas the entireties of pure air and fire (both together or sometimes fire alone being called the hupekkauma) revolve along with the dominant east-west motion of heaven. 6. See 66,17-70,33 in the commentary on chapter 3. 7. 92,18-20; cf. 108,5-6. 8. Simplicius is here in agreement with Themistius, whom Philoponus cites (131,20-4) as correcting rather than explaining Aristotle’s position. 9. Simplicius sometimes represents Philoponus as claiming that there is no coming to be involving contraries; see, e.g., 123,11-14. This seems unlikely. 10. cf. Wildberg (1988), p. 193. 11. cf. also 133,11-19. When Simplicius first introduces the question whether there is a contrary to the cosmos or heaven at 121,25 he gives a citation from Philoponus according to which, even if the motion of heaven does not have a contrary, it does have a privation. Simplicius responds to the objection in the same weak way: since Aristotle believes the motion of heaven is eternal he cannot believe it has a privation. 12. See especially chapter 11.1-9 of Philoponus’ Against Proclus. Simplicius indicates (136,9-10) that many arguments have been given against the doctrine that the ultimate substratum is the three-dimensional but contents himself with one (136,1-7) according to which, since it is matter, the three-dimensional should be formless, without shape, size, number, or colour but also since it is three-dimensional, it is finite and should have form, shape, size, number, and colour. Philoponus would presumably accept that the three-dimensional is formless, except in the sense of being three-dimensional, but deny that this entails that it has form, shape, size, number, or colour. 13. For an argument that Simplicius is mistaken in this interpretation of Aristotle, see Sorabji (1988), 14-15. At one point (156,13-14) Simplicius suggests that the matters of the different heavenly spheres are different. 14. 134,26-32; cf. 142,24-5, where Philoponus concedes that heaven has never been observed to undergo ‘any of the things which lead to perishing’. 15. For Philoponus the simultaneous divine creation of matter and form is a consequence of the fact that god created without a pre-existing substratum and that form cannot exist without a substratum. For statements of the

24

Introduction

simultaneous creation of form and matter in Against Proclus; see, e.g., 6.11, 158,10-23 and 164,20-165,2; 11.1, 409,8-18; 12.6, 476,11-21. 16. Simplicius adds (118,20-2) without explanation that the word aithêr indicates that heaven ‘is highest and superior to the things beneath it and is finest and purest’. 17. For Simplicius’ rather weak attempt to explain the final words of chapter 3 (270b26-31) as a preliminary to the proof of IV see 144,17-29; Longo ((1961) ad loc.) considers the Aristotelian passage to be out of place. 18. Simplicius asserts what amounts to V’ at 157,3-6; cf. 161,21-3 and 167,25-7. 19. There is a similar apparent misrepresentation at 164,15-19. 20. It is necessary to keep in mind that in the disagreement between Philoponus and Simplicius the important cases of primary substance are the simple bodies and the cosmos or heaven. 21. I pass over what seems to me an insignificant discussion (170,22171,17) of whether Aristotle is talking about contrariety of lines or contrariety of motions on lines. 22. Simplicius’ point is that, e.g., a circle does not change into a straight line as a result of the being acted on by the straight line. 23. i.e., the centre. 24. Passing over disagreements about the meaning of Aristotle’s remark (271a12-13) that motion on a semicircle ‘is the same as motion on the diameter’ (185,3-13), and about an obscure phrase of Alexander’s (185,1322). 25. See the notes on 152,3 and 32. 26. After giving his interpretation of the passage Simplicius quotes and disagrees with a number of interpretive claims of Alexander (152,2-153,16). He then gives Alexander’s version of the whole argument that there is no contrary to motion in a circle, a version which is independent of this sixth argument. 27. To give one example Simplicius objects (190,15-191,5) to Philoponus’ arguing both that rectilinear motions are more contrary to each other than to circular motion and that there are different kinds of contrariety for rectilinear and circular motions. But Philoponus makes these claims in connection with different Aristotelian arguments. 28. I mention only the mss. cited in my footnotes. 29. A fact first noticed by Peyron (1810). 30. cf. Bergk (1883), p. 143, n.1 and p. 148.

Translation of the text commented on (On the Heavens 1.3, 270a12-4); outline of the commentary Since in this work the ratio of commentary to text commented on is unusually high I give here the text of Aristotle broken down in accordance with the lemmas in Simplicius. I indicate the pages in the commentary where the lemma is discussed directly and in Simplicius’ diatribes against Philoponus. The figures inserted for chapter 4 are taken from Heiberg. I. Heaven does not come to be or perish, change in size, or change in quality. Chapter 3.270a12-b25 (91,21-109,15) 3, 270a12-22 Similarly it is reasonable to suppose that <what moves in a circle> also does not come to be or perish or increase or alter because everything which comes to be comes to be from a contrary and some substratum and it likewise perishes by the action of a contrary and into a contrary with something underlying, as was said in our first discussions. But the motions of contrary things are contrary. And so if there can be no contrary to <what moves in a circle> because there is also no motion contrary to motion in a circle, it seems that nature was right to exempt what was not going to come to be or perish from contraries; for coming to be and perishing are found in contraries. (91,21-109,15, including a lengthy excursus on the devolution of the cosmos from the One and the notions of coming to be and perishing; cf. 119,13-136,12) 3, 270a22-5 Moreover, everything which increases is caused to increase by something of the same kind which accrues to it and is resolved into the matter; but there is nothing from which this has come to be. (109,16-110,32) 3, 270a25-35 But if it does not grow or perish, it is possible to accept by the same reasoning that it does not alter. For alteration is change with respect to quality, and the states and conditions of quality (such as health and illness) do not come to be without changes in affection. But we see that every natural body which changes in affection, for example the bodies of animals and their parts and similarly those of 25

