ÒYRGGRV\VWpP$KURPDGQpREVOXK\
ÒYRGGRV\VWpP$KURPDGQpREVOXK\
FKDUDNWHULVWLND6+2
2UJDQL]DFH6+2
]KOHGLVNDSRåDGDYN$FRQHMPHQãtGREDVWUiYHQiY6+2
]KOHGLVNDSURYR]RYDWHOHMDNpY\XåLWtNDQiO$MDNiMHMLFK
V\VWpPNWHUêSRVN\WXMHREVOXKXXUþLWpKRW\SX
RUJDQL]DFHVSHFLDOL]RYDQpþLXQLYHUViOQt MDNêSRþHWNDQiO$ =
MDNGORXKpIURQW\DWG
]GURM
,QIRUPDFHSRWHEQpNPRGHORYiQt
IURQWD
SRåDGDYN$
NDQiOREVOXK\
LQIRUPDFHRStFKRGHFKSRåDGDYN$GR6+2 ±
LQWHUYDO\SUDYLGHOQp
±
StFKRG\SRåDGDYN$MHGQRWOLYp
QiKRGQp]QDORVWSUDYG SRGREQRVWUR]ORåHQt
StNODG\UHiOQêFK6+2 SRåDGDYHNNDQiOREVOXK\REVOXKD
SRVNXSLQiFKUR]ORåHQt"
DXWRþHUSDFtVWDQLFHWDQNRYiQt
RUJDQL]DFHIURQW
OHWDGORSLVWiYDFtGUiKDSLVWiQt RVREDOpNDRãHWHQt WHOHIRQQtKRYRUWHOHIRQQtOLQNDVSRMHQt
±
6+2VQHRPH]HQRXIURQWRX
±
6+2VRPH]HQRXIURQWRX
VWURMVHL]RYDþVHt]HQt
IURQWRYiGLVFLSOLQD),)2/,)2YêE UGOHGpON\ REVOXK\QiKRGQêYêE UYêE UGOHSULRULWVODEpD
FHVWXMtFtWD[LSHSUDYD
VLOQpSULRULW\
DXWRNLåRYDWNDSU$MH]G
FKRYiQtSRåDGDYN$
SURJUDPSURFHVRU SURYHGHQt
± WUS OLYpþHNDMtYHIURQW SRWHEQRXGREX
SDNHWSURSRMVt"VSRMHQt
± QHWUS OLYpUH]LJQXMtLKQHG
WHUPLQiOSRþtWDþSLG OHQtVWURMþDVX
RGSDGQRXSRXUþLWpGRE
ÒYRGGRV\VWpP$KURPDGQpREVOXK\
3RLVVRQ$YSURFHVV
LQIRUPDFHRSURFHVXREVOXK\
$QDO\WLFNpPRGHO\6+2
GREDREVOXK\VWHMQiþLQiKRGQiSUDYG SRGREQRVWQtUR]ORåHQt
SHGP WHPÄWHRULHKURPDGQpREVOXK\³
NDQiO\REVOXK\XQLYHUViOQtVSHFLDOL]RYDQp
.HQGDOORYDNODVLILNDFHW\S6+2;<Q
REVOXKDMHGQRWOLYiXOpNDH SRVNXSLQNiFKNLåRYDWNDYêWDK
;«W\SVWRFKDVWLFNpKRSURFHVXNWHUêSRSLVXMHS tFKRG\
GRVWXSQRVWNDQiO$QHSHWUåLWiVSHVWiYNDPLSUDYþLQLNROLY
<«W\SVWRFKDVWLFNpKRSURFHVXNWHUêSRSLVXMHGpONXREVOXK\
&tOHPRGHO$6+2
Q«SRþHWNDQiO$REVOXK\
XYDåXMHPHMHGQXIURQWXMHGHQNDQiOREVOXK\
QHMMHGQRGXããtW\S6+200
