OTA000004 SDH Principle Issue 2.1
Confidential Information of Huawei. No Spreading without Permission.
1
Objectives
Upon completion of this course, you will be able to: Understand the basic of SDH multiplexing standard
Know the features, applications and advantages of SDH based equipment
Internal Use
Chapter1 SDH Overview Chapter2 Frame Structure & Multiplexing
Methods Chapter3 Overhead & Pointers Chapter4 Logical Functional Blocks
Internal Use
References
SDH Principle Manual
ITU-T G.701, G.702, G.707
Internal Use
Emergence of SDH
What is SDH? ---- Synchronous Digital Hierarchy ---- It defines frame structure, multiplexing method, digital rates hierarchy and interface code pattern. Why did SDH emerge? ---- Need for a system to process increasing amounts of information. ---- New standard that allows mixing equipment from different suppliers.
Internal Use
Disadvantages of PDH 1. Interfaces Plesiochronous Digital Hierarchy
Electrical interfaces --- Only regional standards. 3 PDH rate hierarchies for PDH: European (2.048 Mb/s), Japanese, North American (1.544 Mb/s). Optical interfaces --- No standards for optical line equipments, manufacturers develop at their will.
Internal Use
Disadvantages of PDH 2. Multiplexing methods Asynchronous Multiplexing for PDH The location of low-rate signals in high-rate signals is not regular nor predictable.
Internal Use
Disadvantages of PDH
140 Mb/s
140 Mb/s 34 Mb/s
34 Mb/s 8 Mb/s
8 Mb/s
de-multiplexer multiplexer
de-multiplexer de-multiplexer
multiplexer
2 Mb/s
level by level Not suitable for huge-volume transmission Internal Use
multiplexer
Disadvantages of PDH
3. OAM function --- Weak Operation, Administration & Maintenance function.
4. No universal network management interface --- Capabilities to setup a TMN is limited.
Telecommunications Management Network Internal Use
Advantages of SDH
1. Interfaces Electrical interfaces ---
Can be connected to all existing PDH signals.
Optical interfaces --Can be connected to multiple vendors’ optical transmission equipments.
Internal Use
Advantages of SDH 2. Multiplexing method --- Basic rate is STM-1, other rates are multiples of the basic rate --- PDH signal to/from SDH signal --- Low level SDH to/from high level SDH
STM-1
622 Mbit/s Multiplexing
De-multiplexing
622 Mbit/s
STM-1
STM-4
STM-1
2 Mbit/s Internal Use
STM-1
Low rate SDH
High rate SDH
Advantages of SDH
Low rate SDH to higher rate SDH
STM-1 155 Mb/s
Internal Use
×4
STM-4 622 Mb/s
×4
STM-16 2.5 Gb/s
×4
STM-64 10 Gb/s
Advantages of SDH byte interleaved multiplexing method
One Byte from STM-1 B
STM-1 A STM-1 B STM-1 C STM-1 D Internal Use
A
4:1
B
C
D
A
B
STM-4
C
D
A
B
…
Advantages of SDH
--- Synchronous multiplexing mapping structure
method
and
flexible
--- Use multistage pointer to align PDH loads in SDH frame, thus, dynamic drop-and-insert capabilities
Internal Use
Advantages of SDH
3. OAM function --- Abundant overheads bytes for operation, administration and maintenance. --- About 5% of the total bytes are being used
Internal Use
Advantages of SDH
4. Compatibility PDH, SDH, ATM, FDDI Signals packing
package
SDH network
STM-N
Processing
transmit
STM-N receive
package Processing unpacking PDH, SDH, ATM, FDDI Signals
Internal Use
Disadvantages of SDH Low bandwidth utilization ratio. Signal
Digital Bit Rate
Channels
E0
64 kbit/s
One 64 kbit/s
E1
2.048 Mbit/s
32 E0
E2
8.448 Mbit/s
128 E0
E3
34.368 Mbit/s
16 E1
E4
139.264 Mbit/s
64 E1
PDH Hierarchy
Bit Rate
Abbreviated
SDH
SDH Capacity
155.52 Mbit/s
155 Mbit/s
STM-1
63 E1, 3 E3 or 1 E4
622.08 Mbit/s
622 Mbit/s
STM-4
252 E1, 12 E3 or 4 E4
2488.32Mbit/s
2.5 Gbit/s
STM-16
1008 E1, 48 E3 or 16 E4
9953.28Mbit/s
10 Gbit/s
STM-64
4032 E1, 192 E3, 64 E4
SDH Hierarchy Internal Use
Questions
1. Why did SDH emerge? 2. What are the advantages & disadvantages of SDH? 3. What is the basic transmission rate in SDH and what are the other common ones?