26

Translation

plants and those of the elements, grows and decays. Consequently, since the body which moves in a circle cannot grow or decay, it is reasonable that it also does not alter. (111,1-115,20) 3, 270b1-4 That the first body is everlasting and does not admit either growth or decay, but is without aging or alteration or affection is evident from what has been said – if one trusts our assumptions. (115,21-116,2) 3, 270b4-9 It seems that this theory corroborates the phenomena and that the phenomena corroborate the theory. For all people have a conception of the gods, and all of them, Greeks and non-Greeks – if, indeed, they believe in gods – assign the highest region to the divine, obviously because what is immortal is linked with what is immortal. For it cannot be any other way. (116,3-117,5; cf. 139,27-142,7) 3, 270b10-11 So if (eiper) there is something divine, as there is, what we have just said about the first substance of bodies is correct. (117,6-19) 3, 270b11-16 This also follows sufficiently from perception, at least if we speak in relation to human confidence. For, according to the record handed down from one person to another in all past time, nothing is observed to have changed either in the whole of the last heaven or in any of its proper parts. (117,20-118,13; cf. 142,7-143,31) 3, 270b16-25 It seems that also the name has been transmitted until the present time by the ancients, who understand matters in the way in which we do. For one should believe that the same opinions occur to us not just once or twice but infinitely often. And so, thinking that the first body was different from earth, fire, air, and water, they called the highest region aithêr, determining its name from its ‘always running’ (thein aei) through time everlasting. (However, Anaxagoras badly misuses the name aithêr, since he uses it to mean ‘fire’.) (118,14-119,6) 119,7-144,4 Against Philoponus (with a lengthy discussion of coming to be and perishing and of contrariety and privation). II. Premiss needed for I: there is no contrary to motion in a circle Chapter 3, 270b26-Chapter 4, end (144,5-201,10) 3, 270b26-31 It is also evident from what has been said why it is impossible for the number of so-called simple bodies to be greater. For it is necessary that a simple body have a simple motion, and we

Translation

27

say that the only simple motions are in a circle and in a straight line, and of the latter there are two parts, motion from the centre and motion to the centre. (144,5-145,9) 4, 270b32-271a5 One can gain confidence that no other motion is contrary to motion in a circle from several considerations. In the first place we suppose that a straight line is most of all opposite to a circular one. For concave and convex are not only thought to be opposite to one another, but also, taken together and as a pair, they are thought to be opposite to the straight. So if something is contrary to motion in a circle, it is most necessary that it be motion in a straight line. But the motions in a straight line are opposed to one another by places, since up/down is a differentiation and contrariety with respect to place. (145,10-146,16; cf. 170,11-176,12) 4, 271a5-10 Moreover, if someone assumes that the same statement which holds of the straight line also holds of the circular one (namely that motion from A toward B is contrary to motion from B toward A), he is <still> speaking about motion in a straight line, since such motion is finite, but the circular motions between the same points are infinite. (146,17-147,21; cf. 176,13-179,23)

Figure for 271a5-101

4, 271a10-13 Similarly in the case of the motion on a single semicircle, for example, that from C to D and from D to C. For it is the same as the motion on the diameter. For we always suppose that each thing is distant by a straight line. (147,22-148,26; cf. 179,24-187,27)

Figure for 271a10-13

4, 271a13-19 Similarly, even if someone were to draw a circle and lay it down that motion on one semicircle is contrary to that on the other, for example, that in the whole circle the motion from E to F on the

28

Translation

semicircle G is contrary to the motion from F to E on the semicircle H. And even if these are contraries, nevertheless the motions on the whole circle are not thereby contrary to one another. (148,27-149,28; cf. 187,28-189,21)

Figure for 271a13-19

4, 271a19-22 However, the motion in a circle from A to B is not contrary to that from A to C either, since these motions are from and into the same thing, but contrary motion is defined2 as from a contrary into a contrary. (150,1-19; cf. 189,22-194,5)

Figure for 271a19-22

4, 271a22-33 But also if a motion in a circle were contrary to another motion in a circle, one of them would be pointless3 because it is necessary that what moves in a circle, wherever it begins from, reach all the contrary places in the same way; but the contrarieties of place are above and below, front and back, and right and left, and the contrarieties of motion are derived from the contrarieties of places. For if they were equal, they would not move, and if one of the motions were dominant, the other would not exist. Consequently, if both were, one of the bodies would be pointless, because not moving with its motion. For we say that a sandal which is not worn is pointless. But

