Signals And Networks

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Signals And Networks as PDF for free.

More details

  • Words: 4,854
  • Pages: 82
Thevenin's Theorem and Norton's Theorem To be replaced

LOAD i

P

Network A

v

Network B

Q

Two networks to describe Thevenin's theorem

Thevenin's Theorem : Characteristics of Network A To be replaced P

Network A Q

1. Linear elements 2. Sources : dependent (controlled) or independent 3. Initial conditions on passive elements 4. No magnetic or controlled-source coupling to network B

Thevenin's Theorem : Characteristics of Network A Nonlinear Elements

Linear Elements

i L

R

C

v

T

D

M

Yes Independent Sources

No Controlled Sources

v1

i

i1 Yes

v Yes

Thevenin's Theorem : Characteristics of Network A M L1 Vg

C1

Vo

L2

R C2

(1-D)(Vg-Vo) -D(Vg-Vo) Network A

M

M L1

P

C1

Network B L2

R C2

Vg

(1-D)(Vg-Vo) -D(Vg-Vo) Q

NO

Vo

Thevenin's Theorem : Characteristics of Network A L1 Vg

C1

Vo

L2

R C2

(1-D)(Vg-Vo) -D(Vg-Vo) Network A

M

M L1

P

C1

Network B L2

R C2

Vg (1-D)(Vg-Vo) Q

NO

Vo

-D(Vg-Vo)

Thevenin's Theorem: Network A is replaced by C and Vth LOAD M

P

Network C Vth

Network B

v Q

Network A

i

Thevenin's Theorem: How to find Vth? LOAD P Vth

Network A Q Open Ckt. Voltage

Disconnect

Network B

Thevenin's Theorem: How to determine C?

P Network A

1. Set Initial Conditions to Zero 2. Independent Sources Turned Off 3. Dependent Sources are Operating

Q P Network C M

Determination of Vth : An Example Vcc Rc Ic

R1 B IB R2

IB+IC Re

Rc Ic

R1 B

Vcc

N

Network B

Network A

Vth

R2

B

Vcc IB+IC Re

Vth=Vcc[R2/(R1+R2)] Simplification of the base circuit

Thevenin's Theorem : Characteristics of Network B Nonlinear Elements

Linear Elements

i L

R

C

v

T

D

M

Yes Independent Sources

Yes Controlled Sources

v1

i

i1 Yes

v Yes

Determination of Network C : Example I Note : No initial condition and No dependent source Network C

Network A

Vcc

R1

R1

B

B

R2

N

R2

Shorted

M

Simplification of the base circuit

Network C B R1 R2 M

Rb=(R1||R2)

Application of Thevenin's Theorem: An Example Network B

Vcc Rc Ic

R1 B IB R2

Rb=(R1||R2) Rb B M

IB+IC Re N

Rc Ic Vcc IB+IC

Vth

Vth=Vcc[R2/(R1+R2)]

Simplification of the base circuit

Re N

Application of Thevenin's Theorem: An Example Network B

Vcc

Linear Model Rc Ic

Rc Ic

R1 B IB R2

IB IB+IC Re

Vth

 IB Rb B

Vth=Vcc[R2/(R1+R2)] Rb=(R1||R2) Simplification of the base circuit N

Vcc IB+IC Re N

Application of Thevenin's Theorem: Example II Common Source Amplifier : Small Signal Gain Vdd

Cb

vi

vo Av= vi

RL D Id

R1 G

S

R2

Is Rs

N

Vo=VO +vo

Application of Thevenin's Theorem: Example II Linear Small Signal Equivalent Circuit of the CS Amplifier D Cb

G

gm vgs

rd vo

S

R2 R1 vi

Rs N

RL

Application of Thevenin's Theorem: Example II Simplified Small Signal Equivalent Circuit of CS Amplifier Network A G

D

gm vgs S

vi

Rs N

Network B M Network C D

rd vo

Vth RL

RL N

Application of Thevenin's Theorem: Example II Determination of Vth Network A G

D

gm.vgs S

vi

Rs N

rd Vth=-(gm.vgs)rd =-(gm.rd)vi

Application of Thevenin's Theorem: Example II Determination of Netwok C Network C G

D

gm.vgs

rd

S Shorted

Rs M

M Rth

D

Application of Thevenin's Theorem: Example II Determination of Rth D vx=(ix-gm.vgs)rd-vgs gm.vgs

ix rd

S Rs

vgs

G,M

vx

vgs=-ix.Rs Therefore, vx=ix.rd+gm.ix.Rs.rd +ix.Rs vx Rth= ix =rd+Rs(1+gm.rd)

Application of Thevenin's Theorem: Example II The equivalent circuit of the CS amplifier Rth M  vi

rd

Rs(1+  )