LQWHQVLWDSURYR]XY\XåLWtREVOXK\ U
OP
O 7V
O«LQWHQVLWDStFKRG$VWHGQtSRþHWStFKRG$]DMHGQRWNXþDVX P«LQWHQVLWDREVOXK\VWHGSRþHWREVOSRå]DMHGQRWNXþDVX
1Z«SRþHWSRåDGDYN$YHIURQW
±
1V«SRþHWREVOXKRYDQêFKSRåDGDYN$
±
1T«FHONRYêSRþHWSRåDGDYN$Y6+21T
"(1V
"'1V
"(1T
"'1T
7Z«GREDVWUiYHQiSRåDGDYNHPYHIURQW
±
7V«GREDREVOXK\SRåDGDYNX
±
7T«FHONRYiGREDVWUiYHQiSRåDGDYNHPY6+2 "(7V
"'7V
SRþHWNDQiO$REVOXK\
"(7T
StFKRGSRåDGDYNXYLQWHUYDOXGW!QH]iYLVtQDStFKRGHFK SRåDGDYN$YSHGFKi]HMtFtFKLQWHUYDOHFK
1Z1V
±
"'7Z
SRþHWREVORXåHQêFKSRåDGDYN$3RLVVRQ$YSURFHV
±
SHGSRNODG\
"
GRE\VWUiYHQpSRåDGDYNHPY6+2
(7Z
±
QDSStFKRG$GR6+2
±
"'1Z
StFKRG\SRåDGDYN$GR6+23RLVVRQ$YSURFHV
3RLVVRQ$YSURFHVPRGHORYiQtYêVN\WXQH]iYLVOêFKXGiORVWt
VWDWLVWLNDSRþWXSRåDGDYN$Y6+2
(1Z
±
SUDYG SRGREQRVWStFKRGXMHGQRKRSRåDGDYNXS
OGW
SUDYG SRGREQRVWåiGQpKRStFKRGXT
OGW
SURLQWHUYDO7
PGW
SUDYG SRGREQRVWStFKRGXNSRåDGDYN$
±
SURGW!3RLVVRQRYRUR]ORåHQt
±
IUHNYHQþQtIXQNFHGLVNUpWQtQiKRGQpYHOLþLQ\N
p (k ) = (λ .T ) .e − λ .T / k! k
"'7T
"
m p ( k ) = p k q m − k k
±
««
3RLVVRQ$YSURFHV
3RLVVRQ$YSURFHVDH[SRQHQFLiOQtUR]ORåHQt
3RLVVRQRYRUR]ORåHQt
E (k ) =
JUDISHFKRG$3RLVRRQRYDSURFHVX
∞
∑ k . p ( k ) = λ .T
VSHFLiOQtStSDGPDUNRYRYVNpKRSURFHVX
0 VWHGQtKRGQRWDSRþWXXGiORVWt]D GREX7
E (k ) T
λ=
σ 2 = E[k − E(k )]2 = λ.T
VWDYSL «VNXWHþQRVWLQGLNXMtFtYêVN\WLXGiORVWt
«SU$P UQêSRþHWXGiORVWt]DMHGQRWNXþDVX
VP URGDWQiRGFK\OND
'
'
«
O
WGW
S
O
S
O
S
WGW «SUDYG SRGREQRVWåHYþDVHW
L
L
S W S W OGW~E\WHNRSUDYG SRGSHFKRGX
L
L
L
S W OS W L
L
W
L
)W
S
S
WLPH
'
'
S
L
(N
O
UHVSWGWVHSURFHVQDFKi]tYHVWDYXL
3RLVVRQRYRUR]ORåHQt
O
R]QDþHQtS W UHVSS
QH]iYLVOpXGiORVWL
S
~]NêY]WDKNH[SRQHQFLiOQtPXUR]ORåHQt
O
SW
H
SURS L
!