Translation

29

god and nature do nothing pointless. (150,20-156,24, including an excursus on whether the sphere of the fixed stars and the sphere of the planets move in contrary ways; cf. 194,6-198,6) 156,25-201,10 Against Philoponus. Notes 1. This figure is taken from Heiberg’s text at 146,23; the next are taken from 147,29, 149,5, and 150,8. 2. cf. Physics 5.2, 229b21-2. 3. Following Allen (1936), I bracket the words epi to auto gar (‘For they are to the same thing’); see the notes on 152,3 and 32.

This page intentionally left blank

SIMPLICIUS On Aristotle On the Heavens 1.3-4 Translation

This page intentionally left blank

Simplicius on the first book of Aristotle’s On the Heavens 270a12 Similarly it is reasonable to suppose that <what moves in a circle> also does not come to be or perish ... . 1 He has proved that the body which moves in a circle is something different from sublunary things, more complete than they and prior to them, having neither weight nor lightness. He next proves that it ‘does not come to be or perish or increase or alter’ with the consequence that it does not undergo any change except change of place and of such change motion in a circle. Just as in the preceding he derived2 the transcendence of what moves in a circle over sublunary things from the difference in their motions, so now he derives from the form of circular motion both the ungeneratedness of heaven by comparison with the way we say sublunary things are generated3 and the fact that it does not increase or alter. And first he proves that it does not come to be or perish by giving, I believe, the following syllogism in the second figure: [i] The body which moves in a circle does not have a contrary; [ii] what comes to be or perishes has a contrary from which it comes to be and into which it perishes; and the conclusion is [iii] ‘therefore, the body which moves in a circle does not come to be or perish’. Of these two premisses he now proves the minor [i], which says that the body which moves in a circle does not have a contrary. For the demonstration of the major premiss [ii] he refers to the first book of the Physics; he calls them ‘our first discussions’ because they deal with the first principles of nature. He proves in turn that the body which moves in a circle does not have a contrary with the same kind of argument as follows: [iv] What moves in a circle does not have a motion which is contrary to its own natural motion; [v] what has a contrary also has a motion which is contrary to its natural motion, namely the motion with which its contrary moves naturally (he has posited this with the words ‘But the motions of contrary things (obviously natural things) are contrary’); 33

91,25

30

92,1

5

10

15

34

Translation and the conclusion is [i] ‘what moves in a circle does not have a contrary’.

20

25

30

92,1

5

10

15

Here again he has taken the major premiss [v] as something clearly true. For since the natures of contrary natural forms4 are contrary, their motions are as well because nature is a starting point of motion. He demonstrates the minor premiss [iv], which says that there is no motion contrary to the motion of the body which moves in a circle, that is to motion in a circle, later,5 having said more things in between. The whole argument depends on these two things, one that if something is going to come to be or perish there must always be something underlying and a contrary from which it comes to be and into which it perishes, the other that there is no motion contrary to motion in a circle; he will pursue the demonstration of the latter in several ways a little later, and he now assumes the former without demonstration since it was proved in the Physics. Accordingly we should now recall what he said there and, after having first distinguished the meanings of ‘comes to be’, we should clarify in which sense Aristotle is now making his argument and in which one he denies that heaven comes to be so that we may learn in what senses Plato says the universe comes to be and Aristotle says that it does not without contradicting one another.6 Now in general something is said to come to be if it receives its existence from some cause. For certainly what is made is made by a maker and what is generated is generated by a generator, and, as Plato says,7 it is impossible for anything to come to be apart from a cause. And it is clear that in this sense the only thing which does not come to be is the first cause of everything, and this cause is both one and absolutely simple since everything participates in the One and what doesn’t participate in it is nothing. However, the One does not even participate in plurality, and so everything which comes to be is pluralised. For plurality is given existence directly by the One, since it is also necessary for plurality to participate in the One in order that it not be infinitely many times infinite. However, the One is without trace of plurality since it is one in the strict sense. Because the first plurality which proceeds from the One participates directly in the One it is unified and remains in the One; and to the extent, however slight, to which it proceeds from the One, it does to that extent come to be. And as a result of this divine men have handed down to us theogonies, <describing> the plurality of gods which remains in the One and, as some would say, processes forth by the multiplication of the One; and these men make hymns to the coming to be of this plurality insofar as it has gotten its existence from the One, in just the way that we see progression from the monad as the coming to be of numbers. However, insofar as plurality re-

