Sho

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Sho as PDF for free.

More details

  • Words: 2,006
  • Pages: 6
ÒYRGGRV\VWpP$KURPDGQpREVOXK\

ÒYRGGRV\VWpP$KURPDGQpREVOXK\

FKDUDNWHULVWLND6+2

2UJDQL]DFH6+2

‡

‡

]KOHGLVNDSRåDGDYN$FRQHMPHQãtGREDVWUiYHQiY6+2

‡

]KOHGLVNDSURYR]RYDWHOHMDNpY\XåLWtNDQiO$MDNiMHMLFK

V\VWpPNWHUêSRVN\WXMHREVOXKXXUþLWpKRW\SX

RUJDQL]DFH VSHFLDOL]RYDQpþLXQLYHUViOQt MDNêSRþHWNDQiO$ =

MDNGORXKpIURQW\DWG

]GURM

,QIRUPDFHSRWHEQpNPRGHORYiQt

IURQWD

SRåDGDYN$

NDQiOREVOXK\

 LQIRUPDFHRStFKRGHFKSRåDGDYN$GR6+2 ±

LQWHUYDO\SUDYLGHOQp

±

StFKRG\SRåDGDYN$MHGQRWOLYp

QiKRGQp ]QDORVWSUDYG SRGREQRVWUR]ORåHQt

StNODG\UHiOQêFK6+2 SRåDGDYHNNDQiOREVOXK\REVOXKD

SRVNXSLQiFK UR]ORåHQt"

