Thevenin's Theorem and Norton's Theorem To be replaced
LOAD i
P
Network A
v
Network B
Q
Two networks to describe Thevenin's theorem
Thevenin's Theorem : Characteristics of Network A To be replaced P
Network A Q
1. Linear elements 2. Sources : dependent (controlled) or independent 3. Initial conditions on passive elements 4. No magnetic or controlled-source coupling to network B
Thevenin's Theorem : Characteristics of Network A Nonlinear Elements
Linear Elements
i L
R
C
v
T
D
M
Yes Independent Sources
No Controlled Sources
v1
i
i1 Yes
v Yes
Thevenin's Theorem : Characteristics of Network A M L1 Vg
C1
Vo
L2
R C2
(1-D)(Vg-Vo) -D(Vg-Vo) Network A
M
M L1
P
C1
Network B L2
R C2
Vg
(1-D)(Vg-Vo) -D(Vg-Vo) Q
NO
Vo
Thevenin's Theorem : Characteristics of Network A L1 Vg
C1
Vo
L2
R C2
(1-D)(Vg-Vo) -D(Vg-Vo) Network A
M
M L1
P
C1
Network B L2
R C2
Vg (1-D)(Vg-Vo) Q
NO
Vo
-D(Vg-Vo)
Thevenin's Theorem: Network A is replaced by C and Vth LOAD M
P
Network C Vth
Network B
v Q
Network A
i
Thevenin's Theorem: How to find Vth? LOAD P Vth
Network A Q Open Ckt. Voltage
Disconnect
Network B
Thevenin's Theorem: How to determine C?
P Network A
1. Set Initial Conditions to Zero 2. Independent Sources Turned Off 3. Dependent Sources are Operating
Q P Network C M
Determination of Vth : An Example Vcc Rc Ic
R1 B IB R2
IB+IC Re
Rc Ic
R1 B
Vcc
N
Network B
Network A
Vth
R2
B
Vcc IB+IC Re
Vth=Vcc[R2/(R1+R2)] Simplification of the base circuit
Thevenin's Theorem : Characteristics of Network B Nonlinear Elements
Linear Elements
i L
R
C
v
T
D
M
Yes Independent Sources
Yes Controlled Sources
v1
i
i1 Yes
v Yes
Determination of Network C : Example I Note : No initial condition and No dependent source Network C
Network A
Vcc
R1
R1
B
B
R2
N
R2
Shorted
M
Simplification of the base circuit
Network C B R1 R2 M
Rb=(R1||R2)
Application of Thevenin's Theorem: An Example Network B
Vcc Rc Ic
R1 B IB R2
Rb=(R1||R2) Rb B M
IB+IC Re N
Rc Ic Vcc IB+IC
Vth
Vth=Vcc[R2/(R1+R2)]
Simplification of the base circuit
Re N
Application of Thevenin's Theorem: An Example Network B
Vcc
Linear Model Rc Ic
Rc Ic
R1 B IB R2
IB IB+IC Re
Vth
IB Rb B
Vth=Vcc[R2/(R1+R2)] Rb=(R1||R2) Simplification of the base circuit N
Vcc IB+IC Re N
Application of Thevenin's Theorem: Example II Common Source Amplifier : Small Signal Gain Vdd
Cb
vi
vo Av= vi
RL D Id
R1 G
S
R2
Is Rs
N
Vo=VO +vo
Application of Thevenin's Theorem: Example II Linear Small Signal Equivalent Circuit of the CS Amplifier D Cb
G
gm vgs
rd vo
S
R2 R1 vi
Rs N
RL
Application of Thevenin's Theorem: Example II Simplified Small Signal Equivalent Circuit of CS Amplifier Network A G
D
gm vgs S
vi
Rs N
Network B M Network C D
rd vo
Vth RL
RL N
Application of Thevenin's Theorem: Example II Determination of Vth Network A G
D
gm.vgs S
vi
Rs N
rd Vth=-(gm.vgs)rd =-(gm.rd)vi
Application of Thevenin's Theorem: Example II Determination of Netwok C Network C G
D
gm.vgs
rd
S Shorted