Translation

35

mains in the One it is unified by the highest unification, no division (in which what is not is first produced) yet appearing. And that is Being in the primary sense, and it is also the first principle of beings, and not only something derived from a principle. But, as the Socrates of the Phaedrus8 shows, a first principle does not come to be. For this thing, which is self-substantiating in every way, is first and is Being in the strict sense.9 For the absolutely One, which is the cause of Being, is superior to what is self-substantiating and reveals something which is double and both gives and is given existence. And the first plurality is ruled by the One and is able to give existence because of the One and to receive existence because of plurality, and, as a result, it is not absolutely one because the One which is the cause of all things is above it. The very first and most authoritative being is a whole which exists simultaneously both in terms of being and of the extendedness10 of being, and so the time of our world is given its ‘always’ by Being.11 But since this time also remains in the One, its always, which is forever, is a restricted . For, being a unified plurality or rather a pluralised one, does not reveal either an extension in substance or an extendedness in being in the strict sense, and therefore, it is also what it is, genuine Being. Next, what is given existence directly by12 is given existence directly; it moves from Being and becomes different from it and is given substance in terms of this motion. And just as is self-substantiating, so too this has come to be self-moving. For insofar as it moves from13 Being, it is given existence because of motion, but, insofar as it is proximate to Being and not yet separating from itself, it has become self-moving just as what is prior to it 14 is self-substantiating; and it has what moves and what is moved as the same thing because it is still filled with the One and ruled by it. But something pluralised proceeds from this, something which also participates in the One in a way but does not remain in the One and is not ruled by it; and therefore, because it is divided into parts, it is no longer either self-substantiating or self-moving because it no longer contains in itself the cause of existence connected to the One in the way that what is unified15 and what comes after it do. This thing immediately undergoes extension in substance and extendedness with respect to being16 because, departing and separating from the One in every respect, it has become body and things of the same kind as body. And time proceeds together with this from that eternity, measuring the extendedness of its being and receiving the always of time. But in this case there is no longer a simultaneous whole with respect to either substance or extendedness of being or (as some might say) with respect to life. And so, since this participates in much which is not, it is not a being in the strict sense; for a particular part of its substance is not exactly what it is (hoper todi),17

20

25

30 94,1

5

10

15

20

36

25

30

95,1

5

10

15

20

Translation

nor is its being the same, but rather, as time flows, it is different at different times, so that it also does not receive its generation from its cause as a whole simultaneously (since if it did it too would be Being), but it receives its generation piece by piece in the way that it can. Departing entirely from the One and participating in it as something entering from outside, the plurality in it has become a composite18 rather than a unified thing, and therefore it also gets its existence entirely from an external source. For a plurality which is unified contains the One in itself, and since the One is what gives existence to all things and gives it in the strict sense, even if a unified plurality moves down from the only thing which gives existence, nevertheless it holds what gives existence in itself and it has become self-substantiating. But a composite plurality receives the one of composition from outside, and, coming to be in the indefiniteness and extension of this sort of plurality, it immediately becomes the one form which is in matter, just as what is self-moving is intermediate between the two.19 And so what participates by composition in the One as form in matter does not exist simultaneously as a whole either in terms of substance or in terms of the extendedness of being, and it is not at all the cause of being for itself because of being divided, as a result of which it no longer contains in itself the One. For what is divided exists part by part and is no longer a whole or self-substantiating in the strict sense, just as what causes motion part by part is not self-moving in the strict sense; for what is self-substantiating or self-moving in the strict sense must be without parts and unextended and coincident with itself as a whole, but what has parts and is extended only has its being from outside. So as a result and because it is composite and is not what it is as a simultaneous whole but has its being in coming to be, what has parts is what comes to be in the strict sense as distinguished from what is in the strict sense, namely what gets its being from itself and is simultaneously as a whole what it is. This sort of generated thing acquires both change and motion directly from Being because it does not remain in Being in the strict sense, and therefore it does not remain entirely in the same condition, since, if it did, it would remain in the One, just as genuine Being does. But it is always changing and moving out of its previous state, and so time moves along with it, measuring and ordering its unfolding, just as something else, whether it is place or something else which has this power, orders the divided extension of its substance and its corporeal nature. And so for the reasons given this is what comes to be in the strict sense. Because Being is unmoving and always in the same condition with respect to substance and power and activity, it is necessary that what is given existence directly from Being20 always continue to come to be, since Being in the strict sense has entered into what comes to be and the always of eternity has entered into the always of time. For