DXWRþHUSDFtVWDQLFHWDQNRYiQt

 RUJDQL]DFHIURQW

OHWDGORSLVWiYDFtGUiKDSLVWiQt RVREDOpNDRãHWHQt WHOHIRQQtKRYRUWHOHIRQQtOLQNDVSRMHQt

±

6+2VQHRPH]HQRXIURQWRX

±

6+2VRPH]HQRXIURQWRX ‡

VWURMVHL]RYDþVHt]HQt

IURQWRYiGLVFLSOLQD),)2/,)2YêE UGOHGpON\ REVOXK\QiKRGQêYêE UYêE UGOHSULRULW VODEpD

FHVWXMtFtWD[LSHSUDYD

VLOQpSULRULW\

DXWRNLåRYDWNDSU$MH]G

‡

FKRYiQtSRåDGDYN$

SURJUDPSURFHVRU SURYHGHQt

± WUS OLYpþHNDMtYHIURQW SRWHEQRXGREX

SDNHWSURSRMVt"VSRMHQt

± QHWUS OLYpUH]LJQXMtLKQHG

WHUPLQiOSRþtWDþSLG OHQtVWURMþDVX

RGSDGQRXSRXUþLWpGRE





ÒYRGGRV\VWpP$KURPDGQpREVOXK\

3RLVVRQ$YSURFHVV

 LQIRUPDFHRSURFHVXREVOXK\

$QDO\WLFNpPRGHO\6+2

GREDREVOXK\VWHMQiþLQiKRGQi SUDYG SRGREQRVWQtUR]ORåHQt

‡

SHGP WHPÄWHRULHKURPDGQpREVOXK\³

NDQiO\REVOXK\XQLYHUViOQtVSHFLDOL]RYDQp

‡

.HQGDOORYDNODVLILNDFHW\S6+2;<Q

REVOXKDMHGQRWOLYi XOpNDH SRVNXSLQNiFK NLåRYDWNDYêWDK

;«W\SVWRFKDVWLFNpKRSURFHVXNWHUêSRSLVXMHS tFKRG\

GRVWXSQRVWNDQiO$QHSHWUåLWiVSHVWiYNDPL SUDYþLQLNROLY

<«W\SVWRFKDVWLFNpKRSURFHVXNWHUêSRSLVXMHGpONXREVOXK\

&tOHPRGHO$6+2

Q«SRþHWNDQiO$REVOXK\

XYDåXMHPHMHGQXIURQWXMHGHQNDQiOREVOXK\

QHMMHGQRGXããtW\S6+200

‡

LQWHQVLWDSURYR]X Y\XåLWtREVOXK\ U

OP

O 7V

O«LQWHQVLWDStFKRG$ VWHGQtSRþHWStFKRG$]DMHGQRWNXþDVX P«LQWHQVLWDREVOXK\ VWHGSRþHWREVOSRå]DMHGQRWNXþDVX

‡

1Z«SRþHWSRåDGDYN$YHIURQW

±

1V«SRþHWREVOXKRYDQêFKSRåDGDYN$

±

1T«FHONRYêSRþHWSRåDGDYN$Y6+21T

‡

"( 1V 

"' 1V 

‡

"( 1T 

"' 1T 

7Z«GREDVWUiYHQiSRåDGDYNHPYHIURQW 

±

7V«GREDREVOXK\SRåDGDYNX

±

7T«FHONRYiGREDVWUiYHQiSRåDGDYNHPY6+2 "( 7V 

"' 7V 

SRþHWNDQiO$REVOXK\



"( 7T 

StFKRGSRåDGDYNXYLQWHUYDOXGW!QH]iYLVtQDStFKRGHFK SRåDGDYN$YSHGFKi]HMtFtFKLQWHUYDOHFK

1Z1V

±

"' 7Z 

SRþHWREVORXåHQêFKSRåDGDYN$3RLVVRQ$YSURFHV

±

SHGSRNODG\

"

GRE\VWUiYHQpSRåDGDYNHPY6+2

( 7Z 

±

QDSStFKRG$GR6+2 

±

"' 1Z

StFKRG\SRåDGDYN$GR6+23RLVVRQ$YSURFHV

3RLVVRQ$YSURFHVPRGHORYiQtYêVN\WXQH]iYLVOêFKXGiORVWt

VWDWLVWLNDSRþWXSRåDGDYN$Y6+2

( 1Z 

±

‡

SUDYG SRGREQRVWStFKRGXMHGQRKRSRåDGDYNXS

OGW

‡

SUDYG SRGREQRVWåiGQpKRStFKRGXT

OGW

‡

SURLQWHUYDO7

PGW

SUDYG SRGREQRVWStFKRGXNSRåDGDYN$

±

SURGW!3RLVVRQRYRUR]ORåHQt

±

IUHNYHQþQtIXQNFHGLVNUpWQtQiKRGQpYHOLþLQ\N

p (k ) = (λ .T ) .e − λ .T / k! k

"' 7T 



"

 m p ( k ) =   p k q m − k k

±

«« 

3RLVVRQ$YSURFHV

3RLVVRQ$YSURFHVDH[SRQHQFLiOQtUR]ORåHQt

3RLVVRQRYRUR]ORåHQt

E (k ) =

JUDISHFKRG$3RLVRRQRYDSURFHVX



∑ k . p ( k ) = λ .T

VSHFLiOQtStSDGPDUNRYRYVNpKRSURFHVX

0 VWHGQtKRGQRWDSRþWXXGiORVWt]D GREX7

E (k ) T

λ=

σ 2 = E[k − E(k )]2 = λ.T

‡

VWDYS L «VNXWHþQRVWLQGLNXMtFtYêVN\WLXGiORVWt

«SU$P UQêSRþHWXGiORVWt]DMHGQRWNXþDVX

VP URGDWQiRGFK\OND

'





'



«

O

WGW 

S 

O

 S 



O



S 

WGW «SUDYG SRGREQRVWåHYþDVHW 

L

L

S W S W OGW ~E\WHNRSUDYG SRGSHFKRGX

L

L

L

S  W OS W  L

L

W 

L

) W 





S

S

WLPH

'

'



S 

L

( N 

O



UHVSWGWVHSURFHVQDFKi]tYHVWDYXL

3RLVVRQRYRUR]ORåHQt



O

R]QDþHQtS  W UHVSS

QH]iYLVOpXGiORVWL 



S 

~]NêY]WDKNH[SRQHQFLiOQtPXUR]ORåHQt



O



S W 

H

SURS   L



!

