Simbolmatematikadasar.docx

  • Uploaded by: Nur Rohman
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Simbolmatematikadasar.docx as PDF for free.

More details

  • Words: 2,409
  • Pages: 12
Simbol matematika dasar Nama

Simbol

Dibaca sebagai

Penjelasan

Contoh

Kategori

Kesamaan

=

sama dengan

x = y berarti x and y mewakili hal atau nilai yang sama.

1+1=2

umum

Ketidaksamaan



x ≠ y berarti x dan y tidak tidak sama dengan mewakili hal atau nilai yang

1≠2

sama. umum

Ketidaksamaan

<

x < y berarti x lebih kecil dari y. lebih kecil dari; lebih besar dari

>

3<4 x > y means x lebih besar

5>4

dari y.

order theory



Ketidaksamaan

x ≤ y berarti x lebih kecil dari

3 ≤ 4 and 5 ≤ 5

atau sama dengan y.



5 ≥ 4 and 5 ≥ 5

lebih kecil dari atau sama dengan,

x ≥ y berarti x lebih besar dari

lebih besar dari

atau sama dengan y.

atau sama dengan

order theory

Perjumlahan

tambah

4 + 6 berarti jumlah antara 4 dan 6.

2+7=9

aritmatika

+ disjoint union A1={1,2,3,4} ∧ A2={2,4,5,7} ⇒ the disjoint union of … and …

A1 + A2 means the disjoint

A1 + A2 = {(1,1),

union of sets A1 and A2.

(2,1), (3,1), (4,1), (2,2), (4,2), (5,2), (7,2)}

teori himpunan

Perkurangan

kurang



9 − 4 berarti 9 dikurangi 4.

8−3=5

aritmatika

tanda negatif −3 berarti negatif dari angka 3. −(−5) = 5 negatif

aritmatika

set-theoretic complement A − B berarti himpunan yang minus; without

mempunyai semua anggota

{1,2,4} − {1,3,4} = {

dari Ayang tidak terdapat

2}

pada B.

set theory

multiplication

kali

3 × 4 berarti perkalian 3 oleh 4.

7 × 8 = 56

aritmatika

Cartesian product

×

X×Y means the set of the Cartesian

all ordered pairs with the first

{1,2} × {3,4} =

product of … and

element of each pair selected

{(1,3),(1,4),(2,3),(2,4

from X and the second

)}

…; the direct product of … and

element selected from Y.

… teori himpunan cross product cross

u × v means the cross

(1,2,5) × (3,4,−1) =

product of vectors u and v

(−22, 16, − 2)

vector algebra

÷

division bagi

6 ÷ 3 atau 6/3 berati 6 dibagi 3.

/ √

aritmatika square root

2 ÷ 4 = .5 12/4 = 3

√x berarti bilangan positif yang √4 = 2

akar kuadrat

kuadratnya x.

bilangan real complex square root the complex square root of; square root

if z = r exp(iφ) is represented in polar coordinates with -π <

√(-1) = i

φ ≤ π, then √z = √r exp(iφ/2).

Bilangan kompleks absolute value

||

nilai mutlak dari numbers

|x| means the distance in the real line (or the complex plane) between x and zero.

|3| = 3, |-5| = |5| |i| = 1, |3+4i| = 5

factorial

!

faktorial

n! adalah hasil dari 1×2×...×n.

4! = 1 × 2 × 3 × 4 = 24

combinatorics probability distribution

~

has distribution; tidk terhingga

X ~ D, means the random

X ~ N(0,1),

variable X has the probability

the standard normal

distribution D.

distribution

statistika material implication A ⇒ B means if A is true



implies; if .. then

then B is also true; if A is false then nothing is said about B. → may mean the same as ⇒,



or it may have the meaning propositional logic



forfunctions given below. ⊃ may mean the same as ⇒,

x = 2 ⇒ x2 = 4 is true, but x2 = 4 ⇒ x= 2 is in general false (since x could be −2).

or it may have the meaning forsuperset given below.

⇔ ↔ ¬

material equivalence if and only if; iff

A ⇔ B means A is true if B is

x + 5 = y +2 ⇔ x +

true and A is false if B is false.

3=y

propositional logic logical negation

The statement ¬A is true if and ¬(¬A) ⇔ A

not

˜

only if A is false.

x ≠ y ⇔ ¬(x = y)

A slash placed through propositional logic another operator is the same as "¬" placed in front. logical conjunction or mee t in alattice



and

The statement A ∧ B is true if A and B are both true; else it is false.

propositional

n< 4 ∧ n >2 ⇔ n = 3 when n is anatural number.

logic, lattice theory logical

n≥4 ∨ n≤

disjunction or join i

2 ⇔ n ≠ 3 when n is

n alattice



propositional logic, lattice theory

The statement A ∨ B is true

anatural number.

if A or B (or both) are true; if both are false, the statement is false.

\ The statement A ⊕



xor

B is true when either A or B,

proposition al logic, Bool ean

but not both,



are true. A ⊻ B me

||exclusive or

ans the same.

algebra universal quantification



for all; for any; for each

∀ x: P(x) means P(x) is true for all x.