Rs M
M Rth
D
Application of Thevenin's Theorem: Example II Determination of Rth D vx=(ix-gm.vgs)rd-vgs gm.vgs
ix rd
S Rs
vgs
G,M
vx
vgs=-ix.Rs Therefore, vx=ix.rd+gm.ix.Rs.rd +ix.Rs vx Rth= ix =rd+Rs(1+gm.rd)
Application of Thevenin's Theorem: Example II The equivalent circuit of the CS amplifier Rth M vi
rd
Rs(1+ )
=gm. rd D
RL vo
Vth
N
Application of Thevenin's Theorem: Example III RLC Network : Zero Initial Conditions on L and C Network B Network A C L C L R vo vi
RL
R vi L
Zth = 1/sC + sL||R Vth=vi R R+sL
Vth
C R
Zth
Norton's Theorem: Network A is replaced by C and Ith LOAD Network A M
Ith
P
Network C
i Network B
v Q
P
Network C as in Thevenin's Theorem
Q
Ith =>Norton's Theorem is dual of Thevenin's Theorem
Network A
v1
B
R1 Vg
C
v2
D
R2
Loop v3 Direction R3
A
Fig. 1 One-loop resistive network to which Kirchoff's Voltage Law is applied
− vg + v1 + v2 + v3 = 0 v1 + v2 + v3 = vg
Fig.2 Ground
b
ia
c
i1
1
i2
v2
v1
R2
R1
vg d i4
i3
1 ib
a Fig. 3 i1+i2=i3+i4
Fig. 4(a)
1 vg 1 Equivalent Network
Req
Fig. 4(b)
ia 1
R1
R2
Rn
vg 1 Fig. 5 n R eq = R 1 + R 2 + ........... + R n = j=1 Rj
Series Connected Resistive Network
ib
ia 1
i1
va L1
i2 L2
vg
Leq
1 Fig. 5(a)
Fig. 5(b) Leq= 1/L1+1/L2
Equivalent Inductive One-Port Network
Number of Network Equations Formulation: 3i1 + 2i2 - i3=4 (1) -i1 + 5i2 + 3i3 =-2 (2) i1 + 12 i2 + 5i3 = 0 (3) Solve: Ax=b
e'
i3 No solution
f'
e Unique Solution
g'
g
Note: 2*(2)+(1)=(3) i2
i1 family of solutions f
* Equations must be linearly independent * Formulate the network using minimum no of variables
How to formulate the network using linearly independent equations? => How many unknowns in a network with 'n' nodes and 'b' branches? C1
b6
4 b7 C3
2
R2
R1 1 b4
b1
b5
3 RL
R3
C2 b2
b3
0 : Ref Node n=5 and b=8
b8
=> 2*b unknowns (branch voltage and branch current) => effectively b unknowns example : if voltage across a capacitor is known current can be found out from the expression CdVc/dt = Ic
How many KCLs and how many KVLs?
C1
b6
4 b7 C3
2
R2
R1 11 b4
b1
b5
V
b2
3
example : n-1=4 => 4 KCLs b-(n-1)=8-4=4 => 4 KVLs
RL R3
C2
(1) (n-1) nodes => (n-1) KCL equations (2) b-(n-1) KVL equations must be used
b3
0 : Ref Node
note: easy to apply KCL but difficult to apply KVL because there are so many b8 loops (b4,b1,b2), (b2,b5,b8), (b3,b7,b8), (b4,b1,b5,b8), (b4,b6,b3), (b4,b6,b7,b8), (b1,b6,b7,b5)
Problem: With a wrong choice the equations will be linearly dependent
How to define voltages and currents in KCL and KVL? VC3 C1
b6
4 b7 C3
2
R2
R1 11 b4
b1
b5
Node Voltage : Voltage of a node with respect to the reference node (0) 3 RL
R3
C2 b2
Example : V4 (i.e. voltage across R1 in branch b3)
b3
0 : Ref Node
Branch Voltage : Voltage across a branch of the network b8 Example : VC3 (i.e. voltage across branch b7)
Note: Vc3 = V4-V3 => KVL It is enough if we know the node voltages and vice versa
How to define voltages and currents in KCL and KVL?