OW

«SUDYG SRGREQRVWVHWUYiQtSURFHVXYHVWDYXL

OW

H OH

«GLVWULEXþQtIXQNFHH[SRQHQFLiOQtKRUR]ORåHQt

OW

«KXVWRWDSUDYG SRGREQRVWL H[SRQUR]ORåHQt ) W 

LQWHUYDO\PH]LStFKRG\VSRMLWiQiKRGQiYHOLþLQD H[SRQHQFLiOQtUR]ORåHQtVHVWHGQtKRGQRWRX( '  L

O

E (t ) =





∫ t . p ( t ) dt

= 1/λ

VWHGQtKRGQRWDH[SUR]ORåHQt

0

σ 2 = E[t − 1 / λ ]2 = 1 / λ2

«VP URGDWQiRGFK\OND H[SRQHQFLiOQtKRUR]ORåHQt





$QDO\WLFNêPRGHOV\VWpPX00

$QDO\WLFNêPRGHOV\VWpPX00

FtOHDQDO\WLFNpKRPRGHOX

SUDYG SRGREQRVWLMHGQRWOLYêFKVWDY$YV\VWpPX00

O

=

p k ( t + dt ) = p k ( t )[( 1 − λ .dt )(1 − µ .dt )] + µ .dt + λ .dt +

P

pk −1 (t )[λ.dt (1 − µ .dt )] +

pk +1 (t ) = [ µ .dt (1 − λ.dt )]

1Z

SUR]MHGQRGXãHQtY\QHFKiPHPRFQLQXGW

1T

7Z

"' 1T 

"( 7T 

QHFK"S  W 

‡

SHGSRNODGOPNRQVWDQW\DOP

N

3>1T W 

"' 7T 

‡

SDNO]HQDOp]WS  

N@N

"

««« !U

OP

N

 PRåQpVLWXDFHY6+2 1T

N N N

D

E F



StFKRGQRYpKRXNRQþHQt SRåDGDYNXREVOXK\

pk = lim pk (t ) ⇒ t →∞

VWDYRY SHFKRGQêGLDJUDP

λ

D«

dpk (t ) =0⇒ dt

λ

λ

λ

λ

E««  F««

WLPH WWGW

SRNXGOPSDNH[LVWXMH

( λ + µ ) p k = λ . p k −1 + µ . p k + 1

OLPS  W W!



pk (t + dt) =[1−(λ + µ).dt].pk (t) + λ.dt.pk−1(t) + µ.dt.pk+1(t) pk (t + dt) − pk (t) = −(λ + µ).pk (t) + λ. pk−1(t) + µ. pk+1(t) dt

7T

&tO( 1T 









µ



µ





µ

µ

µ 

$QDO\WLFNêPRGHOV\VWpPX00

$QDO\WLFNêPRGHOV\VWpPX00

p

XUþHQt k ]SRåDGDYNXURYQRYiK\SUDYG SRGREQRVWQtFK

n +1

p 0 (1 + ρ + ..... ρ ) + p 0 ρ n

λ p0 = ρ . p0 ⇒ p1 = µ p 2 = ρ . p1 = ρ 2 . p 0

pk = 1

««««««

(1 + ρ + ρ p0 ρ 1− ρ



p0 p0 − ρ 1 − ρ 1 − ρ

pk = ρ k . p0 p0 = ?

∑ 0

WRN$PH]LVWDY\NDN

λ . p k = µ . p k +1

n

E RPH]HQiIURQWDGpON\Q

n +1

= 1 ⇒

2

+ ...) =

p0 1− ρ

n +1

p

=

0

1 − ρ 1 − ρ n +1

«UR]OLãtPHStSDG\

SR]QiPN\ D QHRPH]HQiIURQWD ∞



 SUDYG SRGREQRVWSOQpIURQW\

p k = p 0 + ρ . p 0 + ρ . p 0 + ......... 2

0

p 0 = 1 − ρ , p k = (1 − ρ ). ρ

p0 = =1⇒ 1− ρ

SUR

ρ = 1  SURQHVWDELOQtVWDY

ρ < 1 ⇒ p0 = 1 − ρ = 0 = p1 = p2 ....