Translation

37

<what is given existence directly by being> receives the completeness and entirety of Being, which exists as a simultaneous whole, part-bypart as it is able, imitating its infinite power by means of this ‘to infinity’. The much-honoured heaven shows itself to us as this sort of thing, existing in corporeal nature as the first thing after the intelligible order, a most beautiful image in relation to the best of paradigms, since what comes to be moves down from unity and sameness into similarity to Being and becomes an image because it then is connected to Being by resemblance rather than by being. Because it is moved in a motionless way and causes change in an unchanging way, heaven has only those kinds of change which can exist together with stability. Therefore it has change with respect to place, the kind of change which can occur while the substance and substantial constitution of a thing remain, since of the kinds of change, it has the least connection with the substance and constitution of things. And of the kinds of change of place heaven has received the one with which, although it changes place, it does not depart from its place, but rather it remains in the same while moving, whereas, of things which move in a straight line, even one which moves a very short distance does not remain in the same place. Consequently motion in a circle is more rest than motion since in an amazing way things which move in a circle remain fixed as a whole but revolve in their parts. Being everlasting because of being given existence directly by what is unmoving, heaven is superior to change from not being into being or from being into not being, which it is customary to call coming to be and perishing. For if it came to be at some time not having previously been, it would be necessary that its cause make something at some time, not having made it previously, and that this cause no longer be preserved as unmoving and always the same; and if it perished it would lose its similarity to the unmoving cause, and that cause would no longer be the immediate cause or what21 makes exist the things which are directly given existence by it. Since increase and diminution are a kind of coming to be and perishing, they stand as completely alien to the generated thing22 which is introduced directly by the unmoving cause. But in a way which we will perhaps understand as we proceed23 one can in a sense observe qualitative change in that thing. And so the very first and most perfect generator of corporeal existence gave existence to this sort of thing, which does exist but it is not entirely unchanging; for even if, as Plato says in the Statesman,24 it participated in many blessed good things coming from its generator, nevertheless it shared in body – that is, it was extended and divided and underwent unfolding from being – and therefore it was impossible for it to endure with absolutely no participation in change. And so, changing its place and configurations and standing in different states at different times

25

30

96,1

5

10

15

20

38

25

30 97,1

5

10

15

20

25

Translation

because of its different ways of participating in the goodness accruing to it from its causes, it introduces the things under it, but no longer without motion in the way in which it was introduced but rather giving existence to these things by moving. Here then substantial change first appears and the coming to be and perishing of substance take their start. But coming to be is not from what is not in any way and perishing is not into what is not in any way25 because the causes, changing from one state into another, give existence to the differences of the things which are introduced here.26 Perhaps one should state matters more clearly as follows. The intelligible plurality27 is also unified with respect to the division of itself, which is understood as taking place in the intelligible because everything which genuinely is remains in the One. And therefore, not only do the different forms exist together simultaneously in that substance, but so do their contraries, and they participate in one another and are unified with one another in such a way that their participation is not something extraneous; nor does acting and being acted on have any place there. And so those things transcend coming to be in the strict sense.28 Extension, division, and change make their appearance in the first things29 which come to be in the strict sense, but their likeness to what has no parts is preserved in its purity. The parts and forms which fill out that substance are distinguished from one another; they act on and are acted on by one another because they are separated from one another, but nevertheless, what acts acts and what is acted on is acted on while the substance endures and their activity with respect to one another brings about a completion; for by participating in one another the forms in what comes to be are images of the unity in what genuinely is. However, the things which are in what is given existence directly by Being act perfectively, but the things30 which are subsequently given existence from these move down from the ‘always’ of time to the ‘somewhere in a part of time’ 31 because they are given existence in terms of the conditions of heavenly things which come to be different at different times so that they are one way when the sun happens to be in such and such a sign of the zodiac and another way when it happens to be in another. And so when the separation in the last plurality has become great and sublunary substances are composed32 from things separated in this way, all things do not participate in all things nor are all things in all things,33 but those different things which have come together in one form can exist together with one another, and they participate in one another without conflict, and contraries which endure the whole separation in our world are all combined into the same thing,34 and most of all the more generic of these, such as heat, cold, dryness, moistness, and the things which accompany these and are apprehended by each of the senses, such as whiteness, blackness, acuteness, heaviness,

Translation

39

sweetness, bitterness, roughness, smoothness, and the antitheses related to smell. These things are not combined on their own, but rather they are combined together with the bodies which underlie them in which they have their existence. These bodies are the first elements, fire, air, water, and earth, from which other things, animals and plants, are composed. But when a combining of something harmonious and balanced deriving from heavenly things occurs, a combining which has a suitability for this35 or that one of the composite forms, then that form shines out and holds together the coincidence of the contraries and is held together by it. But when contrary things such as fire and water, because they are naturally difficult to mix, remain in conflict with respect to their contrary qualities, then it is necessary that at some time one of them dominate and increase from the diminishing of its opposite and at that time that composite form, such as that of cow or horse, which is of a nature to attach to that sort of balance of the elements, perishes; but when another form of balance and a different suitability comes to the elements because of overbearing and being overborne among the elements, bees come to be from a cow, wasps from a horse and different worms from different animals and plants.36 There are times when a great overbearingness of the elements has occurred among composites, and , having then gotten weaker or37 having gotten older, become unsuitable for receiving a composite form; they are dissolved and then move into their own entireties, and there they are renewed and rejuvenated, and then they again move toward combination. These things are most of all made clear by water, which is most suitable for coming to be and nourishment when it has become pure and is separated from its own entirety, as is seen in the case of springs. And it is clear that in our world coming to be and perishing are changes which come to be by the action of a contrary, changes which are from one contrary state into another; in the case of the elements water, for example, is changed by fire into a structure which is contrary to water, a fiery structure, and in this way fire comes to be from what is contrary to itself in terms of contrary qualities,38 namely water, by the action of a contrary of water, namely fire; for it is necessary that what perishes be contrary to what makes it perish, and that the result of coming to be be the same as what acts. For the production of the elements is a change into themselves which is from things which are acted on and produced by39 things which act, where obviously the substrata are suitable for each of what acts and what is acted on. And again, the perishing of a contrary comes about by the action of a contrary; for water perishes into fire by the action of fire. Consequently the perishing of one thing is the coming to be of another and the coming to be of one thing is the perishing of another, with qualities being destroyed into what is not; for when fire comes to be