 =gm. rd D

RL vo

Vth

N

Application of Thevenin's Theorem: Example III RLC Network : Zero Initial Conditions on L and C Network B Network A C L C L R vo vi

RL

R vi L

Zth = 1/sC + sL||R Vth=vi R R+sL

Vth

C R

Zth

Norton's Theorem: Network A is replaced by C and Ith LOAD Network A M

Ith

P

Network C

i Network B

v Q

P

Network C as in Thevenin's Theorem

Q

Ith =>Norton's Theorem is dual of Thevenin's Theorem

Network A

v1

B

R1 Vg

C

v2

D

R2

Loop v3 Direction R3

A

Fig. 1 One-loop resistive network to which Kirchoff's Voltage Law is applied

− vg + v1 + v2 + v3 = 0 v1 + v2 + v3 = vg

Fig.2 Ground

b

ia

c

i1

1

i2

v2

v1

R2

R1

vg d i4

i3

1 ib

a Fig. 3 i1+i2=i3+i4

Fig. 4(a)

1 vg 1 Equivalent Network

Req

Fig. 4(b)

ia 1

R1

R2

Rn

vg 1 Fig. 5 n R eq = R 1 + R 2 + ........... + R n = j=1 Rj

Series Connected Resistive Network

ib

ia 1

i1

va L1

i2 L2

vg

Leq

1 Fig. 5(a)

Fig. 5(b) Leq= 1/L1+1/L2

Equivalent Inductive One-Port Network

Number of Network Equations Formulation: 3i1 + 2i2 - i3=4 (1) -i1 + 5i2 + 3i3 =-2 (2) i1 + 12 i2 + 5i3 = 0 (3) Solve: Ax=b

e'

i3 No solution

f'

e Unique Solution

g'

g

Note: 2*(2)+(1)=(3) i2

i1 family of solutions f

* Equations must be linearly independent * Formulate the network using minimum no of variables

How to formulate the network using linearly independent equations? => How many unknowns in a network with 'n' nodes and 'b' branches? C1

b6

4 b7 C3

2

R2

R1 1 b4

b1

b5

3 RL

R3

C2 b2

b3

0 : Ref Node n=5 and b=8

b8

=> 2*b unknowns (branch voltage and branch current) => effectively b unknowns example : if voltage across a capacitor is known current can be found out from the expression CdVc/dt = Ic

How many KCLs and how many KVLs?

C1

b6

4 b7 C3

2

R2

R1 11 b4

b1

b5

V

b2

3

example : n-1=4 => 4 KCLs b-(n-1)=8-4=4 => 4 KVLs

RL R3

C2

(1) (n-1) nodes => (n-1) KCL equations (2) b-(n-1) KVL equations must be used

b3

0 : Ref Node

note: easy to apply KCL but difficult to apply KVL because there are so many b8 loops (b4,b1,b2), (b2,b5,b8), (b3,b7,b8), (b4,b1,b5,b8), (b4,b6,b3), (b4,b6,b7,b8), (b1,b6,b7,b5)

Problem: With a wrong choice the equations will be linearly dependent

How to define voltages and currents in KCL and KVL? VC3 C1

b6

4 b7 C3

2

R2

R1 11 b4

b1

b5

Node Voltage : Voltage of a node with respect to the reference node (0) 3 RL

R3

C2 b2

Example : V4 (i.e. voltage across R1 in branch b3)

b3

0 : Ref Node

Branch Voltage : Voltage across a branch of the network b8 Example : VC3 (i.e. voltage across branch b7)

Note: Vc3 = V4-V3 => KVL It is enough if we know the node voltages and vice versa

How to define voltages and currents in KCL and KVL?

C1 1

4 b7 C3

b6

R1

R2

2 b1

Loop Current : Current in a loop of the network 3

b5

b4 i1 C2 V Ib2 b2

R3 b3

0 : Ref Node

i2

Example : i2 (i.e. current in loop consisting of branches b2,b5,b8)

RL Branch Current : Current in a branch of the network b8 Example : Ib2 (i.e. current in branch b2, through capacitor C1)

Note: Ib2 = i1-i2 => KCL It is enough if we know the loop currents and vice versa

Formulate network equations with explicit application of KVL C1 4 b7 C3 4 b7 b6 b6 R1 1 b4

R2

2 b1

b5

3

b1 b4

V b2

1

RL R3

C2

b3

b8

0 : Ref Node Choice of variables: Loop Currents and Branch Voltages

3

2 b5 b2 b3 0 : Ref Node Graph of the network

Independent Equations: => Draw a graph : Figure with connection information

b8

Formulate network equations with explicit application of KVL 4 b7

b6 1

b1 b4

b6 3

2

0 : Ref Node Graph of the network

b8

3

b1 b4

b2

b7

2

1

b5

b3

4

Tree: (b1,b2,b5,b7)

b2

b5 b3

b8 Co-tree: (b4,b6,b3,b8)

