Simbol matematika dasar Nama
Simbol
Dibaca sebagai
Penjelasan
Contoh
Kategori
Kesamaan
=
sama dengan
x = y berarti x and y mewakili hal atau nilai yang sama.
1+1=2
umum
Ketidaksamaan
≠
x ≠ y berarti x dan y tidak tidak sama dengan mewakili hal atau nilai yang
1≠2
sama. umum
Ketidaksamaan
<
x < y berarti x lebih kecil dari y. lebih kecil dari; lebih besar dari
>
3<4 x > y means x lebih besar
5>4
dari y.
order theory
≤
Ketidaksamaan
x ≤ y berarti x lebih kecil dari
3 ≤ 4 and 5 ≤ 5
atau sama dengan y.
≥
5 ≥ 4 and 5 ≥ 5
lebih kecil dari atau sama dengan,
x ≥ y berarti x lebih besar dari
lebih besar dari
atau sama dengan y.
atau sama dengan
order theory
Perjumlahan
tambah
4 + 6 berarti jumlah antara 4 dan 6.
2+7=9
aritmatika
+ disjoint union A1={1,2,3,4} ∧ A2={2,4,5,7} ⇒ the disjoint union of … and …
A1 + A2 means the disjoint
A1 + A2 = {(1,1),
union of sets A1 and A2.
(2,1), (3,1), (4,1), (2,2), (4,2), (5,2), (7,2)}
teori himpunan
Perkurangan
kurang
−
9 − 4 berarti 9 dikurangi 4.
8−3=5
aritmatika
tanda negatif −3 berarti negatif dari angka 3. −(−5) = 5 negatif
aritmatika
set-theoretic complement A − B berarti himpunan yang minus; without
mempunyai semua anggota
{1,2,4} − {1,3,4} = {
dari Ayang tidak terdapat
2}
pada B.
set theory
multiplication
kali
3 × 4 berarti perkalian 3 oleh 4.
7 × 8 = 56
aritmatika
Cartesian product
×
X×Y means the set of the Cartesian
all ordered pairs with the first
{1,2} × {3,4} =
product of … and
element of each pair selected
{(1,3),(1,4),(2,3),(2,4
from X and the second
)}
…; the direct product of … and
element selected from Y.
… teori himpunan cross product cross
u × v means the cross
(1,2,5) × (3,4,−1) =
product of vectors u and v
(−22, 16, − 2)
vector algebra
÷
division bagi
6 ÷ 3 atau 6/3 berati 6 dibagi 3.
/ √
aritmatika square root
2 ÷ 4 = .5 12/4 = 3
√x berarti bilangan positif yang √4 = 2
akar kuadrat
kuadratnya x.
bilangan real complex square root the complex square root of; square root
if z = r exp(iφ) is represented in polar coordinates with -π <
√(-1) = i
φ ≤ π, then √z = √r exp(iφ/2).
Bilangan kompleks absolute value
||
nilai mutlak dari numbers
|x| means the distance in the real line (or the complex plane) between x and zero.
|3| = 3, |-5| = |5| |i| = 1, |3+4i| = 5
factorial
!
faktorial
n! adalah hasil dari 1×2×...×n.
4! = 1 × 2 × 3 × 4 = 24
combinatorics probability distribution
~
has distribution; tidk terhingga
X ~ D, means the random
X ~ N(0,1),
variable X has the probability
the standard normal
distribution D.
distribution
statistika material implication A ⇒ B means if A is true
⇒
implies; if .. then
then B is also true; if A is false then nothing is said about B. → may mean the same as ⇒,
→
or it may have the meaning propositional logic
⊃
forfunctions given below. ⊃ may mean the same as ⇒,
x = 2 ⇒ x2 = 4 is true, but x2 = 4 ⇒ x= 2 is in general false (since x could be −2).
or it may have the meaning forsuperset given below.
⇔ ↔ ¬
material equivalence if and only if; iff
A ⇔ B means A is true if B is
x + 5 = y +2 ⇔ x +
true and A is false if B is false.
3=y
propositional logic logical negation
The statement ¬A is true if and ¬(¬A) ⇔ A
not
˜
only if A is false.
x ≠ y ⇔ ¬(x = y)
A slash placed through propositional logic another operator is the same as "¬" placed in front. logical conjunction or mee t in alattice
∧
and
The statement A ∧ B is true if A and B are both true; else it is false.
propositional
n< 4 ∧ n >2 ⇔ n = 3 when n is anatural number.
logic, lattice theory logical
n≥4 ∨ n≤
disjunction or join i
2 ⇔ n ≠ 3 when n is
n alattice
∨
propositional logic, lattice theory
The statement A ∨ B is true
anatural number.
if A or B (or both) are true; if both are false, the statement is false.
\ The statement A ⊕
⊕
xor
B is true when either A or B,
proposition al logic, Bool ean
but not both,
⊻
are true. A ⊻ B me
||exclusive or
ans the same.
algebra universal quantification
∀
for all; for any; for each
∀ x: P(x) means P(x) is true for all x.