∀ n ∈ N: n2 ≥ n.

predicate logic existential



quantification there exists

∃ x: P(x) means there is at least one x such that P(x) is

∃ n ∈ N: n is even.

true.

predicate logic uniqueness

∃!

quantification

∃! x: P(x) means there is

exactly one x such that P(x) is there exists exactly true. one

∃! n ∈ N: n + 5 = 2n.

(¬A) ⊕ A is always true, A ⊕ A is always false.

predicate logic

:=

x := y or x ≡ y means x is

definition is defined as



defined to be another name

cosh x :=

for y (but note that ≡ can also

(1/2)(exp x +

mean other things, such

exp (−x))

as congruence). everywhere

A XOR B :⇔ P :⇔ Q means P is defined to

:⇔

(A ∨ B) ∧ ¬(A ∧ B)

be logically equivalent to Q. set brackets

{,}

the set of ...

{a,b,c} means the set consisting of a, b, and c.

N = {0,1,2,...}

teori himpunan

{:}

set builder notation the set of ... such that ...

{|}

teori himpunan

{x : P(x)} means the set of all x for which P(x) is true.

{n ∈ N : n2 < 20} =

{x | P(x)} is the same as

{0,1,2,3,4}

{x : P(x)}.

himpunan kosong



himpunan kosong

∅ berarti himpunan yang tidak memiliki elemen. {} juga berarti

{} ∈

teori himpunan

4} = ∅

set membership is an element of; is a ∈ S means a is an element not an element of



hal yang sama.

{n ∈ N : 1 < n2 <

everywhere, teori

(1/2)−1 ∈ N

of the set S; a ∉ S means a is not an element of S.

2−1 ∉ N

himpunan



subset is a subset of

⊂ ⊇



of A is also element of B.

A ∩ B ⊆ A; Q ⊂ R

teori himpunan A ⊂ B means A ⊆ B but A ≠ B. superset is a superset of



A ⊆ B means every element

A ⊇ B means every element of B is also element of A.

A ∪ B ⊇ B; R ⊃ Q

teori himpunan A ⊃ B means A ⊇ B but A ≠ B. set-theoretic union

A ∪ B means the set that

the union of ... and contains all the elements

A⊆B ⇔ A∪B=B

...; union teori himpunan

from A and also all those from B, but no others.

set-theoretic intersection



A ∩ B means the set that

intersected with; intersect

contains all those elements that A andB have in common.

{x ∈ R : x2 = 1} ∩ N = {1}

teori himpunan set-theoretic A \ B means the set that

complement

\

minus; without

contains all those elements of A that are not in B.

{1,2,3,4} \ {3,4,5,6} = {1,2}

teori himpunan function application of

()

f(x) berarti nilai fungsi f pada

Jika f(x) := x2,

elemen x.

maka f(3) = 32 = 9.

Perform the operations inside

(8/4)/2 = 2/2 = 1, but

the parentheses first.

8/(4/2) = 8/2 = 4.

teori himpunan precedence grouping umum

f:X→ Y

function arrow from ... to teori himpunan

f: X → Y means the function f maps the set X into the set Y.

Let f: Z → N be defined by f(x) = x2.

function composition

o

composed with

fog is the function, such that (fog)(x) = f(g(x)).

if f(x) = 2x, and g(x) = x + 3, then (fog)(x) = 2(x + 3).

teori himpunan Bilangan asli

N

N berarti {0,1,2,3,...}, but see

N



the article on natural numbers Bilangan

{|a| : a ∈ Z} = N

for a different convention.

Bilangan bulat

Z

Z

Z berarti {...,−3,−2,−1,0,1,2,3,...}.



Bilangan

{a : |a| ∈ N} = Z

Bilangan rasional

Q

3.14 ∈ Q

Q



Q berarti {p/q : p,q ∈ Z, q ≠ 0}. π∉Q

Bilangan Bilangan real

R

R berarti {limn→∞ an :

R



π∈R

∀ n ∈ N: an ∈ Q, the limit Bilangan

exists}.

√(−1) ∉ R

C means {a + bi : a,b ∈ R}.

i = √(−1) ∈ C

Bilangan kompleks

C

C



Bilangan ∞ is an element of

infinity



infinity numbers pi

is greater than all real

pi Euclidean geometry norm

limx→0 1/|x| = ∞

numbers; it often occurs in limits. π berarti perbandingan (rasio)

π

|| ||

the extended number line that

antara keliling lingkaran dengan diameternya.

A = πr² adalah luas lingkaran dengan jari-jari (radius) r

||x|| is the norm of the

norm of; length of linear algebra

element x of a normed vector

||x+y|| ≤ ||x|| + ||y||

space.

summation



sum over ... from ... to ... of

∑k=1n ak means a1 + a2 + ... + an.

∑k=14 k2 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30

aritmatika product

∏k=14 (k + 2) = (1 +

product over ...



from ... to ... of

∏k=1n ak means a1a2···an.