OW
«SUDYG SRGREQRVWVHWUYiQtSURFHVXYHVWDYXL
OW
H OH
«GLVWULEXþQtIXQNFHH[SRQHQFLiOQtKRUR]ORåHQt
OW
«KXVWRWDSUDYG SRGREQRVWLH[SRQUR]ORåHQt )W
LQWHUYDO\PH]LStFKRG\VSRMLWiQiKRGQiYHOLþLQD H[SRQHQFLiOQtUR]ORåHQtVHVWHGQtKRGQRWRX(' L
O
E (t ) =
∞
∫ t . p ( t ) dt
= 1/λ
VWHGQtKRGQRWDH[SUR]ORåHQt
0
σ 2 = E[t − 1 / λ ]2 = 1 / λ2
«VP URGDWQiRGFK\OND H[SRQHQFLiOQtKRUR]ORåHQt
$QDO\WLFNêPRGHOV\VWpPX00
$QDO\WLFNêPRGHOV\VWpPX00
FtOHDQDO\WLFNpKRPRGHOX
SUDYG SRGREQRVWLMHGQRWOLYêFKVWDY$YV\VWpPX00
O
=
p k ( t + dt ) = p k ( t )[( 1 − λ .dt )(1 − µ .dt )] + µ .dt + λ .dt +
P
pk −1 (t )[λ.dt (1 − µ .dt )] +
pk +1 (t ) = [ µ .dt (1 − λ.dt )]
1Z
SUR]MHGQRGXãHQtY\QHFKiPHPRFQLQXGW
1T
7Z
"'1T
"(7T
QHFK"S W
SHGSRNODGOPNRQVWDQW\DOP
N
3>1TW
"'7T
SDNO]HQDOp]WS
N@N
"
««« !U
OP
N
PRåQpVLWXDFHY6+2 1T
N N N
D
E F
StFKRGQRYpKRXNRQþHQt SRåDGDYNXREVOXK\
pk = lim pk (t ) ⇒ t →∞
VWDYRY SHFKRGQêGLDJUDP
λ
D«
dpk (t ) =0⇒ dt
λ
λ
λ
λ
E«« F««
WLPH WWGW
SRNXGOPSDNH[LVWXMH
( λ + µ ) p k = λ . p k −1 + µ . p k + 1
OLPS W W!
pk (t + dt) =[1−(λ + µ).dt].pk (t) + λ.dt.pk−1(t) + µ.dt.pk+1(t) pk (t + dt) − pk (t) = −(λ + µ).pk (t) + λ. pk−1(t) + µ. pk+1(t) dt
7T
&tO(1T
µ
µ
µ
µ
µ
$QDO\WLFNêPRGHOV\VWpPX00
$QDO\WLFNêPRGHOV\VWpPX00
p
XUþHQt k ]SRåDGDYNXURYQRYiK\SUDYG SRGREQRVWQtFK
n +1
p 0 (1 + ρ + ..... ρ ) + p 0 ρ n
λ p0 = ρ . p0 ⇒ p1 = µ p 2 = ρ . p1 = ρ 2 . p 0
pk = 1
««««««
(1 + ρ + ρ p0 ρ 1− ρ
p0 p0 − ρ 1 − ρ 1 − ρ
pk = ρ k . p0 p0 = ?
∑ 0
WRN$PH]LVWDY\NDN
λ . p k = µ . p k +1
n
E RPH]HQiIURQWDGpON\Q
n +1
= 1 ⇒
2
+ ...) =
p0 1− ρ
n +1
p
=
0
1 − ρ 1 − ρ n +1
«UR]OLãtPHStSDG\
SR]QiPN\ D QHRPH]HQiIURQWD ∞
∑
SUDYG SRGREQRVWSOQpIURQW\
p k = p 0 + ρ . p 0 + ρ . p 0 + ......... 2
0
p 0 = 1 − ρ , p k = (1 − ρ ). ρ
p0 = =1⇒ 1− ρ
SUR
ρ = 1 SURQHVWDELOQtVWDY
ρ < 1 ⇒ p0 = 1 − ρ = 0 = p1 = p2 ....