 YêVWXSREVORXåHQêFKSRåDGDYN$WYRtRS W3RLVVRQ$YSURFHVV SDUDPHWUHPOOµ D QHSUi]GQiIURQWD E SUi]GQiIURQWD S



U 

StNODGU S



Q

λ λ´= µ .(1 − p0 ) + 0. p0 = µ (1 − (1 − ρ )) = µ .ρ = µ = λ µ

GDOãtFKSRåDGDYN$

"SURStSDGS Q



a

SURStSDGS

E





E



    

!Qa 

YL]QHRPH]HQiIURQWD

E

 U U 

!åiGQêRGFKRG

SUDYG SRGREQRVWEORNRYiQt

O S ~E\WHNRRGPtWQXWp

SRåDGDYN\



!RGFKRGPSRåDGDYN$]DMHGQRWNXþDVX 

 YêVWXSQtSURXGO

E

"PRåQpVLWXDFH

= pb

n

µ >>λ, ρ <<1: pb = (1− ρ)ρn = pn

k

SR]QiPN\  SRGPtQNDVWDELOQtKRVWDYX

1 − ρ ρ 1 − ρ n +1

pn =

Q

Q

 

!Qa

!Qa

 QHQtWHEDXYDåRYDWSRGPtQNXUSURU@REODVW]DKOFHQt 

QHFK"U!SDNS 

S 





S  

«««S

!S !

Q

Q



$QDO\WLFNêPRGHOV\VWpPX00

$QDO\WLFNêPRGHOV\VWpPX00 StNODG00VQHRPH]HQRXGpONRXIURQW\

SRNUDþRYiQtStNODGXGDOãtY]WDK\SUR( 1Z D( 7Z 

D ( 1T 

O  þHNiQtGREDREVOXK\

E ( Tq ) = E ( Tw ) +

" SU$P UQêSRþHWSRåDGDYN$Y6+2







0

0

1

E ( Nq ) = ∑ k ⋅ p k = ∑ k ⋅ (1 − ρ ) ρ k = (1 − ρ ) ⋅ ρ ∑ k ⋅ ρ k −1 = = (1 − ρ ) ρ ⋅ (1 + 2 ρ + 3 ρ 2 + ......) = (1 − ρ ) ⋅ ρ ( 1T

λ ⋅ E ( Tq ) = λ ⋅ E ( Tw ) +

1 ρ λ = = (1 − ρ ) 2 1− ρ µ − λ



E ( Nq ) = E ( Nw ) + ρ

λ µ SU$P USRþHWSRåYV\VWpPX

SU$P UGpOND

IURQW\SU$PSRþHWYREVOX]H

QRUPDOL]]SRåG QtGREDVWUiYHQiY6+2Y$þLGRE REVOXK\



P( 7 P T

 

E ( Tq ) 1 µ = µ ⋅ E ( Tq ) = = 1 1− ρ µ −λ µ



 

E ( 7T 

1 µ



U

" SU$P UQiGREDVHWUYiQtSRåDGDYNXY6+2

SHGSRNODGW



W

«RNDPåLNStFKRGXSRåDGDYNX3GRIURQW\ «RNDPåLNRGFKRGXSRåDGDYNX3]H6+2

 

QHFK"W W  



7 GREDVHWUYiQtSRåDGDYNX3

]DGREX7SLMGHYSU$P UXQRYêFKO7SRåDGDYN$

 ( 1T 

λ 1 E ( Nq ) µ −λ λ ⋅ T = E ( Nq ) ⇒ T = = E (Tq ) = = λ λ µ −λ

λ ⋅ E ( Tq ) = E ( Nq )





«/LWWOH$YY]RUHF 







U U 

6OXþRYiQt3RLVVRQRYêFKSURFHV$

$QDO\WLFNêPRGHOSHSRMRYDFtVtW StNODG]SRåG QtSDNHW$YSHSRMRYDFtFKVtWtFK

GDOãtYODVWQRVW3RLVVRQRYDSURFHVX 3

3

3

QiKUDGQtVFKHPDSHSRMRYDFtKRX]OX

λ1



3

λ = ∑ λi

λ2



λ3





)

i =1

 9) QHFK"1 WWGW ««««SRþHWXGiORVWtYêVOHGQpKRSURFHVX

9)





YLQWHUYDOXWWGW

9)

SUDYG SRGREQRVWåiGQpXGiORVWLYHYêVOHGQpPSURFHVX

m



P[ N (t , t + dt ) = 0] = ∏ P[ Ni (t , t + dt ) = 0] = 1

m

∏ (1 − λ ⋅ dt ) = (1 − λ ⋅ dt )(1 − λ i

i =1

1

2

SHGSRNODGGRIURQW\9)

L



SLFKi]tO

⋅ dt )......(1 − λm ⋅ dt ) =

RGpOFHI O  ) O 

= 1 − λ1 ⋅ dt − λ2 ⋅ dt + λ1 ⋅ λ2 ⋅ dt 2 + .................... = ≅ 1 − (λ1 + λ2 + ......λm ) ⋅ dt = 1 − λ ⋅ dt

SDNHW$VHF

L

H

QH

QO

!