∀ n ∈ N: n2 ≥ n.
predicate logic existential
∃
quantification there exists
∃ x: P(x) means there is at least one x such that P(x) is
∃ n ∈ N: n is even.
true.
predicate logic uniqueness
∃!
quantification
∃! x: P(x) means there is
exactly one x such that P(x) is there exists exactly true. one
∃! n ∈ N: n + 5 = 2n.
(¬A) ⊕ A is always true, A ⊕ A is always false.
predicate logic
:=
x := y or x ≡ y means x is
definition is defined as
≡
defined to be another name
cosh x :=
for y (but note that ≡ can also
(1/2)(exp x +
mean other things, such
exp (−x))
as congruence). everywhere
A XOR B :⇔ P :⇔ Q means P is defined to
:⇔
(A ∨ B) ∧ ¬(A ∧ B)
be logically equivalent to Q. set brackets
{,}
the set of ...
{a,b,c} means the set consisting of a, b, and c.
N = {0,1,2,...}
teori himpunan
{:}
set builder notation the set of ... such that ...
{|}
teori himpunan
{x : P(x)} means the set of all x for which P(x) is true.
{n ∈ N : n2 < 20} =
{x | P(x)} is the same as
{0,1,2,3,4}
{x : P(x)}.
himpunan kosong
∅
himpunan kosong
∅ berarti himpunan yang tidak memiliki elemen. {} juga berarti
{} ∈
teori himpunan
4} = ∅
set membership is an element of; is a ∈ S means a is an element not an element of
∉
hal yang sama.
{n ∈ N : 1 < n2 <
everywhere, teori
(1/2)−1 ∈ N
of the set S; a ∉ S means a is not an element of S.
2−1 ∉ N
himpunan
⊆
subset is a subset of
⊂ ⊇
∪
of A is also element of B.
A ∩ B ⊆ A; Q ⊂ R
teori himpunan A ⊂ B means A ⊆ B but A ≠ B. superset is a superset of
⊃
A ⊆ B means every element
A ⊇ B means every element of B is also element of A.
A ∪ B ⊇ B; R ⊃ Q
teori himpunan A ⊃ B means A ⊇ B but A ≠ B. set-theoretic union
A ∪ B means the set that
the union of ... and contains all the elements
A⊆B ⇔ A∪B=B
...; union teori himpunan
from A and also all those from B, but no others.
set-theoretic intersection
∩
A ∩ B means the set that
intersected with; intersect
contains all those elements that A andB have in common.
{x ∈ R : x2 = 1} ∩ N = {1}
teori himpunan set-theoretic A \ B means the set that
complement
\
minus; without
contains all those elements of A that are not in B.
{1,2,3,4} \ {3,4,5,6} = {1,2}
teori himpunan function application of
()
f(x) berarti nilai fungsi f pada
Jika f(x) := x2,
elemen x.
maka f(3) = 32 = 9.
Perform the operations inside
(8/4)/2 = 2/2 = 1, but
the parentheses first.
8/(4/2) = 8/2 = 4.
teori himpunan precedence grouping umum
f:X→ Y
function arrow from ... to teori himpunan
f: X → Y means the function f maps the set X into the set Y.
Let f: Z → N be defined by f(x) = x2.
function composition
o
composed with
fog is the function, such that (fog)(x) = f(g(x)).
if f(x) = 2x, and g(x) = x + 3, then (fog)(x) = 2(x + 3).
teori himpunan Bilangan asli
N
N berarti {0,1,2,3,...}, but see
N
ℕ
the article on natural numbers Bilangan
{|a| : a ∈ Z} = N
for a different convention.
Bilangan bulat
Z
Z
Z berarti {...,−3,−2,−1,0,1,2,3,...}.
ℤ
Bilangan
{a : |a| ∈ N} = Z
Bilangan rasional
Q
3.14 ∈ Q
Q
ℚ
Q berarti {p/q : p,q ∈ Z, q ≠ 0}. π∉Q
Bilangan Bilangan real
R
R berarti {limn→∞ an :
R
ℝ
π∈R
∀ n ∈ N: an ∈ Q, the limit Bilangan
exists}.
√(−1) ∉ R
C means {a + bi : a,b ∈ R}.
i = √(−1) ∈ C
Bilangan kompleks
C
C
ℂ
Bilangan ∞ is an element of
infinity
∞
infinity numbers pi
is greater than all real
pi Euclidean geometry norm
limx→0 1/|x| = ∞
numbers; it often occurs in limits. π berarti perbandingan (rasio)
π
|| ||
the extended number line that
antara keliling lingkaran dengan diameternya.
A = πr² adalah luas lingkaran dengan jari-jari (radius) r
||x|| is the norm of the
norm of; length of linear algebra
element x of a normed vector
||x+y|| ≤ ||x|| + ||y||
space.
summation
∑
sum over ... from ... to ... of
∑k=1n ak means a1 + a2 + ... + an.