YêVWXSREVORXåHQêFKSRåDGDYN$WYRtRS W3RLVVRQ$YSURFHVV SDUDPHWUHPOOµ D QHSUi]GQiIURQWD E SUi]GQiIURQWDS
U
StNODGU S
≅
Q
λ λ´= µ .(1 − p0 ) + 0. p0 = µ (1 − (1 − ρ )) = µ .ρ = µ = λ µ
GDOãtFKSRåDGDYN$
"SURStSDGS Q
a
SURStSDGS
E
E
!Qa
YL]QHRPH]HQiIURQWD
E
U U
!åiGQêRGFKRG
SUDYG SRGREQRVWEORNRYiQt
OS ~E\WHNRRGPtWQXWp
SRåDGDYN\
!RGFKRGPSRåDGDYN$]DMHGQRWNXþDVX
YêVWXSQtSURXGO
E
"PRåQpVLWXDFH
= pb
n
µ >>λ, ρ <<1: pb = (1− ρ)ρn = pn
k
SR]QiPN\ SRGPtQNDVWDELOQtKRVWDYX
1 − ρ ρ 1 − ρ n +1
pn =
Q
Q
!Qa
!Qa
QHQtWHEDXYDåRYDWSRGPtQNXUSURU@REODVW]DKOFHQt
QHFK"U!SDNS
S
S
«««S
!S !
Q
Q
$QDO\WLFNêPRGHOV\VWpPX00
$QDO\WLFNêPRGHOV\VWpPX00 StNODG00VQHRPH]HQRXGpONRXIURQW\
SRNUDþRYiQtStNODGXGDOãtY]WDK\SUR(1Z D(7Z
D (1T
O þHNiQtGREDREVOXK\
E ( Tq ) = E ( Tw ) +
"SU$P UQêSRþHWSRåDGDYN$Y6+2
∞
∞
∞
0
0
1
E ( Nq ) = ∑ k ⋅ p k = ∑ k ⋅ (1 − ρ ) ρ k = (1 − ρ ) ⋅ ρ ∑ k ⋅ ρ k −1 = = (1 − ρ ) ρ ⋅ (1 + 2 ρ + 3 ρ 2 + ......) = (1 − ρ ) ⋅ ρ (1T
λ ⋅ E ( Tq ) = λ ⋅ E ( Tw ) +
1 ρ λ = = (1 − ρ ) 2 1− ρ µ − λ
E ( Nq ) = E ( Nw ) + ρ
λ µ SU$P USRþHWSRåYV\VWpPX
SU$P UGpOND
IURQW\SU$PSRþHWYREVOX]H
QRUPDOL]]SRåG QtGREDVWUiYHQiY6+2Y$þLGRE REVOXK\
P(7 P T
E ( Tq ) 1 µ = µ ⋅ E ( Tq ) = = 1 1− ρ µ −λ µ
E (7T
1 µ
U
"SU$P UQiGREDVHWUYiQtSRåDGDYNXY6+2
SHGSRNODGW
W
«RNDPåLNStFKRGXSRåDGDYNX3GRIURQW\ «RNDPåLNRGFKRGXSRåDGDYNX3]H6+2
QHFK"W W
7GREDVHWUYiQtSRåDGDYNX3
]DGREX7SLMGHYSU$P UXQRYêFKO7SRåDGDYN$
(1T
λ 1 E ( Nq ) µ −λ λ ⋅ T = E ( Nq ) ⇒ T = = E (Tq ) = = λ λ µ −λ
λ ⋅ E ( Tq ) = E ( Nq )
«/LWWOH$YY]RUHF
U U
6OXþRYiQt3RLVVRQRYêFKSURFHV$
$QDO\WLFNêPRGHOSHSRMRYDFtVtW StNODG]SRåG QtSDNHW$YSHSRMRYDFtFKVtWtFK
GDOãtYODVWQRVW3RLVVRQRYDSURFHVX 3
3
3
QiKUDGQtVFKHPDSHSRMRYDFtKRX]OX
λ1
3
λ = ∑ λi
λ2
λ3
)
i =1
9) QHFK"1WWGW ««««SRþHWXGiORVWtYêVOHGQpKRSURFHVX
9)
YLQWHUYDOXWWGW
9)
SUDYG SRGREQRVWåiGQpXGiORVWLYHYêVOHGQpPSURFHVX
m
P[ N (t , t + dt ) = 0] = ∏ P[ Ni (t , t + dt ) = 0] = 1
m
∏ (1 − λ ⋅ dt ) = (1 − λ ⋅ dt )(1 − λ i
i =1
1
2
SHGSRNODGGRIURQW\9)
L
SLFKi]tO
⋅ dt )......(1 − λm ⋅ dt ) =
RGpOFHIO )O
= 1 − λ1 ⋅ dt − λ2 ⋅ dt + λ1 ⋅ λ2 ⋅ dt 2 + .................... = ≅ 1 − (λ1 + λ2 + ......λm ) ⋅ dt = 1 − λ ⋅ dt
SDNHW$VHF
L
H
QH
QO
!