C1 1
4 b7 C3
b6
R1
R2
2 b1
Loop Current : Current in a loop of the network 3
b5
b4 i1 C2 V Ib2 b2
R3 b3
0 : Ref Node
i2
Example : i2 (i.e. current in loop consisting of branches b2,b5,b8)
RL Branch Current : Current in a branch of the network b8 Example : Ib2 (i.e. current in branch b2, through capacitor C1)
Note: Ib2 = i1-i2 => KCL It is enough if we know the loop currents and vice versa
Formulate network equations with explicit application of KVL C1 4 b7 C3 4 b7 b6 b6 R1 1 b4
R2
2 b1
b5
3
b1 b4
V b2
1
RL R3
C2
b3
b8
0 : Ref Node Choice of variables: Loop Currents and Branch Voltages
3
2 b5 b2 b3 0 : Ref Node Graph of the network
Independent Equations: => Draw a graph : Figure with connection information
b8
Formulate network equations with explicit application of KVL 4 b7
b6 1
b1 b4
b6 3
2
0 : Ref Node Graph of the network
b8
3
b1 b4
b2
b7
2
1
b5
b3
4
Tree: (b1,b2,b5,b7)
b2
b5 b3
b8 Co-tree: (b4,b6,b3,b8)
0 : Ref Node A tree of the network
Construct a tree => A connected graph spanning all nodes that does not have a circuit. A tree has n nodes and (n-1) branches. => Graph has more than one tree
Formulate network equations with explicit application of KVL 4
b6
b7 3
2
1
b1 b4
Tree: (b1,b2,b5,b7)
b2
=>The co-tree has b-(n-1) branches
b5 b3
b8 Co-tree: (b4,b6,b3,b8)
0 : Ref Node Tree of the network
Every branch of the co-tree (known as chord) is responsible for \ formation of a loop (circuit). This is known as fundamental circuit. Example : (b6 , b1,b5,b7) forms a fundamental circuit No of fundamental circuits = no of chords = b-(n-1)
If we apply KVL to these fundamental circuits then the equations are linearly independent
Formulate network equations with explicit application of KVL b6 i3 2 i1 b1
1 b4
Tree: (b1,b2,b5,b7)
b2
4
b7 i4
C1 3
b5 i2 b3 b8 Co-tree: (b4,b6,b3,b8)
KVLs: 0 : Ref Node =>(b4: chord) V=Vb1+Vb2 =>(b8: chord) Vb2=Vb5+Vb8 Vb6=Vb1+Vb5-Vb7 =>(b6: chord) Vb7=-Vb3-Vb2+Vb5 =>(b3: chord)
R1 1 b4
4 b7 C3
b6
R2
2 b1
3
b5 R3
C2 V b2
b3
b8
0 : Ref Node Original Network 7 voltages and current in V are unknown (7+1=8)
Formulate network equations with explicit application of KVL C1 R1 1 b4
4 b7 C 3
b6
R2
2 b1
V-I relationship of the elements 3
b5
R4 R3
C2 V b2
b3
b8
b4
4 b7 b6 I4 I3 2 b1 b5 I1 b3 I2 b2 b8
0
Vb2=1/C2 Ib2 dt Vb3=Ib3*R3 Vb4=V
0 : Ref Node Original Network
1
Vb1=Ib1*R1
Vb5=Ib5*R2 3
Vb6=1/C1 Ib6 dt Vb7=1/C3 Ib7 dt Vb8=R4*Ib8 Expressed in terms of 8 (branch) currents
Formulate network equations using KVL Apply KCL at b1:
4
1 b4
b7 b6 I4 I3 2 b1 b5 I1 b3 I2 b2 b8
Ib1= (I1-I3)
3
Apply KCL at b2: Ib2=I1-I2+I4 Apply KCL at b5: Ib5=I2-I3-I4 Apply KCL at b7:
Ib4
0 Note: Ib4=-I1 ; Ib6=I3; Ib8=I2; Ib3=I4
Ib7=I4+I3 => enough if we know the loop currents => chords
Formulate network equations using KVL: All the equations KCLs: Ib1= (I1-I3) Ib2=I1-I2+I4 Ib5=I2-I3-I4 Ib7=I4+I3 Ib4=-I1 ; Ib6=I3; Ib8=I2; Ib3=I4 KVLs: =>(b4: chord) V=Vb1+Vb2 =>(b8: chord) Vb2=Vb5+Vb8 Vb6=Vb1+Vb5-Vb7 =>(b6: chord) Vb7=-Vb3-Vb2+Vb5 =>(b3: chord)