Q O





Q «SU$P UGpOND>SDNHWELW@

«YL]GHILQLFH 3RLVVRQRYDSURFHVX

NDSDFLWDYêVWXSQtOLQN\&

>ELWVHF@

L

SU$P UQiGpONDSDNHWXQ>ELWSDNHW@ SRþHWSHQHVSDNHW$YêVWOLQNRX>SDNHWVHF@P

L

]iY UVORXþHQtPYtFH3RLVVRQRYêFKSURFHV$GRVWDQHPHRS W

]SRåG QtSDNHWXYX]OXL( 7 

3RLVVRQ$YSURFHVVSDUDPHWUHPONWHUêMHVRXþWHPSDUDPHWU$

L

& Q

 P P O O   L

Q&

L

L

 Q Q& O O 

L

L

GtOþtFKSURFHV$ 



$QDO\WLFNêPRGHOSHSRMRYDFtVtW

$QDO\WLFNêPRGHOSHSRMRYDFtVtW

DSOLNDFHSHGFKR]tFKYêVOHGN$QDYêSRþHW]SRåG QtSDNHW$Y

YêSRþHW]SRåG Qt

SHSRMRYDFtFKVtWtFK

D þHNiQtYHIURQWiFKQDNRQNUpWQtOLQN\GREDY\VOiQt

StNODG-VRXGiQ\SHQRVRYpNDSDFLW\D]iW åHOLQHNYVtWt

OLQND$!%( 7 

   

VHF

9\SRþW WHD SU$P UQp]SRåG QtSDNHW$SURMHGQRWOLYpX]O\

OLQND%!&( 7 

   

VHF

E SU$P UQp]SRåG QtSDNHW$YX]OX DQRQ\PQt

OLQND&!'( 7 

  

StSDGQH]DWtåHQpVLW 

λi 〈〈ν ⋅ C ⇒ E (T ) ≅

$

%

&

NDSDFLWDYãHFKOLQHN«& ]iW åHO O



>ELWVHF@

$!%>SDNHWVHF@O

$!&>SDNHWVHF@&!'



SU$P UQiGpONDSDNHW$ Q&

'

Q



( 7

%!&>SDNHWVHF@ O



ρ A −> B =

Y\XåLWtOLQN\$!%

VHF

1 1 = = 0.025 ν ⋅ C 40

λ1 + λ3 + λ4 30 paket / sec = = 0.75 40 paket / sec ν ⋅C

$!%

$!'>SDNHWVHF@

>ELWSDNHW@

>SDNHWELW@>ELWVHF@

VHF

>SDNHWVHF@

U

VHF

1 E (T ) = «VWHGQtKRGQRWDGRE\þHNiQtSDNHWX ν ⋅C − λ i YHYêVWXSQtIURQW SUR]iW åO

O



E VXPD]iW åtQDYãHFKOLQNiFKO O



( 7  $!% 

O



O

O O 





SDNHWVHF

SU$P UQp]SRåG QtQDOLQFH DQRQ\PQt 

&!'

%!&



O



L

QiKUDGQtVFKHPD6+2 O



$!%



 O O O 

 O







O 



O O OO 





O

      

VHF



L

0HWRGD0RQWH&DUOR

0HWRGD0RQWH&DUOR

VLPXODþQtPRGHO\6+2MHGQD]DSOLNDFtPHWRG\0RQWH&DUOR

‡

PHWRGD0RQWH&DUOR ‡

%XIIRQRYD~ORKDSRNUDþRYiQt \ D

Qi]HYSRFKi]tRGY GF$SUDFXMtFtFKY86$QDYêYRMLDWRPRYp ERPE\

‡

SHYiGt~ORKXQDVWRFKDVWLFNêSURFHVWHQWRVLPXOXMHQDSRþtWDþLD

SRXåLWtSURYêSRþW\QHMU$]Q MãtKRW\SXStNODG\

±

Ki]HQtMHKO\QDQHNRQHþQRXURYLQXVURYQRE åNDPL

±

]QiPHGpONDMHKO\

±

SURNDåGêKRGVOHGXMHPH]GDMHKODSURWQHQ NWHURX]