∑k=14 k2 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30
aritmatika product
∏k=14 (k + 2) = (1 +
product over ...
∏
from ... to ... of
∏k=1n ak means a1a2···an.
2) = 3 × 4 × 5 × 6 = 360
aritmatika Cartesian product
2)(2 + 2)(3 + 2)(4 +
∏i=0nYi means the set of
∏n=13R = Rn
the Cartesian
all (n+1)-tuples (y0,...,yn).
product of; the direct product of set theory derivative
'
… prime; derivative of …
f '(x) is the derivative of the function f at the point x, i.e., theslope of the tangent there.
If f(x) = x2, then f '(x) = 2x
kalkulus indefinite integral or antideriv ative indefinite integral of …; the
∫ f(x) dx means a function whose derivative is f.
∫x2 dx = x3/3 + C
antiderivative of …
∫
kalkulus definite integral integral from ... to ... of ... with respect to kalkulus
∫ab f(x) dx means the signed area between the xaxis and thegraph of
∫0b x2 dx = b3/3;
the function f between x = a an d x = b.
gradient
∇
del, nabla, gradient of
∇f (x1, …, xn) is the vector of partial derivatives (df / dx1, …, df /dxn).
If f (x,y,z) = 3xy + z² then ∇f = (3y, 3x, 2z)
kalkulus partial derivative partial derivative of
∂
With f (x1, …, xn), ∂f/∂xi is the derivative of f with respect to
If f(x,y) = x2y, then
xi, with all other variables kept
∂f/∂x = 2xy
kalkulus constant. boundary boundary of
∂M means the boundary of M
∂{x : ||x|| ≤ 2} = {x : || x || = 2}
topology perpendicular
⊥
x ⊥ y means x is perpendicular
is perpendicular to to y; or more generally x is geometri
orthogonal to y.
If l⊥m and m⊥n then l || n.
bottom element the bottom element
x = ⊥ means x is the smallest element.
∀x : x ∧ ⊥ = ⊥
lattice theory A ⊧ B means the
entailment
|=
sentence A entails the
entails
sentence B, that is
model theory
A ⊧ A ∨ ¬A
everymodel in which A is true, B is also true.
inference infers or is derived
|-
x ⊢ y means y is derived
from propositional
from x.
A → B ⊢ ¬B → ¬A
logic, predicate logic normal subgroup
◅
is a normal
N ◅ G means that N is a
subgroup of
normal subgroup of group G.
Z(G) ◅ G
group theory quotient group
/
mod group theory
G/H means the quotient of group G modulo its subgroup H.
G ≈ H means that group G is is isomorphic to
2a, b, b+a, b+2a} / {0, b} = {{0, b}, {a, b+a}, {2a, b+2a}} Q / {1, −1} ≈ V,
isomorphism
≈
{0, a,
isomorphic to group H
where Q is the quaternion group and V is the Klein four-group.
Istilah Matematika Dalam Bahasa Inggris Berikut beberapa istilah-istilah matematika dalam bahasa Inggris.
Bilangan Bulat = Integers (Z)
Bilangan Asli = Natural number (N)
Bilangan Cacah = Whole number (W)
Bilangan Genap = Even number
Bilangan Ganjil = Odd number
Penjumlahan = Addition
Pengurangan = Subtraction
Pembagian = Divisio
Perkalian = Multiplication
Sifat asosiatif = Associative principle
Sifat komutatif = Commutative principle
Kelipatan persekutuan terkecil (KPK) = Least common multiple
Faktor persekutuan terbesar (FPB) = Greatest common divisor
Pecahan = fraction
Pecahan-pecahan yang senilai dan tidak senilai = Equality and inequality of rational numbers
Pecahan campuran = Mixed rational number
Desimal = Decimals
Operasi bilangan desimal = The operations of decimals
Garis bilangan = The number line
Bentuk baku = Scientific notation
Pangkat bilangan = Powers of numbers
Bentuk aljabar = Algebraic forms
Aritmatika sosial = Social arithmetic
Persamaan linier = Linear equations
Variabel = Variable
Pertidaksamaan linier = Linear inequalities
Modulus (Pengayaan) = Enrichment
Perbandingan = Proportion
Pembilang= Numerator
Penyebut = Denominator
Perbandingan seharga = Direct proportion
Perbandingan berbalik harga = Inverse proportion
Garis = Lines
Sudut = Angles
Derajat = Degrees
Keliling = Circumference
Luas = Area
Sisi = Side
Sudut dalam = Interior angle
Himpunan = Sets
Himpunan semesta = Universal set
Gabungan himpunan = Union of sets
Irisan himpunan = Intersection of sets
Komplemen suatu himpunan = Complement of a set
Diagram Venn = Venn diagrams
Himpunan-himpunan yang sama = Equal sets
Himpunan-himpunan yang ekuivalen = Equivalent sets
Himpunan-himpunan yang saling lepas (Saling asing) = Disjoint sets