0 : Ref Node A tree of the network

Construct a tree => A connected graph spanning all nodes that does not have a circuit. A tree has n nodes and (n-1) branches. => Graph has more than one tree

Formulate network equations with explicit application of KVL 4

b6

b7 3

2

1

b1 b4

Tree: (b1,b2,b5,b7)

b2

=>The co-tree has b-(n-1) branches

b5 b3

b8 Co-tree: (b4,b6,b3,b8)

0 : Ref Node Tree of the network

Every branch of the co-tree (known as chord) is responsible for \ formation of a loop (circuit). This is known as fundamental circuit. Example : (b6 , b1,b5,b7) forms a fundamental circuit No of fundamental circuits = no of chords = b-(n-1)

If we apply KVL to these fundamental circuits then the equations are linearly independent

Formulate network equations with explicit application of KVL b6 i3 2 i1 b1

1 b4

Tree: (b1,b2,b5,b7)

b2

4

b7 i4

C1 3

b5 i2 b3 b8 Co-tree: (b4,b6,b3,b8)

KVLs: 0 : Ref Node =>(b4: chord) V=Vb1+Vb2 =>(b8: chord) Vb2=Vb5+Vb8 Vb6=Vb1+Vb5-Vb7 =>(b6: chord) Vb7=-Vb3-Vb2+Vb5 =>(b3: chord)

R1 1 b4

4 b7 C3

b6

R2

2 b1

3

b5 R3

C2 V b2

b3

b8

0 : Ref Node Original Network 7 voltages and current in V are unknown (7+1=8)

Formulate network equations with explicit application of KVL C1 R1 1 b4

4 b7 C 3

b6

R2

2 b1

V-I relationship of the elements 3

b5

R4 R3

C2 V b2

b3

b8

b4

4 b7 b6 I4 I3 2 b1 b5 I1 b3 I2 b2 b8

0

Vb2=1/C2 Ib2 dt Vb3=Ib3*R3 Vb4=V

0 : Ref Node Original Network

1

Vb1=Ib1*R1

Vb5=Ib5*R2 3

Vb6=1/C1 Ib6 dt Vb7=1/C3 Ib7 dt Vb8=R4*Ib8 Expressed in terms of 8 (branch) currents

Formulate network equations using KVL Apply KCL at b1:

4

1 b4

b7 b6 I4 I3 2 b1 b5 I1 b3 I2 b2 b8

Ib1= (I1-I3)

3

Apply KCL at b2: Ib2=I1-I2+I4 Apply KCL at b5: Ib5=I2-I3-I4 Apply KCL at b7:

Ib4

0 Note: Ib4=-I1 ; Ib6=I3; Ib8=I2; Ib3=I4

Ib7=I4+I3 => enough if we know the loop currents => chords

Formulate network equations using KVL: All the equations KCLs: Ib1= (I1-I3) Ib2=I1-I2+I4 Ib5=I2-I3-I4 Ib7=I4+I3 Ib4=-I1 ; Ib6=I3; Ib8=I2; Ib3=I4 KVLs: =>(b4: chord) V=Vb1+Vb2 =>(b8: chord) Vb2=Vb5+Vb8 Vb6=Vb1+Vb5-Vb7 =>(b6: chord) Vb7=-Vb3-Vb2+Vb5 =>(b3: chord)

Elements: Vb1=Ib1*R1 Vb2=1/C2 Ib2 dt Vb3=Ib3*R3 Vb4=V Vb5=Ib5*R2 Vb6=1/C1 Ib6 dt Vb7=1/C3 Ib7 dt Vb8=Ib8*R4

Network equations using KVL Unknowns: Loop Currents: I1,I2,I3 and I4

Therefore the analysis is called Loop Variable Analysis

V=Vb1+Vb2 => V = (I1-I3)R1+ 1/C2 (I1-I2+I4)dt Vb2=Vb5+Vb8 => 1/C2 (I1-I2+I4)dt = (I2-I3-I4)R2+I2*R4 Vb7=-Vb3-Vb2+Vb5 => 1/C3 (I4+I3)dt=-I4*R3-1/C2 (I1-I2+I4)dt+(I2-I3-I4)R2 Vb6=Vb1+Vb5-Vb7 1/C1 I3dt = (I1-I3)R1 + (I2-I3-I4)R2 -1/C3 (I4+I3)dt