Q O
Q «SU$P UGpOND>SDNHWELW@
«YL]GHILQLFH 3RLVVRQRYDSURFHVX
NDSDFLWDYêVWXSQtOLQN\&
>ELWVHF@
L
SU$P UQiGpONDSDNHWXQ>ELWSDNHW@ SRþHWSHQHVSDNHW$YêVWOLQNRX>SDNHWVHF@P
L
]iY UVORXþHQtPYtFH3RLVVRQRYêFKSURFHV$GRVWDQHPHRS W
]SRåG QtSDNHWXYX]OXL(7
3RLVVRQ$YSURFHVVSDUDPHWUHPONWHUêMHVRXþWHPSDUDPHWU$
L
& Q
P P O O L
Q&
L
L
Q Q& O O
L
L
GtOþtFKSURFHV$
$QDO\WLFNêPRGHOSHSRMRYDFtVtW
$QDO\WLFNêPRGHOSHSRMRYDFtVtW
DSOLNDFHSHGFKR]tFKYêVOHGN$QDYêSRþHW]SRåG QtSDNHW$Y
YêSRþHW]SRåG Qt
SHSRMRYDFtFKVtWtFK
D þHNiQtYHIURQWiFKQDNRQNUpWQtOLQN\GREDY\VOiQt
StNODG-VRXGiQ\SHQRVRYpNDSDFLW\D]iW åHOLQHNYVtWt
OLQND$!%(7
VHF
9\SRþW WHD SU$P UQp]SRåG QtSDNHW$SURMHGQRWOLYpX]O\
OLQND%!&(7
VHF
E SU$P UQp]SRåG QtSDNHW$YX]OXDQRQ\PQt
OLQND&!'(7
StSDGQH]DWtåHQpVLW
λi 〈〈ν ⋅ C ⇒ E (T ) ≅
$
%
&
NDSDFLWDYãHFKOLQHN«& ]iW åHO O
>ELWVHF@
$!%>SDNHWVHF@O
$!&>SDNHWVHF@&!'
SU$P UQiGpONDSDNHW$ Q&
'
Q
(7
%!&>SDNHWVHF@ O
ρ A −> B =
Y\XåLWtOLQN\$!%
VHF
1 1 = = 0.025 ν ⋅ C 40
λ1 + λ3 + λ4 30 paket / sec = = 0.75 40 paket / sec ν ⋅C
$!%
$!'>SDNHWVHF@
>ELWSDNHW@
>SDNHWELW@>ELWVHF@
VHF
>SDNHWVHF@
U
VHF
1 E (T ) = «VWHGQtKRGQRWDGRE\þHNiQtSDNHWX ν ⋅C − λ i YHYêVWXSQtIURQW SUR]iW åO
O
E VXPD]iW åtQDYãHFKOLQNiFKO O
(7 $!%
O
O
O O
SDNHWVHF
SU$P UQp]SRåG QtQDOLQFHDQRQ\PQt
&!'