30 98,1

5

10

15

20

25

40

30 99,1

5

10

15

20

25

100,1

Translation

from water the cold and moist quality departs from a corporeal substance, which takes on the qualities of fire. And this happens when the change is from one substance, that of water, into another substance, that of fire. But when the elements act on and are acted on by each other with respect to qualities more faintly so that they implant in one another from themselves a condition, water becoming warmer while remaining water, fire becoming cooler or moister while remaining fire, then there is said to be a qualitative change and the result is said to be an affection, since one substance has not come to be from another, but a substance has only come to be differently qualified. And it is clear that not just any condition comes to be from any condition, but a contrary condition comes to be from its contrary; for what is cooled is not cooled by dryness, but by coldness; for what is affected is affected by what acts and acts with respect to its own nature and by being what it is. For what acts naturally acts in this way, and <what is acted on> is affected with the sort of affection which the producer had, that is, the affection with respect to which the producer acted; and what acts naturally and by itself implants the kind of affection which the producer had as a quality and with respect to which it acts. For what acts naturally wants to change what is acted on into itself, but a contrary is changed into a contrary, the heat in what is cooled into the coldness in what cools. But, as I said, when there is a qualitative change, what comes to be comes to be these things incompletely, and what was previously warm becomes cooler, but not in such a way to be cooled completely and change into the nature of what does the cooling: this is what happens in the case of things which come to be and perish . However, in every case a contrary acts on a contrary and destroys it, wanting to change what it acts on into itself. For example, if fire acts on air, wanting to change it into itself and make it fiery, then, since air is also assumed to be hot, fire does not want to change the heat of the air; for heat can also exist in the fire. However, since it is impossible for moistness to exist together with fire, fire destroys this, not with heat by itself but with dryness, and the heat coincidentally cooperates with the dryness. And so one might also give the following syllogism. Sublunary bodies which act naturally act with the desire to multiply themselves. Things which act for the sake of multiplying themselves change what they act on into themselves. Things which change what they act on into themselves make the things in what they act on which cannot exist together with themselves perish. Things which cannot exist together are contraries, and contraries are destroyed by their contraries; for things which can exist together in a common substratum do not destroy one another. And so when the contraries in what is acted on are destroyed by their contraries in what acts and the substratum takes on the qualities or quantities of what acts in place

Translation

41

of their contraries which it previously possessed, it changes into the nature of what acts, and what was previously water becomes fire by the action of fire via air as an intermediate: the heat, being more active, first casts out the cold from the water and then the dryness casts out the moistness. And any magnitudes or figures which cannot exist together <with the new qualities> are changed into their contraries, and in this way the corporeal extension of water (or something else40 in the water which is more material), accepting the qualities contrary to the ones it had, changes from water into fire, with the qualities it has in common with fire and which could exist together with each of the qualities enduring. whether the corporeal nature itself41 has some qualities which are common at some time or prime matter has them; for when a change occurs it is necessary that something remain which is the subject of the change, and in the strict sense it is the thing which changes with respect to the departing quality. And so, some of these qualities themselves perish and others come to be, but the substratum changes with respect to them, and this is not just true in the case of coming to be but also in the case of qualitative change. For it was also said42 about the latter that when the change of what is acted on with respect to contrary qualities is not complete but is only a slight alteration43 of different things from different things, as in the case of water which is heated, then what is acted on does not become different, but only differently qualified. Now this is not just true in the case of qualitative changes in the way I have said, but it is also true in the case of natural increase and diminution; for what increases naturally, for example what is nourished, changes the contrary conditions in the nourishment toward itself and makes the nourishment similar , and in this way it attaches the nourishment to itself and grows. And even if the capacity to take in nutrition involves something related to soul, it nevertheless accomplishes what it does in terms of natural changes.44 But also things which change place change from one place to another with the thing which changes enduring. And so every sublunary transformation is a change, with the changing thing enduring in some respect. Therefore what comes to be in time does not come to be from what is not but from what is; for, just as the time at which these things come to be is preceded by another time after which it exists, so too what comes to be is preceded by something else after which and from which what has come to be has come to be.45 And so it was reasonable for Aristotle to posit change as the genus of all sublunary transformation in the Physics.46 And it is also reasonable that this change is everlasting, not just because it is given existence by the everlasting change in heaven, which is a change of place with respect to the different configurations47 but also because the perishing of one thing is always the