Loop Variable Analysis: Matrix Representation V

R1+1/C2 dt

-1/C2 dt

-R1

-1/C2 dt

I1

0

-1/C2 dt

1/C2 dt

-R2

-R2 -1/C2 dt

I2

+R2+R4

= 0 0

-R1

-R2

1/C2 dt -1/C2 dt -R2

1/C3 dt +1/C1 dt

R2

+R1+R2

+1/C3 dt

1/C3 dt +1/C2 dt dt +R2 1/C2 +R3+R2

I3 I4

Loop Variable Analysis: Generalization I1

I4

I2 I3

IL

Graph of a network with L independent loop currents

Rkj = total resistance common to loops k and j Lkj = Ckj =

Voltage drop in loop k produced by current Ij Rkj*Ij+Lkj*dIj/dt +1/Ckj Ij dt = (Rkj+Lkj d/dt +1/Ckj dt)Ij =akjIj akj: symbol to summarize the operation on Ij

Loop Variable Analysis: Generalization The general form of KVL L akjIj=Vk , Vk is the active voltage source in loop k j=1 General form of KVL for L loop L akjIj=Vk , k =1,....,L j=1 Loop 1 => Loop 2 => Vector Equation: Loop L =>

V1

Operator on I1 I2 I3 I4 a11 a12 a13 ---- a1L I1

V2

I2

VL

= ---

--- ---

aL1 ---

---- ---

--- --- aLL IL

Loop Variable Analysis: Matrix Representation V

R1+1/C2 dt =a11

-1/C2 dt =a12

0

-1/C2 dt

1/C2 dt

=a21

+R2+R4 =a22

= 0 0

-R1 =a31

-R2 =a32

1/C2 dt -1/C2 dt -R2 =a41

-R1 =a13 -R2 =a23

-1/C2 dt =a14

I1

-R2 -1/C2 dt =a24

I2

1/C3 dt +1/C1 dt

R2

+R1+R2

+1/C3 dt

1/C3 dt +1/C2 dt 1/C2 dt +R2 +R3+R2

Solution : Find the inverse of the matrix (square: b-(n-1)*b-(n-1)) May use Gauss Elimination Method : A process called trangularization

I3 I4

Formulate network equations with explicit application of KCL C1 4 b7 C3 4 b7 b6 b6 R1 1 b4

R2

2 b1

b5

3

b1 b4

V b2

1

RL R3

C2

b3

b8

0 : Ref Node Choice of variables: Node Voltages and Branch Currents

3

2 b5 b2 b3 0 : Ref Node Graph of the network

Independent Equations: => Draw a graph : Figure with connection information

b8

Formulate network equations with explicit application of KCL 4 b7

b6 1

b1 b4

b6 3

2

0 : Ref Node Graph of the network

b8

3

b1 b4

b2

b7

2

1

b5

b3

4

Tree: (b1,b2,b5,b7)

b2

b5 b3

b8 Co-tree: (b4,b6,b3,b8)

0 : Ref Node A tree of the network

Construct a tree => A connected graph spanning all nodes that does not have a circuit. A tree has n nodes and (n-1) branches. => Graph has more than one tree

Formulate network equations with explicit application of KCL 4

b6 1

2

b7

=>The tree has (n-1) branches 3

Every branch of the tree b5 is responsible for the b3 formation of a cut-set. This b2 b4 b8 is known as fundamental cut-set. Tree: Co-tree: (b1,b2,b5,b7) (b4,b6,b3,b8) A cut-set is the set of branches whose removal disconnects the graph 0 : Ref Node Example : (b1 ,b4, b6) forms a cut-set Tree of the network b1

No of fundamental cut-sets = no of branches in a tree = (n-1) If we apply KCL to these fundamental cut-sets then the equations are linearly independent

Identify the fundamental cut-sets to apply KCL 4

b7

b1 b4

b6

This node is disconnected

3

1

b5

0 This is a fundamental cut-set

b8 0

b6

b6

b8 (b1,b6,b4)

4 b7

b1

b7

b3

0

2

1

4

3 b5

0

b3

b7

2

b2

b4

2

b2

b1 2

1

3 (b5,b3,b8,b7) 4

2

1

4

4

b6

3 4

b5

3

1 b3

b4

b2 b3

(b7,b3,b6) 0

0

b8 (b2,b3,b4,b8)

Formulate network equations with application of KCL 4 b6 C1 C3 4 b7 b6 1 R2 R1 2 2 3 b5 1 b1 b5 b3 b4 RL b8 R3 C2 V b2 b3 b8 0 Cut-set of b5: Ib6+Ib3+Ib5-Ib8=0 0 : Ref Node Conservation of Charges I1

A In I1+ I2 + ... + In =0

B

Cut-set of b7:

-Ib4-Ib1-Ib6=0 Ib6-Ib7+Ib3=0

Cut-set of b2:

Ib2+Ib4-Ib3+Ib8=0

Cut-set of b1:

3

V-I relationship of the elements C1 R1 1 b4

4 b7 C 3

b6

R2

2 b1

In terms of branch voltage and branch currents 3

b5

R4

Ib1=Vb1/R1

R3

C2

Ib2=C2 dVb2/dt

V b2

b3

0 : Ref Node Original Network

b8

Ib3=Vb3/R3 Vb4=V ; Ib4=? Ideal voltage source Ib5=Vb5/R2 Ib6=C1dVb6/dt Ib7=C3dVb7/dt Ib8=Vb8/R4 Expressed in terms of 8 (branch) voltages

Formulate network equations using KCL

4

b6 Ib6 1

b7 Ib7

b1

Ib3

b3

b2

b4

Vb1= (V1-V2)

3

2 Ib1

Apply KVL at all branches:

Ib4

0

Ib5

b5 Ib8

b8

Vb2=V2-V3 Vb3= V4 Vb4=V1 Vb5=V2-V3 Vb6=V1-V4 Vb7=V4-V3 Vb8=V3 => enough if we know the node voltages

Formulate network equations using KCL: All the equations KCLs: Ib6+Ib3+Ib5-Ib8=0

Elements:

-Ib4-Ib1-Ib6=0

Ib2=C2 dVb2/dt

Ib6-Ib7+Ib3=0 Ib2+Ib4-Ib3+Ib8=0

Ib1=Vb1/R1

Ib3=Vb3/R3 Vb4=V ; Ib5=Vb5/R2

V2,V3,V4 and Ib4

Ib6=C1dVb6/dt

Note: V1 is given (V1=V) Ib7=C3dVb7/dt However, Ib4 is unknown Ib8=Vb8/R4

KVLs: Vb1= (V1-V2) Vb2=V2-V3 Vb3= V4 Vb4=V1 Vb5=V2-V3 Vb6=V1-V4 Vb7=V4-V3 Vb8=V3

Note: You can write KCLs at all nodes except the reference node and obtain (n-1) linearly independent equations

Network equations using KCL Unknowns: Node Voltages: V2,V3, V4 and Ib4

Therefore the analysis is called Node Variable Analysis

No. of Unknowns: n-1 =4 Solve a system of linear integro-differential equations: C1d/dt (V-V4) + V4/R3 + V2-V3/R2 - V3/R4 = 0 -Ib4 - (V1-V2))/R1 -C1d/dt ( V-V4) = 0 C1d/dt (V-V4) -C3d/dt (V4-V3) + V4/R3 = 0 C2d/dt (V2-V3) + Ib4 - V4/R3 + V3/R4 = 0 Note: If (n-1) < b- (n-1) then it is advantageous to use nodal analysis as we need to solve less number of linearly independent equations

Node Variable Analysis:Matrix Representation C1dV/dt

0

1/R2

V/R1 + C1dV/dt

-1

1/R1

-1/R2-1/R4

0

-C1d/dt +1/R3

Ib4

C1d/dt

V2

= C1dV/dt

0

0

1

0

C2d/dt

C3d/dt

1/R4 + C2d/dt

1/R3 + C3d/dt

-1/R3

V3

V4

Note : There is no active current source. The voltage source V is equivalent to a current source Ib4 (unknown) with terminal voltage V (known)

Node Variable Analysis: Generalization

1

node j

C1 C2 R1 R2 L1 L2

Ikx

node x

Ikj

1/Rkj = (1/R1+1/R2+...) 1/Lkj = (1/L1+1/L2+...)

node k Ik (Active Source)

Ckj = C1+C2+...

Elements Connecting Nodes j and k

Current flowing out of node k due to voltage in node j= Vj*(1/R1 + 1/R2 + ...) + (1/L1+1/L2 + ...) Vjdt + (C1+C2 +..)dVj dt = (1/Rkj + 1/Lkjbkj dt + Ckjd/dt)Vj = bkjVj bkj: symbol to summarize the operation on Vj

Loop Variable Analysis: Generalization The general form of KCL L bkjVj=Ik , Ik is the active current source connected to node k j=1 General form of KCL for N nodes L bkjVj=Ik , k =1,....,N j=1 Node 1 => Node 2 => Vector Equation: Node N =>