Elements: Vb1=Ib1*R1 Vb2=1/C2 Ib2 dt Vb3=Ib3*R3 Vb4=V Vb5=Ib5*R2 Vb6=1/C1 Ib6 dt Vb7=1/C3 Ib7 dt Vb8=Ib8*R4
Network equations using KVL Unknowns: Loop Currents: I1,I2,I3 and I4
Therefore the analysis is called Loop Variable Analysis
V=Vb1+Vb2 => V = (I1-I3)R1+ 1/C2 (I1-I2+I4)dt Vb2=Vb5+Vb8 => 1/C2 (I1-I2+I4)dt = (I2-I3-I4)R2+I2*R4 Vb7=-Vb3-Vb2+Vb5 => 1/C3 (I4+I3)dt=-I4*R3-1/C2 (I1-I2+I4)dt+(I2-I3-I4)R2 Vb6=Vb1+Vb5-Vb7 1/C1 I3dt = (I1-I3)R1 + (I2-I3-I4)R2 -1/C3 (I4+I3)dt
Loop Variable Analysis: Matrix Representation V
R1+1/C2 dt
-1/C2 dt
-R1
-1/C2 dt
I1
0
-1/C2 dt
1/C2 dt
-R2
-R2 -1/C2 dt
I2
+R2+R4
= 0 0
-R1
-R2
1/C2 dt -1/C2 dt -R2
1/C3 dt +1/C1 dt
R2
+R1+R2
+1/C3 dt
1/C3 dt +1/C2 dt dt +R2 1/C2 +R3+R2
I3 I4
Loop Variable Analysis: Generalization I1
I4
I2 I3
IL
Graph of a network with L independent loop currents
Rkj = total resistance common to loops k and j Lkj = Ckj =
Voltage drop in loop k produced by current Ij Rkj*Ij+Lkj*dIj/dt +1/Ckj Ij dt = (Rkj+Lkj d/dt +1/Ckj dt)Ij =akjIj akj: symbol to summarize the operation on Ij
Loop Variable Analysis: Generalization The general form of KVL L akjIj=Vk , Vk is the active voltage source in loop k j=1 General form of KVL for L loop L akjIj=Vk , k =1,....,L j=1 Loop 1 => Loop 2 => Vector Equation: Loop L =>
V1
Operator on I1 I2 I3 I4 a11 a12 a13 ---- a1L I1
V2
I2
VL
= ---
--- ---
aL1 ---
---- ---
--- --- aLL IL
Loop Variable Analysis: Matrix Representation V
R1+1/C2 dt =a11
-1/C2 dt =a12
0
-1/C2 dt
1/C2 dt
=a21
+R2+R4 =a22
= 0 0
-R1 =a31
-R2 =a32
1/C2 dt -1/C2 dt -R2 =a41
-R1 =a13 -R2 =a23
-1/C2 dt =a14
I1
-R2 -1/C2 dt =a24
I2
1/C3 dt +1/C1 dt
R2
+R1+R2
+1/C3 dt
1/C3 dt +1/C2 dt 1/C2 dt +R2 +R3+R2
Solution : Find the inverse of the matrix (square: b-(n-1)*b-(n-1)) May use Gauss Elimination Method : A process called trangularization
I3 I4
Formulate network equations with explicit application of KCL C1 4 b7 C3 4 b7 b6 b6 R1 1 b4
R2
2 b1
b5
3
b1 b4
V b2
1
RL R3
C2
b3
b8
0 : Ref Node Choice of variables: Node Voltages and Branch Currents
3
2 b5 b2 b3 0 : Ref Node Graph of the network
Independent Equations: => Draw a graph : Figure with connection information
b8
Formulate network equations with explicit application of KCL 4 b7
b6 1
b1 b4
b6 3
2
0 : Ref Node Graph of the network
b8
3
b1 b4
b2
b7
2
1
b5
b3
4
Tree: (b1,b2,b5,b7)
b2
b5 b3
b8 Co-tree: (b4,b6,b3,b8)
0 : Ref Node A tree of the network
Construct a tree => A connected graph spanning all nodes that does not have a circuit. A tree has n nodes and (n-1) branches. => Graph has more than one tree
Formulate network equations with explicit application of KCL 4
b6 1
2
b7
=>The tree has (n-1) branches 3
Every branch of the tree b5 is responsible for the b3 formation of a cut-set. This b2 b4 b8 is known as fundamental cut-set. Tree: Co-tree: (b1,b2,b5,b7) (b4,b6,b3,b8) A cut-set is the set of branches whose removal disconnects the graph 0 : Ref Node Example : (b1 ,b4, b6) forms a cut-set Tree of the network b1