%!&
O
L
QiKUDGQtVFKHPD6+2 O
$!%
O O O
O
O
O O OO
O
VHF
L
0HWRGD0RQWH&DUOR
0HWRGD0RQWH&DUOR
VLPXODþQtPRGHO\6+2MHGQD]DSOLNDFtPHWRG\0RQWH&DUOR
PHWRGD0RQWH&DUOR
%XIIRQRYD~ORKDSRNUDþRYiQt \ D
Qi]HYSRFKi]tRGY GF$SUDFXMtFtFKY86$QDYêYRMLDWRPRYp ERPE\
SHYiGt~ORKXQDVWRFKDVWLFNêSURFHVWHQWRVLPXOXMHQDSRþtWDþLD
SRXåLWtSURYêSRþW\QHMU$]Q MãtKRW\SXStNODG\
±
Ki]HQtMHKO\QDQHNRQHþQRXURYLQXVURYQRE åNDPL
±
]QiPHGpONDMHKO\
±
SURNDåGêKRGVOHGXMHPH]GDMHKODSURWQHQ NWHURX]
±
S
E
%XIIRQRYD~ORKDYêSRþHWþtVODS
±
ω
VWDWLVWLFN\Y\KRGQRWtYêVOHGN\
Ω
EVLQI E
EY]GiOHQRVWURYQRE åHN
EVLQI
D
D
URYQRE åHN
PtVWRKi]HQtMHKO\JHQHURYiQtQiKRGQêFKERG$]REODVWL9
SUDYG SRGREQRVWSURWQXWt]MLVWtPHGYRMtP]S$VREHP
SRORKDMHKO\UHSUHVHQWRYiQDGYRMLFt)\
SURWRåH]HMP SODWt
Y\SRþWHPHDQDO\WLFN\YH]MLãW QpPY]RUFLVHY\VN\WXMHS
]MLVWtPHH[SHULPHQWiOQ WMVLPXODFt
]URYQRVWLRERXYêUD]$H[SOLFLWQ Y\MiGtPHþtVORS
0
Ω = a .π
MHGQD]HY]QLNOêFKVLWXDFt
E D
E
\
6
EVLQI
SUDYG SRGREQRVWSURWQXWtURYQRE åN\MHKORX
=
S
I
D
π
ω = 2 ∫ b . sin ϕ d ϕ = 4 b
4 .b n 4 .b N ≅ ⇒π ≅ ⋅ N a n π .a
SRWHEDYHONêSRþHWERG$]QDORVWE]QDORVWDSRþHW ~VS ãQêFKSRNXV$Q DFHONRYêSRþHWSRNXV$1
0HWRGD0RQWH&DUOR
0HWRGD0RQWH&DUOR 'LULFKOHWRYD~ORKD
MLQpStNODG\ YêSRþHWLQWHJUiO$
±
J[
b
]QiPHKRGQRW\YNUDMQtFKSROtFK
PD[J[
I = ∫ g( x)dx
±
Ω
a
ui , j =
[
D
E
±
Ω
D RGKDGSUDYG SRGREQRVWLVMDNRXJHQHURYDQêERGSDGQHGR
ω
ω
Ω
«SORFKDREODVWL«SORFKDREODVWL
Ω
Ω
1«FHONRYêSRþHWERG$]Q«SRþHWERG$]REODVWL
ω Ω
n ≅ N
⇒
I = ω
n = N
±
QDWDNRYRXWRWDNRYRXWRVRXVWDYXYHGHHãHQtXUþLWpKRW\SX
SRXåLWtPHWRG\0RQWH&DUORVSRþtYiYVLPXODFLYHONpKRSRþWX ÄQiKRGQêFKSURFKi]HN³]XUþLWpKRYQLWQtKRSROHGRNUDMQtFK
ω
SROtVH]QiPêPLKRGQRWDPL3LXUþRYiQtSRK\EXYSU$E KX W FKWRSURFKi]HNPDMtYãHFKQ\þW\LVP U\VWHMQRX
Ω
SUDYG SRGREQRVW9êVOHGQRXKRGQRWXSURYQLWQtYêFKR]tSROH O]HXUþLWMDNRDULWPHWLFNêSU$P U]FtORYêFKKRGQRWXORåHQêFK YNUDMQtFKSROtFKWDEXON\ ]PtQ QêFKSURFKi]HN2SDNRYiQtP
QHFK";MHQiKYHOLþLQDVOLERYROQRXKXVWRWRXSUDYG SRGREQRVWL