I1

Operator of I1 I2 I3 VN b11 b12 b13 ---- b1L V1

I2

V2

IN

= ---

--- ---

bL1 ---

---- ---

--- --- bLL VN

Node Variable Analysis: Identify the operators V/R1 + C1dV/dt

-1

-V/R1

0 =

0

0

1/R1 =b12 -1/R2-1/R1-C2d/dt =b22 1/R2 =b32

1/R2 =b23

-1/R2-1/R4-C3d/dt =b33

C1d/dt =b14

Ib4

0 =b24

V2

C3d/dt =b34

V3

0 C3d/dt -1/R3-(C3+C1)d/dt V4 =b42 =b43 =b44 Note : There is no active current source. The voltage source V is equivalent to a current source Ib4 (unknown) with terminal voltage V (known) -C1d/dt

0

0 =b13

Apply KCL at each node: Formulation by observation C1 R1 1 b4

4 b7 C3

b6

R2

2 b1

KCL at Node 1: -Ib4 - (V-V2)/R1-C1d/dt (V1-V4) = 0

3

b5 R4 R3

C2

(V-V2)/R1 - C2d/dt (V2) - (V2-V3)/R2 = 0

V b2

b3

KCL at Node 2 :

b8

0 : Ref Node

Note: For a DC source dV/dt = 0 Even without identification of the trees it will be possible to formulate the network equations

KCL at Node 3: (V2-V3)/R2 -V3/R4 + C3d/dt (V4-V3) = 0 KCL at Node 4: C1d/dt(V-V4) - V4/R3 - C3d/dt (V4-V3) = 0

v1 v1+v2=v v2

i1

i2

i1+i2=i

Sources can be combined

v

R

v

R i i No Difference

R v(t)

v1(t)

i1(t)

i1(t) v/R

Source Transformation

R

L

v1(t)

i1(t) i=1/L vdt

v(t)

C v(t)

v1(t) i1(t)

v1(t)

i1(t)

v1(t) i1(t) i=Cdv/dt

C

Source Transformation

R1

L1

R1

R2

R2 v1

L1

v1

v1

Equivalent Networks

Network Functions

I V

I

One-Port Network

Port : A pair of terminals in which the current into one terminal equals the current out of other A one-port network is completely specified if voltage-current relationship at the terminals of the port is known. I

I I

10

5 I

10

Network Functions Two-Port Network : =>Defined by two pairs of voltage-current relationships =>The variables are V1,I1,V2,I2.

Dependent

=>Two dependent variables Two independent variables I1 V1

Two-Port Network

Independent

1.

V1,V2 z parameters

I1,I2

2.

I1,I2 y parameters

V1,V2

3.

V1,I2 I1,V2 h (hybrid) parameters

4.

V1,I1 V2,-I2 A,B,C,D parameters

I2 V2

Network Functions Mathematical description using dependent and independent variables I1=y11*V1+y12*V2 I2=y21*V1 + y22*V2 Short-Ckt. Admittance Definition of y parameters:

V1=z11*I1+z12*I2 V2=z21*I1 + z22*I2 Open-Ckt. Impedance Definition of z parameters: V1 z12 = I2

V1 z11 = I1

I2=0 Open-Circuit Parameters

V2 z21 = I1

I2=0

V2 z22 = I2

I1=0

I1 y11 = V1

V2=0

I1 y12 = V2

V1=0

Short- Circuit Parameters

I1=0

I2 y21 = V1

V2=0

I2 y22 = V2

V1=0

Network Functions Mathematical description using dependent and independent variables V1=A*V2 + B*-I2 I1= C*V2 + D*-I2

V1=h11*I1+h12*V2 I2= h21*I1 + h22*V2

Definition of h (hybrid) parameters: Definition of A,B,C,D parameters: V1 h11 = I1

V2=0 Short-Ckt

I2 h21 = I1

V2=0

V1 h12 = V2

A= I1=0

V1 V2

B=

Open_Ckt

I2=0 Open-Ckt

I2 h22 = V2

I1 V2

C= I1=0

V2=0

Short-Ckt D=

I2=0

-V1 I2

-I1 I2

V2=0

Network Functions Example: Find the open-circuit parameters for the T- circuit 2

V1=z11*I1+z12*I2 V2=z21*I1 + z22*I2

Transfer V2 z21 = I1

I2=0

V1 z12 = I2

I1=0

Driving Point I2=0

V2 z22 = I2

1

2

1

2

Rc I2 I1 Ra V1 V2 Rb 10

Definition of z parameters: V1 z11 = I1

7

I1=0

z11= Ra+Rb=12

Note: Z12=Z21 I2*Rb = 10 Reciprocal z12= I2 Network => z22 = Rb+Rc = 17 All passive networks I1*Rb z21 = = 10 I1