±

S

E

 %XIIRQRYD~ORKDYêSRþHWþtVODS

±

ω



VWDWLVWLFN\Y\KRGQRWtYêVOHGN\ ‡



EVLQI E

EY]GiOHQRVWURYQRE åHN

EVLQI

D

D

URYQRE åHN

‡

PtVWRKi]HQtMHKO\JHQHURYiQtQiKRGQêFKERG$]REODVWL9

SUDYG SRGREQRVWSURWQXWt]MLVWtPHGYRMtP]S$VREHP

‡

SRORKDMHKO\UHSUHVHQWRYiQDGYRMLFt)\

‡

SURWRåH]HMP SODWt

‡

Y\SRþWHPHDQDO\WLFN\ YH]MLãW QpPY]RUFLVHY\VN\WXMHS

‡

]MLVWtPHH[SHULPHQWiOQ  WMVLPXODFt

‡

]URYQRVWLRERXYêUD]$H[SOLFLWQ Y\MiGtPHþtVORS

0

Ω = a .π

MHGQD]HY]QLNOêFKVLWXDFt

E D

E

\

6

‡

EVLQI

SUDYG SRGREQRVWSURWQXWtURYQRE åN\MHKORX

=

S

I

D

π

ω = 2 ∫ b . sin ϕ d ϕ = 4 b

‡

4 .b n 4 .b N ≅ ⇒π ≅ ⋅ N a n π .a

SRWHEDYHONêSRþHWERG$]QDORVWE]QDORVWDSRþHW ~VS ãQêFKSRNXV$ Q DFHONRYêSRþHWSRNXV$ 1





0HWRGD0RQWH&DUOR

0HWRGD0RQWH&DUOR  'LULFKOHWRYD~ORKD

MLQpStNODG\  YêSRþHWLQWHJUiO$

±

J [

b

]QiPHKRGQRW\YNUDMQtFKSROtFK

PD[ J [

I = ∫ g( x)dx

±



a

ui , j =

[

D

E

±



D RGKDGSUDYG SRGREQRVWLVMDNRXJHQHURYDQêERGSDGQHGR

ω

ω



«SORFKDREODVWL«SORFKDREODVWL





1«FHONRYêSRþHWERG$]Q«SRþHWERG$]REODVWL

ω Ω

n ≅ N



I = ω

n = N

±

QDWDNRYRXWRWDNRYRXWRVRXVWDYXYHGHHãHQtXUþLWpKRW\SX

SRXåLWtPHWRG\0RQWH&DUORVSRþtYiYVLPXODFLYHONpKRSRþWX ÄQiKRGQêFKSURFKi]HN³]XUþLWpKRYQLWQtKRSROHGRNUDMQtFK

ω

SROtVH]QiPêPLKRGQRWDPL3LXUþRYiQtSRK\EXYSU$E KX W FKWRSURFKi]HNPDMtYãHFKQ\þW\LVP U\VWHMQRX



SUDYG SRGREQRVW9êVOHGQRXKRGQRWXSURYQLWQtYêFKR]tSROH O]HXUþLWMDNRDULWPHWLFNêSU$P U]FtORYêFKKRGQRW XORåHQêFK YNUDMQtFKSROtFKWDEXON\ ]PtQ QêFKSURFKi]HN2SDNRYiQtP

QHFK";MHQiKYHOLþLQD VOLERYROQRXKXVWRWRXSUDYG SRGREQRVWL

WDNRYêFKWRQiKRGQêFKSURFKi]HN]RVWDWQtFKYQLWQtFKSROtO]H

I [  QDEêYDMtFtKRGQRW[ ]LQWHUYDOXDE

XUþLWLMHMLFKKRGQRW\

L

‡

]PtQ QpKRGQRW\O]HQDOp]WHãHQtPVRXVWDY\ Q   Q

SDUFLiOQtFKGLIHUHQFLiOQtFKURYQLFPHWRGRXVtWt ±

E RGKDGVWHGQtKRGQRW\ ‡

1 (ui +1, j + ui−1, j + ui , j +1 + ui , j −1 ) 4

DOJHEUDLFNêFKURYQLF

StVWXS\]DORåHQpQDJHQHURYiQtQiKRGERG$]REODVWL

ω

MHWHEDQDMtWKRGQRW\YHYãHFKYQLWQtFKSROtFKWDNDE\W\WR E\O\VWHGQtKRGQRWRX]KRGQRWYãHFK WMþW\ SROtVRXVHGQtFK

ω

REODVWLQHFK"