WDNRYêFKWRQiKRGQêFKSURFKi]HN]RVWDWQtFKYQLWQtFKSROtO]H
I[ QDEêYDMtFtKRGQRW[ ]LQWHUYDOXDE
XUþLWLMHMLFKKRGQRW\
L
]PtQ QpKRGQRW\O]HQDOp]WHãHQtPVRXVWDY\Q Q
SDUFLiOQtFKGLIHUHQFLiOQtFKURYQLFPHWRGRXVtWt ±
E RGKDGVWHGQtKRGQRW\
1 (ui +1, j + ui−1, j + ui , j +1 + ui , j −1 ) 4
DOJHEUDLFNêFKURYQLF
StVWXS\]DORåHQpQDJHQHURYiQtQiKRGERG$]REODVWL
ω
MHWHEDQDMtWKRGQRW\YHYãHFKYQLWQtFKSROtFKWDNDE\W\WR E\O\VWHGQtKRGQRWRX]KRGQRWYãHFKWMþW\ SROtVRXVHGQtFK
ω
REODVWLQHFK"
MHGiQDþWYHUFRYiVt"WDEXONDVQ QYQLWQtPLSROL YHNWHUp
Y\WYRtPHMLQRXQiKRGQRXYHOLþLQX4WDNDE\(4
q =
g ( xi ) f ( xi )
,
6LPXODFHV\VWpP$KURPDGQpREVOXK\
MHMtKRGQRW\SDN i
b
E (Q ) =
∫
Q ( x ) ⋅ f ( x ) dx =
a
⇒
±
b
∫ a
I = E (Q ) ≅
1 N
MGHRQDSRGREHQtYHONpKRSRþWXVNXWHþQêFKVLWXDFtYW FKWR VLWXDFtFKMVRXY\KRGQRFRYiQ\VOHGRYDQpYHOLþLQ\DQDNRQHF
g ( x ) dx = I
VWDWLVWLFN\Y\KRGQRFHQ\
N
∑
i=1
q
±
i
QDUR]GtORGDQDO\WLFNêFKPRGHO$O]HPHWRGX0RQWH&DUORYåG\ DSOLNRYDW
0HWRGD0RQWH&DUOR 3HVQRVWPHWRG\ ±
]NRXPiPHQiKRGQRXYHOLþLQX4WHG\(4
±
PiPHNGLVSRVLFLMLVWêSRþHWKRGQRWT
±
Y\SRþWHPHDULWPHWLFNêSU$P U
±
q =
"'4
"
YHOLþLQ\4
1 N
N
∑
i =1
qi
q −q
]KRGQRWY\SRþWHPHUR]SW\OMHKRåKRGQRWXR]QDþtPH i E
±
L
DSRXåLMHPHMDNRRGKDGUR]SW\OX'4
WHRULHSUDYG SRGREQRVWLVRXþWHPYHONpKRSRþWXKRGQRWQ MDNp QiKRGQpYHOLþLQ\GRVWiYiPHKRGQRW\QiKRGQpYHOLþLQ\V QRUPiOQtP*DXVVRYêP UR]ORåHQtP
Q
q
!«KRGQRWD
QiKRGQpYHOLþLQ\VQRUPiOQtPUR]ORåHQtPDVSDUDPHWU\
E (Q ) = ±
1 N
D (Q ) =
1 N
b
2
= σ
2
KXVWRWDSUDYG SRGREQRVWLQiKRGQpYHOLþLQ\MHWHG\
Q
f (q ) = ±
E ( Q ), D ( Q ) =
− 1 1 ⋅ ⋅e 2π σ
( q − E ( q )) 2 2 ⋅σ 2
SURWXWRKXVWRWXSODWt
E ( Q ) + 3σ
∫
f ( q ) d q ≅ 0 . 997 ⇒
E ( Q ) − 3σ
P [ E ( Q ) − 3 ⋅ σ ≤ q ≤ E ( Q ) + 3 ⋅ σ ] ≅ 0 . 997
±
WHG\
±
SDN
±
O]HXUþLWPH]NWHURXDEVROXWQtKRGQRWDFK\E\VXUþLWRX
P [ E ( Q ) − q ≤ 3σ ] ≅ 0 . 997 b P [ chyba ≤ 3 ] ≅ 0 . 997 N
SUDYG SRGREQRVWtQHSHNURþtDWXWRPH]O]HVWDQRYLWDåSR SURYHGHQtYãHFKÄSRNXV$³