No of fundamental cut-sets = no of branches in a tree = (n-1) If we apply KCL to these fundamental cut-sets then the equations are linearly independent
Identify the fundamental cut-sets to apply KCL 4
b7
b1 b4
b6
This node is disconnected
3
1
b5
0 This is a fundamental cut-set
b8 0
b6
b6
b8 (b1,b6,b4)
4 b7
b1
b7
b3
0
2
1
4
3 b5
0
b3
b7
2
b2
b4
2
b2
b1 2
1
3 (b5,b3,b8,b7) 4
2
1
4
4
b6
3 4
b5
3
1 b3
b4
b2 b3
(b7,b3,b6) 0
0
b8 (b2,b3,b4,b8)
Formulate network equations with application of KCL 4 b6 C1 C3 4 b7 b6 1 R2 R1 2 2 3 b5 1 b1 b5 b3 b4 RL b8 R3 C2 V b2 b3 b8 0 Cut-set of b5: Ib6+Ib3+Ib5-Ib8=0 0 : Ref Node Conservation of Charges I1
A In I1+ I2 + ... + In =0
B
Cut-set of b7:
-Ib4-Ib1-Ib6=0 Ib6-Ib7+Ib3=0
Cut-set of b2:
Ib2+Ib4-Ib3+Ib8=0
Cut-set of b1:
3
V-I relationship of the elements C1 R1 1 b4
4 b7 C 3
b6
R2
2 b1
In terms of branch voltage and branch currents 3
b5
R4
Ib1=Vb1/R1
R3
C2
Ib2=C2 dVb2/dt
V b2
b3
0 : Ref Node Original Network
b8
Ib3=Vb3/R3 Vb4=V ; Ib4=? Ideal voltage source Ib5=Vb5/R2 Ib6=C1dVb6/dt Ib7=C3dVb7/dt Ib8=Vb8/R4 Expressed in terms of 8 (branch) voltages
Formulate network equations using KCL
4
b6 Ib6 1
b7 Ib7
b1
Ib3
b3
b2
b4
Vb1= (V1-V2)
3
2 Ib1
Apply KVL at all branches:
Ib4
0
Ib5
b5 Ib8
b8
Vb2=V2-V3 Vb3= V4 Vb4=V1 Vb5=V2-V3 Vb6=V1-V4 Vb7=V4-V3 Vb8=V3 => enough if we know the node voltages
Formulate network equations using KCL: All the equations KCLs: Ib6+Ib3+Ib5-Ib8=0
Elements:
-Ib4-Ib1-Ib6=0
Ib2=C2 dVb2/dt
Ib6-Ib7+Ib3=0 Ib2+Ib4-Ib3+Ib8=0
Ib1=Vb1/R1
Ib3=Vb3/R3 Vb4=V ; Ib5=Vb5/R2
V2,V3,V4 and Ib4
Ib6=C1dVb6/dt
Note: V1 is given (V1=V) Ib7=C3dVb7/dt However, Ib4 is unknown Ib8=Vb8/R4
KVLs: Vb1= (V1-V2) Vb2=V2-V3 Vb3= V4 Vb4=V1 Vb5=V2-V3 Vb6=V1-V4 Vb7=V4-V3 Vb8=V3
Note: You can write KCLs at all nodes except the reference node and obtain (n-1) linearly independent equations
Network equations using KCL Unknowns: Node Voltages: V2,V3, V4 and Ib4
Therefore the analysis is called Node Variable Analysis
No. of Unknowns: n-1 =4 Solve a system of linear integro-differential equations: C1d/dt (V-V4) + V4/R3 + V2-V3/R2 - V3/R4 = 0 -Ib4 - (V1-V2))/R1 -C1d/dt ( V-V4) = 0 C1d/dt (V-V4) -C3d/dt (V4-V3) + V4/R3 = 0 C2d/dt (V2-V3) + Ib4 - V4/R3 + V3/R4 = 0 Note: If (n-1) < b- (n-1) then it is advantageous to use nodal analysis as we need to solve less number of linearly independent equations
Node Variable Analysis:Matrix Representation C1dV/dt
0
1/R2
V/R1 + C1dV/dt
-1
1/R1
-1/R2-1/R4
0
-C1d/dt +1/R3
Ib4
C1d/dt
V2
= C1dV/dt
0
0
1
0
C2d/dt
C3d/dt
1/R4 + C2d/dt
1/R3 + C3d/dt
-1/R3
V3
V4
Note : There is no active current source. The voltage source V is equivalent to a current source Ib4 (unknown) with terminal voltage V (known)
Node Variable Analysis: Generalization
1
node j
C1 C2 R1 R2 L1 L2
Ikx
node x
Ikj
1/Rkj = (1/R1+1/R2+...) 1/Lkj = (1/L1+1/L2+...)
node k Ik (Active Source)
Ckj = C1+C2+...