How do we obtain the z parameters of any two port (active or passive) network? A set of Node Equations: I1 = b11V1 + b12V2 + b13V3 +.........+ b1nVn I2 = b21V1 + b22V2 + b23V3 + ........+ b2nVn 0 = b31V1 + b32V2 + b33V3 + ........+ b3nVn ........................................................................ ........................................................................ 0 = bn1V1 + bn2V2 + bn3V3 + ....... + bnnVn Vector Equation: I= GV Solution: -1 V=G I=ZI

z21 Z= G -1 =

For passive network:  12 =  21 z12 = z21

z11

z12

z22

V1,V2 : terminal voltages V3,....,Vn : Node Voltages : dependent variables I1,I2, .... : Current Sources : independent Variables bjk : operator due to Vj on node k

 11  21  n1     12  22 ---------------------------  ---------------------------------- nn  2n  1n   

 ij = co-factor of bij  = determinant of G

Example: Open-circuit (Z parameters) of the Pi Circuit 1

V2

V1

2

I1=(GA+GC)V1-GCV2 I2=-GCV1+(GB+GC)V2

GC I1

GA

GB

1

I2 2

Delta-star(wye) Transformation: z12 = Rb = GC/ z22 = Rb+Rc = (GA+GC)/ => Rc = GA/ z11 = Ra+Rb = (GB+GC)/ => Ra = GB/

= GA*GB+GA*GC+GB*GC  11 = GB+GC  12= GC  21= GC

 22 = GA+GC

GB+GC z11= GA*GB+GB*GC+GC*GA GC z21= z12= GA*GB+GB*GC+GC*GA GA+GC z22= GA*GB+GB*GC+GC*GA

How do we obtain the y parameters of any two port (active or passive) network? A set of Loop Equations: V1 = a11I1 + a12I2 + a13I3 +.........+ a1nIn V2 = a21I1 + a22I2 + a23I3 + ........+ a2nIn 0 = a31I1 + a32I2 + a33V3 + ........+ a3nIn ........................................................................ ........................................................................ 0 = an1I1 + an2I2 + In3I3 + ....... + annIn Vector Equation: V= RI Solution: -1 I=R V=YI

y21 Y= R -1 =

For passive network:  12 =  21 y12 = y21

y11

y12

y22

I1,I2 : Port input currents I1,I2,I3,....,In : Loop Currents : dependent variables V1,V2, .... : Voltage Sources : independent Variables ajk : operator due to Vj on node k

 11  21  n1     12  22 ---------------------------  ---------------------------------- nn  2n  1n   

 ij = co-factor of aij  = determinant of R

Network Functions Example: Find the short-circuit parameters for the bridged T- circuit 5

 = 12(17*14 - 7*7) -(10)(10*14 - 7*-2) +(-2)(10*7 - (17)*-2) = 520

I3 1 V1 1

2 I1

7 10 I2

2 V2

11 =17*14 - 7*7=189

2 y11=

 11

189 = 520 = 0.363

 V1 = (10+2)I1 +10I2 - 2I3  21 -154 V2 = 10I1 +(10+7)I2 +7I3 y12= = 520 = -0.296 =y12  0 = -2I1+7I2 +(5+7+2)I3  22 164 y22= = 520 = 0.315 12 10 -2  R = 10 17 7 When y11=y22 or z11=z12, the network -2 7 14 is symmetrical

The h parameters : comparison Extremely useful for describing bipolar junction transistor circuits V1= Vbe = Base to emitter voltage I2 = Ic = Collector current I1= Ib = Base current Definition of h (hybrid) parameters: V2 = Vce = Collector to emitter voltage I1 y11 = => h11= 1/y11 V1 V1 V1 h12 = h11 = V2=0 V2 I1 I1=0 V2=0 V2 => h22 = 1/z22 z22 = Short-Ckt I2 Open_Ckt I1=0 I2 I2 V1 h21 = h22 = => h12 = z12/z22 z12 = I1 V2 I2 V2=0 I1=0 I1=0 I2 => h21 = y21/y11 y21 = V1 V2=0 V1=h11*I1+h12*V2 I2= h21*I1 + h22*V2

Example: h parameters of the Pi Circuit 1

V1 I2

GC I1

GA

2 h11 = 1/(GA+GC) V2

GB

1

2

V1 h11 = I1

V1 h12 = V2

I2 h21 = I1

I2 h22 = V2

V2=0 Short-Ckt

V2=0

h21 = -GC/(GA+GC) h12 = GC/(GA+GC) h22 = GB + GC*GA/(GC+GA)

I1=0 Open_Ckt

I1=0

Note: h12=-h21 => Reciprocity Condition

The A,B,C,D parameters : comparison Extremely useful for describing transmission network Transmission engineers convention V1=A*V2 + B*-I2 I1= C*V2 + D*-I2 V1, I1 are sending end voltage and current variables A B <= Transmission V2, I2 are receiving end voltage C D Matrix and current variables Definition of A,B,C,D parameters: A=