5

10

15

20

25

30 101,1

5

42

10

15

20

25

30

102,1

5

Translation

coming to be of another. And it is reasonable that the simple bodies in our world endure forever in their own entireties, but undergo coming to be and perishing in their parts. For even if the change of compounds comes to be primarily with respect to these parts, and when are dissolved move naturally into their proper regions and entireties, the entireties endure and send away parts of themselves and again receive back parts, and this happens forever because of the everlastingness of change. And it is reasonable that, since coming to be is a change, things that come to be and perish or increase and diminish or alter or change in place – and in general what undergoes change – change from a contrary state into a contrary by the action of a cause which is contrary to it. And that is why in the first book of the Physics48 Aristotle, seeking the principles of natural things which come to be and perish, says that they are contraries and what underlies them. And it is clear that things which come to be or perish with respect to qualities, such as heat or dryness, have contrary qualities and change from them. However, things which change with respect to substance, such as fire insofar as it is fire or a human being insofar as it is a human being, also change because of the change of qualities into one another. But they are substances insofar as they are fire or a human being, and there is no form contrary to a substance. So from what do they come to be, not as hot or cold, but as a human being? It is clear that they come to be from what is not a human being but is naturally constituted to become a human being. The seed and the katamênia are things of this sort, not insofar as they are just seed or katamênia, but insofar as they are not a human being but are of a nature to become a human being. For it would not become a human being if it were a human being, since what is does not become what it is. Nor would it become a human being if it were neither a human being nor of a nature to become one. So what single word do we use to refer to this insofar as it is not something but is of a nature to become it? It is customary to refer to it as a privation or lack (sterêsis) and to say that what does not have the form which it is said to lack but is of a nature to possess it, is lacking. And so a new-born puppy lacks eyes because it is of a nature to have them, but what has been made completely blind is said to lack eyes with respect to some other privation but not this one, since this privation cannot make a turn (anakamptei), but the privation involved in coming to be, from which things which are said to come to be change into the form, does make a turn into the form. Now when something comes to be cold from being hot, it comes to be from what is not cold but is of a nature to come to be cold and therefore from what is hot; for what is dry is not of a nature to change into what is cold by the action of what is cold because it is possible for dry to exist together with cold. So if it is not true of everything which comes to be, that it comes to be from a

Translation

43

contrary form which exists together for a while with the substratum in the way hot comes to be from cold (for first of all it is not true of substances, since substance has no contrary), but it is true of everything which comes to be, including what changes from contrary forms, that it comes to be from what is not so and so but is of a nature to be so and so, it is reasonable for Aristotle to call49 the general common principles of coming to be form, privation, and substratum. But when he calls50 form and privation contraries, he is not doing so in terms of the strict meaning of ‘contrary’ since both of two contraries are forms. Rather he is doing so in terms of opposition (antithesis) since form and privation are opposed to one another. I have set these things out at length in the desire to articulate my own thought about them most of all but – with reason – also that of those who will read them carefully. I think that on the basis of what has been said, everything for the sake of which this whole discussion was started has become clear: how what comes to be comes to be from some contrary and a substratum and how what perishes perishes from a substratum and into a contrary by the action of a contrary. This is now posited by Aristotle without demonstration because it has been proved in the ‘first discussions’, as he says.51 However, it is necessary to remember that even if a substance does not primarily come to be from or perish into a contrary in the strict sense (because substance is not contrary to substance), first of all it does come to be from its proper privation, and second it, too, does come to be through the coming to be of contraries from contraries, and again, conversely, it perishes through the perishing of contraries into a contrary. For when the qualities and quantities in the seed and the katamênia change into the contraries of themselves into which they are of a nature , that is, the qualities and quantities of a human being, then the form of human being supervenes; and conversely, when some elements overbear and their contraries are diminished and the substratum is carried down into disharmony, the substance perishes, but not otherwise. But since this is enough of these matters, let us next see in what sense of ‘comes to be’ Aristotle denies that heaven comes to be and tries to demonstrate that it does not come to be, and in what sense Plato says that both heaven and the whole cosmos come to be. Now it is clear that Aristotle calls only one thing coming to be: the change in time from not being into being, a change which is always followed by perishing. On this basis he will demonstrate52 that heaven not only does not come to be but also does not perish, and is even clearer when he clearly demonstrates53 that what comes to be always perishes and what perishes comes to be. For it is clear that he takes as coming to be and perishing those cases which occur in a segment of time and attach to sublunary things. And so, having demonstrated that there is a fifth