Elements Connecting Nodes j and k
Current flowing out of node k due to voltage in node j= Vj*(1/R1 + 1/R2 + ...) + (1/L1+1/L2 + ...) Vjdt + (C1+C2 +..)dVj dt = (1/Rkj + 1/Lkjbkj dt + Ckjd/dt)Vj = bkjVj bkj: symbol to summarize the operation on Vj
Loop Variable Analysis: Generalization The general form of KCL L bkjVj=Ik , Ik is the active current source connected to node k j=1 General form of KCL for N nodes L bkjVj=Ik , k =1,....,N j=1 Node 1 => Node 2 => Vector Equation: Node N =>
I1
Operator of I1 I2 I3 VN b11 b12 b13 ---- b1L V1
I2
V2
IN
= ---
--- ---
bL1 ---
---- ---
--- --- bLL VN
Node Variable Analysis: Identify the operators V/R1 + C1dV/dt
-1
-V/R1
0 =
0
0
1/R1 =b12 -1/R2-1/R1-C2d/dt =b22 1/R2 =b32
1/R2 =b23
-1/R2-1/R4-C3d/dt =b33
C1d/dt =b14
Ib4
0 =b24
V2
C3d/dt =b34
V3
0 C3d/dt -1/R3-(C3+C1)d/dt V4 =b42 =b43 =b44 Note : There is no active current source. The voltage source V is equivalent to a current source Ib4 (unknown) with terminal voltage V (known) -C1d/dt
0
0 =b13
Apply KCL at each node: Formulation by observation C1 R1 1 b4
4 b7 C3
b6
R2
2 b1
KCL at Node 1: -Ib4 - (V-V2)/R1-C1d/dt (V1-V4) = 0
3
b5 R4 R3
C2
(V-V2)/R1 - C2d/dt (V2) - (V2-V3)/R2 = 0
V b2
b3
KCL at Node 2 :
b8
0 : Ref Node
Note: For a DC source dV/dt = 0 Even without identification of the trees it will be possible to formulate the network equations
KCL at Node 3: (V2-V3)/R2 -V3/R4 + C3d/dt (V4-V3) = 0 KCL at Node 4: C1d/dt(V-V4) - V4/R3 - C3d/dt (V4-V3) = 0
v1 v1+v2=v v2
i1
i2
i1+i2=i
Sources can be combined
v
R
v
R i i No Difference
R v(t)
v1(t)
i1(t)
i1(t) v/R
Source Transformation
R
L
v1(t)
i1(t) i=1/L vdt
v(t)
C v(t)
v1(t) i1(t)
v1(t)
i1(t)
v1(t) i1(t) i=Cdv/dt
C
Source Transformation
R1
L1
R1
R2
R2 v1
L1
v1
v1
Equivalent Networks
Network Functions
I V
I
One-Port Network
Port : A pair of terminals in which the current into one terminal equals the current out of other A one-port network is completely specified if voltage-current relationship at the terminals of the port is known. I
I I
10
5 I
10
Network Functions Two-Port Network : =>Defined by two pairs of voltage-current relationships =>The variables are V1,I1,V2,I2.
Dependent
=>Two dependent variables Two independent variables I1 V1
Two-Port Network
Independent
1.
V1,V2 z parameters
I1,I2
2.
I1,I2 y parameters
V1,V2
3.
V1,I2 I1,V2 h (hybrid) parameters
4.
V1,I1 V2,-I2 A,B,C,D parameters
I2 V2
Network Functions Mathematical description using dependent and independent variables I1=y11*V1+y12*V2 I2=y21*V1 + y22*V2 Short-Ckt. Admittance Definition of y parameters:
V1=z11*I1+z12*I2 V2=z21*I1 + z22*I2 Open-Ckt. Impedance Definition of z parameters: V1 z12 = I2
V1 z11 = I1
I2=0 Open-Circuit Parameters
V2 z21 = I1
I2=0
V2 z22 = I2
I1=0
I1 y11 = V1
V2=0
I1 y12 = V2
V1=0
Short- Circuit Parameters
I1=0
I2 y21 = V1
V2=0
I2 y22 = V2
V1=0
Network Functions Mathematical description using dependent and independent variables V1=A*V2 + B*-I2 I1= C*V2 + D*-I2
V1=h11*I1+h12*V2 I2= h21*I1 + h22*V2
Definition of h (hybrid) parameters: Definition of A,B,C,D parameters: V1 h11 = I1
V2=0 Short-Ckt
I2 h21 = I1
V2=0
V1 h12 = V2
A= I1=0
V1 V2
B=
Open_Ckt
I2=0 Open-Ckt
I2 h22 = V2
I1 V2
C= I1=0
V2=0
Short-Ckt D=
I2=0
-V1 I2
-I1 I2
V2=0
Network Functions Example: Find the open-circuit parameters for the T- circuit 2
V1=z11*I1+z12*I2 V2=z21*I1 + z22*I2
Transfer V2 z21 = I1
I2=0
V1 z12 = I2