Time to think Soon Coffee Time!
Internal Use
Chapter1 SDH Overview Chapter2 Frame Structure & Multiplexing
Methods Chapter3 Overhead & Pointers Chapter4 Logical Functional Blocks
Internal Use
Part 2 SDH Frame Structure From ITU-T G.707: 1.
2.
3. 4.
One frame lasts for 125 microseconds (8000 frames/s) Rectangular block structure 9 rows and 270 columns(STM-1) Each unit is one byte (8 bits) Transmission mode: Byte by byte, row by row, from left to right, from top to bottom
Frame = 125 us
1 2 3 4 5 6 7 8 9
9 rows
270 Columns
Bit rate of STM-1= 9*270*8*8000 Internal Use
SDH Frame Structure
Frame = 125 us
Three parts: 1. Information Payload 2. Section Overhead 3. AU-PTR
1 2 3 4 5 6 7 8 9
RSOH AU-PTR
Information Payload
MSOH
9 270 Columns
Internal Use
9 rows
Information Payload Information Payload √ √ √ √
Also known as Virtual Container level 4 (VC-4) Used to transport low speed tributary signals Contains low rate signals and Path Overhead (POH) Location: rows #1 ~ #9, columns #10 ~ #270
LPOH, TU-PTR RSOH package 9 rows
HPOH
AU-PTR
low rate signal
Payload
MSOH
package
LPOH, TU-PTR 9 Internal Use
1 270 Columns
Data package
Section Overhead Fulfills the section layer OAM functions 1 2 3
RSOH
Types of Section Overhead
AU-PTR 5 6 7 8 9
Information Payload
MSOH
9 270 Columns
Internal Use
9 rows
1.
RSOH monitor the regenerator section 2. MSOH monitor the multiplexing section Location: 1. RSOH: rows #1 ~ #3, columns #1 ~ #9 2. MSOH: rows #5 ~ #9, columns #1 ~ #9
AU-PTR Indicates the first byte of VC4 ► Location: row #4, columns #1 ~ #9
RSOH 4 AU-PTR
Information Payload
MSOH
9 270 Columns
Internal Use
9 rows
SDH Multiplexing SDH Multiplexing includes: √ Low to high rate SDH signals (STM-1 Æ STM-N) √ PDH to SDH signals (2M, 34M & 140M Æ STM-N) √ Other hierarchy signals to SDH Signals (ATM Æ STM-N)
Some terms and definitions: ► Mapping ► Aligning ► Multiplexing
Internal Use
SDH Multiplexing Structure ×1 STM-64 STM-16 STM-4
×1 ×1 ×1
STM-1
AUG-64 ×4
Mapping Aligning Multiplexing
AUG-16 ×4
Pointer processing
AUG-4 ×4
×1 AU-4
AUG-1
VC-4
C-4
139264 kbit/s
×3
TUG-3
×1
TU-3
VC-3
C-3
34368 kbit/s
TU-12
VC-12
C-12
2048 kbit/s
×7 TUG-2
×3 Internal Use
SDH Tributary Multiplexing (140M) 140 Mbit/s to STM-N C4
VC4 1
140M
Rate adaptation
H P O H
Add HPOH
9 Mapping 1
Internal Use
260 125 μs
1
1
Next page 9 125μs
261
SDH Tributary Multiplexing (140M) AU-4 10 Add AU-PTR
STM-1
AUG-1 1
270
AU-PTR
×1
RSOH
Add SOH
AU-PTR
9
Aligning
1
Add SOH 9
Internal Use
Info Payload
MSOH STM-N
Multiplexing AUG-N
One STM-1 frame can load only one 140Mbit/s Signal
270
270X N
SDH Tributary Multiplexing (34M) 34 Mbit/s to STM-N
C3
VC3 1
34M
Rate Adaptation
L P O H
Add LPOH
9 84
1 125μs
Internal Use
Mapping
1
1
Next page 9 125μs
85
SDH Tributary Multiplexing (34M)
TU-3 1 H1 H2 H3
TUG-3 1
86
Fill gap
9
Aligning
Internal Use
86
1
3
261
1
1 H1 H2 H3
1
1st align
VC-4
P O R R H
×3 R
9
9
Multiplexing
Same procedure as 140M
SDH Tributary Multiplexing (2M) 2 Mbit/s to STM-N
1
1 LPOH
4 1
2M
Rate Adaptation
Add LPOH
125μs
4
1 1
9
Internal Use
TU12
VC12
C12
1 Next page
Add TU-PTR
9
Mapping
4
Aligning
9 TU-PTR
SDH Tributary Multiplexing (2M) TUG-3
TUG-2 1
86
1
12 1
1 ×7
×3
R
9
Multiplexing
Internal Use
Multiplexing
R
9
Same procedure as 34M
Questions
Internal Use
1.