2) = 3 × 4 × 5 × 6 = 360

aritmatika Cartesian product

2)(2 + 2)(3 + 2)(4 +

∏i=0nYi means the set of

∏n=13R = Rn

the Cartesian

all (n+1)-tuples (y0,...,yn).

product of; the direct product of set theory derivative

'

… prime; derivative of …

f '(x) is the derivative of the function f at the point x, i.e., theslope of the tangent there.

If f(x) = x2, then f '(x) = 2x

kalkulus indefinite integral or antideriv ative indefinite integral of …; the

∫ f(x) dx means a function whose derivative is f.

∫x2 dx = x3/3 + C

antiderivative of …



kalkulus definite integral integral from ... to ... of ... with respect to kalkulus

∫ab f(x) dx means the signed area between the xaxis and thegraph of

∫0b x2 dx = b3/3;

the function f between x = a an d x = b.

gradient



del, nabla, gradient of

∇f (x1, …, xn) is the vector of partial derivatives (df / dx1, …, df /dxn).

If f (x,y,z) = 3xy + z² then ∇f = (3y, 3x, 2z)

kalkulus partial derivative partial derivative of



With f (x1, …, xn), ∂f/∂xi is the derivative of f with respect to

If f(x,y) = x2y, then

xi, with all other variables kept

∂f/∂x = 2xy

kalkulus constant. boundary boundary of

∂M means the boundary of M

∂{x : ||x|| ≤ 2} = {x : || x || = 2}

topology perpendicular



x ⊥ y means x is perpendicular

is perpendicular to to y; or more generally x is geometri

orthogonal to y.

If l⊥m and m⊥n then l || n.

bottom element the bottom element

x = ⊥ means x is the smallest element.

∀x : x ∧ ⊥ = ⊥

lattice theory A ⊧ B means the

entailment

|=

sentence A entails the

entails

sentence B, that is

model theory

A ⊧ A ∨ ¬A

everymodel in which A is true, B is also true.

inference infers or is derived

|-

x ⊢ y means y is derived

from propositional

from x.

A → B ⊢ ¬B → ¬A

logic, predicate logic normal subgroup



is a normal

N ◅ G means that N is a

subgroup of

normal subgroup of group G.

Z(G) ◅ G

group theory quotient group

/

mod group theory

G/H means the quotient of group G modulo its subgroup H.

G ≈ H means that group G is is isomorphic to

2a, b, b+a, b+2a} / {0, b} = {{0, b}, {a, b+a}, {2a, b+2a}} Q / {1, −1} ≈ V,

isomorphism



{0, a,

isomorphic to group H

where Q is the quaternion group and V is the Klein four-group.

Istilah Matematika Dalam Bahasa Inggris Berikut beberapa istilah-istilah matematika dalam bahasa Inggris. 

Bilangan Bulat = Integers (Z)



Bilangan Asli = Natural number (N)



Bilangan Cacah = Whole number (W)



Bilangan Genap = Even number



Bilangan Ganjil = Odd number



Penjumlahan = Addition



Pengurangan = Subtraction



Pembagian = Divisio



Perkalian = Multiplication



Sifat asosiatif = Associative principle



Sifat komutatif = Commutative principle



Kelipatan persekutuan terkecil (KPK) = Least common multiple



Faktor persekutuan terbesar (FPB) = Greatest common divisor



Pecahan = fraction



Pecahan-pecahan yang senilai dan tidak senilai = Equality and inequality of rational numbers



Pecahan campuran = Mixed rational number



Desimal = Decimals



Operasi bilangan desimal = The operations of decimals



Garis bilangan = The number line



Bentuk baku = Scientific notation



Pangkat bilangan = Powers of numbers



Bentuk aljabar = Algebraic forms



Aritmatika sosial = Social arithmetic



Persamaan linier = Linear equations



Variabel = Variable



Pertidaksamaan linier = Linear inequalities



Modulus (Pengayaan) = Enrichment



Perbandingan = Proportion



Pembilang= Numerator



Penyebut = Denominator



Perbandingan seharga = Direct proportion



Perbandingan berbalik harga = Inverse proportion



Garis = Lines



Sudut = Angles



Derajat = Degrees



Keliling = Circumference



Luas = Area



Sisi = Side



Sudut dalam = Interior angle



Himpunan = Sets



Himpunan semesta = Universal set



Gabungan himpunan = Union of sets



Irisan himpunan = Intersection of sets



Komplemen suatu himpunan = Complement of a set



Diagram Venn = Venn diagrams



Himpunan-himpunan yang sama = Equal sets



Himpunan-himpunan yang ekuivalen = Equivalent sets



Himpunan-himpunan yang saling lepas (Saling asing) = Disjoint sets

More Documents from "Nur Rohman"

Buku Prestasi Santri
August 2019 40
Tugas Stroke.docx
May 2020 9
Nht.docx
June 2020 8
Oil-analysis Cause Efect
October 2019 45
Oil Analysis Handbook
October 2019 47