MHGiQDþWYHUFRYiVt" WDEXONDVQ QYQLWQtPLSROL YHNWHUp

Y\WYRtPHMLQRXQiKRGQRXYHOLþLQX4WDNDE\( 4 

q =

g ( xi ) f ( xi )

,

 6LPXODFHV\VWpP$KURPDGQpREVOXK\

MHMtKRGQRW\SDN i

b

E (Q ) =



Q ( x ) ⋅ f ( x ) dx =

a



±

b

∫ a

I = E (Q ) ≅

1 N

MGHRQDSRGREHQtYHONpKRSRþWXVNXWHþQêFKVLWXDFtYW FKWR VLWXDFtFKMVRXY\KRGQRFRYiQ\VOHGRYDQpYHOLþLQ\DQDNRQHF

g ( x ) dx = I

VWDWLVWLFN\Y\KRGQRFHQ\

N



i=1

q

±

i 

QDUR]GtORGDQDO\WLFNêFKPRGHO$O]HPHWRGX0RQWH&DUORYåG\ DSOLNRYDW



0HWRGD0RQWH&DUOR 3HVQRVWPHWRG\ ±

]NRXPiPHQiKRGQRXYHOLþLQX4WHG\( 4 

±

PiPHNGLVSRVLFLMLVWêSRþHWKRGQRWT

±

Y\SRþWHPHDULWPHWLFNêSU$P U

±

q =

"' 4 

"

YHOLþLQ\4

1 N

N



i =1

qi

q −q

]KRGQRWY\SRþWHPHUR]SW\OMHKRåKRGQRWXR]QDþtPH i E

±

L



DSRXåLMHPHMDNRRGKDGUR]SW\OX' 4

WHRULHSUDYG SRGREQRVWLVRXþWHPYHONpKRSRþWXKRGQRWQ MDNp QiKRGQpYHOLþLQ\GRVWiYiPHKRGQRW\QiKRGQpYHOLþLQ\V QRUPiOQtP *DXVVRYêP UR]ORåHQtP

Q

q

!«KRGQRWD

QiKRGQpYHOLþLQ\VQRUPiOQtPUR]ORåHQtPDVSDUDPHWU\

E (Q ) = ±

1 N

D (Q ) =

1 N

b

2

= σ

2

KXVWRWDSUDYG SRGREQRVWLQiKRGQpYHOLþLQ\MHWHG\

Q

f (q ) = ±

E ( Q ), D ( Q ) =

− 1 1 ⋅ ⋅e 2π σ

( q − E ( q )) 2 2 ⋅σ 2

SURWXWRKXVWRWXSODWt

E ( Q ) + 3σ



f ( q ) d q ≅ 0 . 997 ⇒

E ( Q ) − 3σ

P [ E ( Q ) − 3 ⋅ σ ≤ q ≤ E ( Q ) + 3 ⋅ σ ] ≅ 0 . 997

±

WHG\

±

SDN

±

O]HXUþLWPH]NWHURXDEVROXWQtKRGQRWDFK\E\VXUþLWRX

P [ E ( Q ) − q ≤ 3σ ] ≅ 0 . 997 b P [ chyba ≤ 3 ] ≅ 0 . 997 N

SUDYG SRGREQRVWtQHSHNURþtDWXWRPH]O]HVWDQRYLWDåSR SURYHGHQtYãHFKÄSRNXV$³



Related Documents

Sho
November 2019 5
Sho
October 2019 4
Ala Sho Julia Boutros
August 2019 1
Reiki - Sho Ku Rei
November 2019 2
Signs-and-symptoms-of-sho
December 2019 9
Reiki - Hon Sha Ze Sho Nen
November 2019 0