I1=0
Driving Point I2=0
V2 z22 = I2
1
2
1
2
Rc I2 I1 Ra V1 V2 Rb 10
Definition of z parameters: V1 z11 = I1
7
I1=0
z11= Ra+Rb=12
Note: Z12=Z21 I2*Rb = 10 Reciprocal z12= I2 Network => z22 = Rb+Rc = 17 All passive networks I1*Rb z21 = = 10 I1
How do we obtain the z parameters of any two port (active or passive) network? A set of Node Equations: I1 = b11V1 + b12V2 + b13V3 +.........+ b1nVn I2 = b21V1 + b22V2 + b23V3 + ........+ b2nVn 0 = b31V1 + b32V2 + b33V3 + ........+ b3nVn ........................................................................ ........................................................................ 0 = bn1V1 + bn2V2 + bn3V3 + ....... + bnnVn Vector Equation: I= GV Solution: -1 V=G I=ZI
z21 Z= G -1 =
For passive network: 12 = 21 z12 = z21
z11
z12
z22
V1,V2 : terminal voltages V3,....,Vn : Node Voltages : dependent variables I1,I2, .... : Current Sources : independent Variables bjk : operator due to Vj on node k
11 21 n1 12 22 --------------------------- ---------------------------------- nn 2n 1n
ij = co-factor of bij = determinant of G
Example: Open-circuit (Z parameters) of the Pi Circuit 1
V2
V1
2
I1=(GA+GC)V1-GCV2 I2=-GCV1+(GB+GC)V2
GC I1
GA
GB
1
I2 2
Delta-star(wye) Transformation: z12 = Rb = GC/ z22 = Rb+Rc = (GA+GC)/ => Rc = GA/ z11 = Ra+Rb = (GB+GC)/ => Ra = GB/
= GA*GB+GA*GC+GB*GC 11 = GB+GC 12= GC 21= GC
22 = GA+GC
GB+GC z11= GA*GB+GB*GC+GC*GA GC z21= z12= GA*GB+GB*GC+GC*GA GA+GC z22= GA*GB+GB*GC+GC*GA
How do we obtain the y parameters of any two port (active or passive) network? A set of Loop Equations: V1 = a11I1 + a12I2 + a13I3 +.........+ a1nIn V2 = a21I1 + a22I2 + a23I3 + ........+ a2nIn 0 = a31I1 + a32I2 + a33V3 + ........+ a3nIn ........................................................................ ........................................................................ 0 = an1I1 + an2I2 + In3I3 + ....... + annIn Vector Equation: V= RI Solution: -1 I=R V=YI
y21 Y= R -1 =
For passive network: 12 = 21 y12 = y21
y11
y12
y22
I1,I2 : Port input currents I1,I2,I3,....,In : Loop Currents : dependent variables V1,V2, .... : Voltage Sources : independent Variables ajk : operator due to Vj on node k
11 21 n1 12 22 --------------------------- ---------------------------------- nn 2n 1n
ij = co-factor of aij = determinant of R
Network Functions Example: Find the short-circuit parameters for the bridged T- circuit 5
= 12(17*14 - 7*7) -(10)(10*14 - 7*-2) +(-2)(10*7 - (17)*-2) = 520
I3 1 V1 1
2 I1
7 10 I2
2 V2
11 =17*14 - 7*7=189
2 y11=
11
189 = 520 = 0.363
V1 = (10+2)I1 +10I2 - 2I3 21 -154 V2 = 10I1 +(10+7)I2 +7I3 y12= = 520 = -0.296 =y12 0 = -2I1+7I2 +(5+7+2)I3 22 164 y22= = 520 = 0.315 12 10 -2 R = 10 17 7 When y11=y22 or z11=z12, the network -2 7 14 is symmetrical
The h parameters : comparison Extremely useful for describing bipolar junction transistor circuits V1= Vbe = Base to emitter voltage I2 = Ic = Collector current I1= Ib = Base current Definition of h (hybrid) parameters: V2 = Vce = Collector to emitter voltage I1 y11 = => h11= 1/y11 V1 V1 V1 h12 = h11 = V2=0 V2 I1 I1=0 V2=0 V2 => h22 = 1/z22 z22 = Short-Ckt I2 Open_Ckt I1=0 I2 I2 V1 h21 = h22 = => h12 = z12/z22 z12 = I1 V2 I2 V2=0 I1=0 I1=0 I2 => h21 = y21/y11 y21 = V1 V2=0 V1=h11*I1+h12*V2 I2= h21*I1 + h22*V2
Example: h parameters of the Pi Circuit 1
V1 I2
GC I1
GA
2 h11 = 1/(GA+GC) V2
GB
1
2
V1 h11 = I1