What are the main parts of the SDH Frame structure?
2.
What is the transmission speed of STM-4? How to calculate it?
Glossary
► Mapping - A process used when tributaries are adapted into VCs by adding POH information ► Aligning - This process takes place when a pointer is included in a Tributary Unit (TU) or an Administrative Unit (AU), to allow the 1st byte of the VC to be located ► Multiplexing - This process is used when multiple loworder path signals are adapted into a higher-order path signal, or when high-order path signals are adapted into a Multiplexing Section
Internal Use
Glossary
C = Container VC = Virtual Container TU = Tributary Unit AU = Administrative Unit TUG = Tributary Unit Group AUG = Administrative Unit Group STM = Synchronous Transfer Module
Internal Use
Chapter1 SDH Overview Chapter2 Frame Structure & Multiplexing
Methods Chapter3 Overhead & Pointers Chapter4 Logical Functional Blocks
Internal Use
Part 3 Section Overheads R S O H
A1
A1
A1
A2
A2
A2
J0
B1
∆
∆
E1
∆
F1
D1
∆
∆
D2
∆
D3
AU-PTR B2 M S O H
D4 D7 D10 S1
B2
B2
K1 D5 D8 D11
STM-1 Internal Use
K2 D6 D9 D12 M1 E2 ∆ = Media dependent bytes
A1 and A2 Bytes Framing Bytes – Indicate the beginning of the STM-N frame The A1, A2 bytes are unscrambled A1 = f6H (11110110), A2 = 28H (00101000) In STM-N: (3XN) A1 bytes, (3XN) A2 bytes
STM-N
STM-N
STM-N
STM-N
Finding frame head Internal Use
STM-N
STM-N
A1 and A2 Bytes Framing
Find A1,A2 Y
N
OOF over 3ms LOF
Next process Internal Use
AIS
D1 ~ D12 Bytes
Data Communications Channels (DCC) Bytes RS-DCC – D1 ~ D3 – 192 kbit/s (3X64 kbit/s) MS-DCC – D4 ~ D12 – 576 kbit/s (9X64kbit/s)
NE
NE
NE
NE
DCC channel TMN
Internal Use
OAM Information: Operation, Administration and maintenance
E1 and E2 Bytes
Orderwire Bytes E1 – RS Orderwire Byte – RSOH orderwire message E2 – MS Orderwire Byte – MSOH orderwire message
NE
NE
NE E1 and E2
Digital telephone channel E1-RS, E2-MS
Internal Use
NE
B1 Byte Bit interleaved Parity Code (BIP-8) Byte – A parity code (even parity), used to check the transmission errors over the RS B1 BBE is represented by RS-BBE( performance event)
BIP-8
A1 A2 A3 A4
00110011 11001100 10101010 00001111
B 01011010
Internal Use
STM-N
Rx
Tx
1#STM-N 2#STM-N
Calculate B1, B2
2#STM-N Verify B1 B2
1#STM-N
B2 Byte
Bit interleaved Parity Code (MS BIP-24) Byte This bit interleave parity NX24 code is used to check the bit errors over the MS B2 BBE is represented by MS-BBE( performance event) The mechanism of B2 is same like B1
Internal Use
M1 Byte Multiplexing Section Remote Error Indication Byte A return message from Rx to Tx ,when Rx find B2 bit errors A count of BIP-24xN (B2) bit errors Tx generate corresponding performance event MS-FEBBE
Traffic
Rx
Tx Return M1 Generate MS-FEBBE Internal Use
Find B2 bit errors Generate MS-BBE
K1 and K2( b1-b5)
Automatic Protection Switching (APS ) bytes
Transmitting APS protocol
Used for network multiplexing protection switch function
Internal Use
K2 (b6 ~ b8) ¾Rx detects K2 (b6b8)="111" generate MS-AIS alarm ¾ Rx detects K2 (b6b8)="110" generate MS-RDI alarm
Start
Detect K2(b6b8)
110
111 Generate MS-AIS
Return MSRDI Internal Use
Generate MS-RDI
S1 Byte Synchronization Status Message Byte (SSMB): S1 (b5~ b8) ¾ Value indicates the sync. level bits 5 ~ 8
Internal Use
Meaning
0000
Quality unknown (existing sync. Network)
0010
G.811 PRC
0100
SSU-A (G.812 transit)
1000
SSU-B (G.812 local)
1011
G.813 (Sync. Equipment Timing Clock)
1111
Do not use for sync.