10

15

20

25

30 103,1

5

10

44

15

20

25

30

104,1

Translation

substance apart from sublunary things, namely the substance of the heavenly body, which is prior to them in nature and more perfect, just as he denies that the fifth substance has weight or lightness or moves in a straight line (these being propria of sublunary things), so too he denies that it54 comes to be or perishes . I think this is indisputable both because he says that coming to be and perishing are a sort of change with one thing coming to be and perishing after another and because, speaking against those who say that the cosmos comes to be but does not perish, he proves55 that what comes to be always perishes as well. And it is not at all surprising that Aristotle, who always wants to take as assumptions things which are immediately clear to everyone, says that what comes to be is what shares in all coming to be56 and is seen clearly to come to be and perish in a segment of time. Plato, too, certainly knows this kind of coming to be of sublunary things which is the opposite of perishing, since in the tenth book of the Laws he writes:57 And the coming to be of anything results when what affection occurs? It is clear that it is when a starting point grows and comes into the second transition and then into the neighbouring one, and, coming as far as three, it takes on being perceived by perceivers. So everything comes to be by transforming and changing in this way. And it genuinely is whenever it endures, but if it changes into another state it is completely destroyed. However, Plato also knows the other kind of coming to be in which what has moved down into corporeal extension and is not further able to give itself existence but is only given existence by some other cause is said to come to be as distinguished from that which genuinely is and which is its immediate cause.58 For it is necessary that what comes to be and gets its existence from elsewhere get its existence from Being, which is self-substantiating; otherwise one proceeds to infinity, always positing one thing which comes to be prior to another. Having defined this kind of coming to be after this kind of Being in the Timaeus, Plato says that the cosmos comes to be in this sense. And the definition of both, which is based on our cognitive powers, is something like this: 59

5

What is it which always is but does not come to be, and what is it which60 comes to be but never is? The one is grasped by thought with reason and is always the same,61 but the other is opined by opinion with irrational perception and it comes to be and is destroyed, but does not ever genuinely exist.

10

And Plato says that the cosmos also comes to be in this sense of ‘come

Translation

45

to be’, being given existence directly by the god who genuinely is. He writes the following about the cosmos:62 Was it always without having any starting point of coming to be or did it come to be?63 It has come to be, since it is visible and tangible, and it has a body. But everything of this sort has obviously come to be and does come to be. For what is self-substantiating must have no parts and be coincident with itself as a whole. But what is extended and has parts cannot be coincident with itself as a whole, and consequently, since it is not self-substantiating, it always gets its existence by the action of something else and is therefore said to come to be.64 However, some people interpret the term ‘is destroyed’ in the definition of ‘come to be’ carelessly and think that Plato obviously sentenced the cosmos and heaven to perishing. Therefore it is necessary to say what this term ‘is destroyed’ means. Since immediately after the words ‘comes to be and is destroyed’ Plato adds ‘but does not ever (oudepote) genuinely exist’, he is, I think, clearly indicating to those without preconceptions that existing forever transcends existing at some time (pote), since ‘not ever’ is said in the strict sense of everlasting things.65 However, <what is everlasting> exists forever because it is produced directly from what genuinely is and is unchanging; and conversely because it is not self-substantiating, does not genuinely exist, and is not simultaneously a whole and simultaneously everything which it is, <what is everlasting> changes in some way; and it receives a different completeness for itself at different times, but it receives it forever because of the directly productive cause, which is unchanging, and because of its own suitability, which it has because it is derived directly from what is genuinely existent. And I believe it is easy to see from what is written in the Statesman that Plato thinks that change attaches to not because it comes to be or perishes in some segment of time, but rather because of its corporeal nature because of which it does not have all its blessedness simultaneously, as what genuinely exists does. As I recall, what is written is sort of like this:66 What we call heaven or cosmos shares in many blessed things because of what generated it. Nevertheless it also shares in body, so that it would be completely impossible for it to remain without a share in change. Now suppose that it were to perish: if it perished into another cosmos, it would be possible to use the word ‘change’; but if it perished into what is not, it would not be said to change because what transforms

15

20

25

30

105,1

46 5

10

15

20

Translation

from one thing into another changes.67 But why does he say ‘ without a share in change’ unless it also contains something which does not change? It is also clear from what is written in the Timaeus that Plato thinks that the cosmos neither has come to be in a segment of time nor perishes in a segment of time. First of all he says that time has come to be together with heaven when he says68 clearly, ‘So time has come to be together with heaven’. And so it is impossible for there to be a time before there is heaven. But if this is so, heaven did not begin to come to be after some time, since, if it did, time would have preceded it, and when the time at which the cosmos came to be was present, any preceding time would be entirely past. But it is also not possible for it to perish in a segment of time either. For again, after the present time at which it perishes there will be some future time. But if Plato said,69 ‘so that having been generated simultaneously they should also be dissolved simultaneously if some dissolution of them ever occurred’, he was using these very words to indicate their indissolubility. For if it is necessary that the cosmos be dissolved together with time (if, indeed, it were dissolved), but time is indissoluble (since what is dissolved at some time (pote) has time after it since ‘some time’ is a part of time), it is clear that the cosmos is indissoluble. And accordingly Plato added70 this to what had been said: And

Related Documents

Chile 1pdf
December 2019 139
Theevravadham 1pdf
April 2020 103
Majalla Karman 1pdf
April 2020 93
Rincon De Agus 1pdf
May 2020 84
Exemple Tema 1pdf
June 2020 78

More Documents from "Gerardo Garay Robles"