V1 h12 = V2
I2 h21 = I1
I2 h22 = V2
V2=0 Short-Ckt
V2=0
h21 = -GC/(GA+GC) h12 = GC/(GA+GC) h22 = GB + GC*GA/(GC+GA)
I1=0 Open_Ckt
I1=0
Note: h12=-h21 => Reciprocity Condition
The A,B,C,D parameters : comparison Extremely useful for describing transmission network Transmission engineers convention V1=A*V2 + B*-I2 I1= C*V2 + D*-I2 V1, I1 are sending end voltage and current variables A B <= Transmission V2, I2 are receiving end voltage C D Matrix and current variables Definition of A,B,C,D parameters: A=
V1 V2
B=
I2=0 Open-Ckt C=
I1 V2
V2=0
Short-Ckt D=
I2=0
-V1 I2
-I1 I2
V2=0
V1 z11 = I1 V2 z21 = I1
I2=0 => A =
=> C = I2=0
z11 z21 1 z21
The A,B,C,D parameters : comparison Extremely useful for describing transmission network Transmission engineers convention V1=A*V2 + B*-I2 I1= C*V2 + D*-I2 V1, I1 are sending end voltage and current variables A B <= Transmission (T) V2, I2 are receiving end voltage C D Matrix and current variables Definition of A,B,C,D parameters: I1 -y11 -V1 V1 y11 = => D = B= A= V1 y21 I2 V2 V2=0 V2=0 I2=0 Open-Ckt Short-Ckt I2 -1 -I1 I1 y21 = => B = D= C= V1 y21 I2 V2 V2=0 V2=0 I2=0
Example: T parameters of the Pi Circuit 1 I1
2
I2
GC
I1 V1
GA
V1
GB
V2
1 A=
2 V1 V2
B=
I2=0 Open-Ckt C=
I1 V2
V2=0
Short-Ckt D=
I2=0
-V1 I2
-I1 I2
V2=0
V2
1
2
GC GA
GB
1
Ix 2
GB+GC 1/GB+1/GC A= = GC 1/GB 1/GA Ix = I * 1/GA + 1/GB + 1/GC V2 = Ix*1/GB = GA*GB +GB*GC+GC*GA = GC GA*GB+GB*GC+GC*GA C= GC
Example: T parameters of the Pi Circuit 1 I1
I2
GC GA
V1
2
GB
I2 1
2 I1
V2
V1
GC GA
1
1 A=
2 V1 V2
B=
I2=0 Open-Ckt C=
I1 V2
V2=0
Short-Ckt D=
I2=0
-V1 I2
-I1 I2
2
I2 = - V1*GC 1 B= GC I2 = -
1/GA I1 1/GA+1/GC
GC+GA GC Note : AD-BC = 1 Equivalent condition for reciprocity D=
V2=0
shorted
GB
Relationship Between Two Port Parameters The z and y relationships can be obtained by using matrix notation z11 z12 y11 y12 Z= ; I = YV ; V = ZI Y= z21 z22 y21 y22 V = ZI = ZYV
Therefore, Y = Z
1
y22 = z11/ z
z11 = y22/ y z22 = y11/ y
y12 = -z12/ z y21 = -z21/ z
z12 = -y12/ y z21 = -y21/ y
y11 = z22/ z
z = z11*z22-z12*z21
y = y11*y22-y12*y21
h and ABCD parameters can be expressed in terms of y and z parameters
Interconnection of Two Port Parameters I1 Na
V1
I2a
I2b
V2a
V2b
I2 Nb
V2
Cascade connection of Two Ports A
B
Aa
Ba
Ab
Bb
Ca
Da
Cb
Db
= C
D
The transmission matrix of overall two port network is simply the product of the transmission matrices of the individual two-ports
Interconnection of Two Port Parameters
V2a
Na
V1a
V1a=V1b = V1 V2a = V2b = V2 I1 = I1a + I1b I2 = I2a + I2b
I2a I2 1:1
I1a
I1
I1a
I1 I1b V1b
I2b Nb
I1b Ib =
Ia =
I= I2
I2a
I2b
V2b Ib =
Va =
Parallel Connection of two ports V = V2 I = Ia + Ib = YaVa + YbVb = (Ya+Yb)V Y = (Ya+Yb)
V1
V1
V1
V2
V2
Interconnection of Two Port Parameters I1
V1a
Na
V2a
V1 I1b V1b
V1a +V1b = V1 V2a + V2b = V2 I1 = I1a = I1b I2 = I2a = I2b
I2a I2 1:1
I1a
I2b Nb
V2 I1 I1 I1 Ib = Ia = I= I2 I2 I2
V2b
Series Connection of two ports
V2 V = Va + Vb = ZaIa + ZbIb = (Za+Zb)I Z = (Za+Zb)
Ib =
Va =
V=
V1b
V1a
V1
V2a
V2b
Interconnection of Two Port Parameters 1. When the two ports are connected in parallel, find the y parameters first, and, from the y parameters derive the other two-port parameters 2. When two-ports are connected in series, it is usually easiest to find the z parameters 3. When two ports are connected in tandem, it is generally easiest to find the transmission matrix.