V1 V2

B=

I2=0 Open-Ckt C=

I1 V2

V2=0

Short-Ckt D=

I2=0

-V1 I2

-I1 I2

V2=0

V1 z11 = I1 V2 z21 = I1

I2=0 => A =

=> C = I2=0

z11 z21 1 z21

The A,B,C,D parameters : comparison Extremely useful for describing transmission network Transmission engineers convention V1=A*V2 + B*-I2 I1= C*V2 + D*-I2 V1, I1 are sending end voltage and current variables A B <= Transmission (T) V2, I2 are receiving end voltage C D Matrix and current variables Definition of A,B,C,D parameters: I1 -y11 -V1 V1 y11 = => D = B= A= V1 y21 I2 V2 V2=0 V2=0 I2=0 Open-Ckt Short-Ckt I2 -1 -I1 I1 y21 = => B = D= C= V1 y21 I2 V2 V2=0 V2=0 I2=0

Example: T parameters of the Pi Circuit 1 I1

2

I2

GC

I1 V1

GA

V1

GB

V2

1 A=

2 V1 V2

B=

I2=0 Open-Ckt C=

I1 V2

V2=0

Short-Ckt D=

I2=0

-V1 I2

-I1 I2

V2=0

V2

1

2

GC GA

GB

1

Ix 2

GB+GC 1/GB+1/GC A= = GC 1/GB 1/GA Ix = I * 1/GA + 1/GB + 1/GC V2 = Ix*1/GB = GA*GB +GB*GC+GC*GA = GC GA*GB+GB*GC+GC*GA C= GC

Example: T parameters of the Pi Circuit 1 I1

I2

GC GA

V1

2

GB

I2 1

2 I1

V2

V1

GC GA

1

1 A=

2 V1 V2

B=

I2=0 Open-Ckt C=

I1 V2

V2=0

Short-Ckt D=

I2=0

-V1 I2

-I1 I2

2

I2 = - V1*GC 1 B= GC I2 = -

1/GA I1 1/GA+1/GC

GC+GA GC Note : AD-BC = 1 Equivalent condition for reciprocity D=

V2=0

shorted

GB

Relationship Between Two Port Parameters The z and y relationships can be obtained by using matrix notation z11 z12 y11 y12 Z= ; I = YV ; V = ZI Y= z21 z22 y21 y22 V = ZI = ZYV

Therefore, Y = Z

1

y22 = z11/ z

z11 = y22/ y z22 = y11/ y

y12 = -z12/ z y21 = -z21/ z

z12 = -y12/ y z21 = -y21/ y

y11 = z22/ z

z = z11*z22-z12*z21

y = y11*y22-y12*y21

h and ABCD parameters can be expressed in terms of y and z parameters

Interconnection of Two Port Parameters I1 Na

V1

I2a

I2b

V2a

V2b

I2 Nb

V2

Cascade connection of Two Ports A

B

Aa

Ba

Ab

Bb

Ca

Da

Cb

Db

= C

D

The transmission matrix of overall two port network is simply the product of the transmission matrices of the individual two-ports

Interconnection of Two Port Parameters

V2a

Na

V1a

V1a=V1b = V1 V2a = V2b = V2 I1 = I1a + I1b I2 = I2a + I2b

I2a I2 1:1

I1a

I1

I1a

I1 I1b V1b

I2b Nb

I1b Ib =

Ia =

I= I2

I2a

I2b

V2b Ib =

Va =

Parallel Connection of two ports V = V2 I = Ia + Ib = YaVa + YbVb = (Ya+Yb)V Y = (Ya+Yb)

V1

V1

V1

V2

V2

Interconnection of Two Port Parameters I1

V1a

Na

V2a

V1 I1b V1b

V1a +V1b = V1 V2a + V2b = V2 I1 = I1a = I1b I2 = I2a = I2b

I2a I2 1:1

I1a

I2b Nb

V2 I1 I1 I1 Ib = Ia = I= I2 I2 I2

V2b

Series Connection of two ports

V2 V = Va + Vb = ZaIa + ZbIb = (Za+Zb)I Z = (Za+Zb)

Ib =

Va =

V=

V1b

V1a

V1

V2a

V2b

Interconnection of Two Port Parameters 1. When the two ports are connected in parallel, find the y parameters first, and, from the y parameters derive the other two-port parameters 2. When two-ports are connected in series, it is usually easiest to find the z parameters 3. When two ports are connected in tandem, it is generally easiest to find the transmission matrix.

Related Documents

Signals And Networks
June 2020 3
Signals
May 2020 22
Signals And System.docx
November 2019 31
Signals
November 2019 35
Ch01 - Signals And Spectra
November 2019 24