Path Overheads 1
2 3 4 5 6 7
8 9
10 J1 B3 C2
VC-n Path Trace Byte Path BIP-8 Path Signal Label
G1
Path Status
F2
Path User Channel
H4
TU Multiframe Indi
F3
Path User Channel
K3
AP Switching
N1
Network Operator
Higher Order Path Overhead Internal Use
Path trace byte: J1
Detect J1
The first byte of VC-4 > User-programmable > The received J1 should match with the expected J1 >
N
HP-TIM
Internal Use
Match
Y
Next process
B3 Byte
> Path bit parity code byte (even parity code) Verify B3
> Used to detect bit errors ¾Mechanism is same like B1and B2
N
HP-BBE
Internal Use
correct
Y
Next process
Signal label byte: C2
> Specifies the mapping type in the VC-N
Detect C2
> 00 H Æ Unequipped 02 H Æ TUG structure 13 H Æ ATM mapping ¾The received C2 should match with the expected C2
N Y
Next process
Match
00H
N
Y
HP-UNEQ
HP-SLM
Insert AIS downward
Internal Use
Path Status Byte: G1
Detect receiving VC4
¾Return performance message from Rx to Tx > HP-REI Æ b1 ~ b4 N
> HP-RDI Æ b5 N
Next process
Internal Use
HPBBE
HPUNEQ HP-TIM HP-SLM
Y
Return HP-REI
Y
Return HP-RDI
Path Overheads Low Order Path Overhead
1
4
1 V5
J2
VC-12
N2
VC-12
K4
VC-12
9 500μs VC-12 multiframe Internal Use
VC-12
Path Overhead Bytes
V5 > First byte of the multiframe > Indicated by TU-PTR > Functions: Error checking, Signal Label and Path Status of VC-12 z b1 ~ b2 z b3 z b4 RFI) z b5 ~ b7 z b8
Internal Use
Æ Error Performance Monitoring (BIP-2) Æ Return Error detected in VC-12 (LP-REI) Æ Return Failure declared in VC-12 (LPÆ Signal Label for VC-12 Æ Indicate Defect in VC-12 path (LP-RDI)
Path Overhead Bytes
Detect V5 Detect b5-b7
N
Verify b1 b2
Y N
000
match Y
Match
N
LP-UNEQ
LP-BBE Next process
LP-SLM
Return LPRDI (b8) Internal Use
Y
Return LPREI (b3)
Next process
Pointers
Pointers
AU-PTR
Internal Use
TU-PTR
AU-PTR 1
RSOH Negative justification
4
H1YYH2FF H3H3H3
Positive justification
0— —
1—
—
------ 86— —
MSOH 9 1
435— — 436— — ------ 521— — 522— — 523— — -----608— —
RSOH
125us
696— — 697— — ------782— — 4
H1YYH2FFH3H3H3
0— —
1—
—
------ 86— —
MSOH 9 1
Internal Use
9
250us 270
TU-PTR 1
4
1
VC-12
9
VC-12
V1
VC-12
V2 500μs VC-12 multiframe TU POINTERS
Internal Use
VC-12
V3
V4
Questions
Which byte is used to monitor the MS-AIS and MS-RDI?
What is the mechanism for R-LOF generation?
Which bytes implement the RS(MS/HP) error monitoring?
Internal Use
Chapter1 SDH Overview Chapter2 Frame Structure & Multiplexing
Methods Chapter3 Overhead & Pointers Chapter4 Logical Functional Blocks
Internal Use
Part 4 Common SDH NE TM (Terminal Multiplexer) z Two ports device: Line Port (Optical Port), Tributary Port z Used in the terminal station of a network z Cross-connect function: TU ÅÆ LU
TM STM-N
W E4
E1
Hua Wei Default Internal Use
E3
STM-M
Note: M
Common SDH NE
ADM (Add and Drop Multiplexer) z Three ports device: Tributary Port, Line Port West (Left), Line Unit East (Right) z Used as an intermediate station, the most important NE type z Cross-connect function: TU ÅÆ LU (W/E), LU (W) ÅÆ LU (E)
ADM STM-N
W
E E4
E1 E3 Internal Use
STM-M
STM-N
Note: M
Common SDH NE Applications of TM & ADM ADM W
STM-N
E E1
STM-N
E4 E3
Note: M
STM-M
ADM
TM
ADM
ADM
TM
ADM
ADM
chain ring Internal Use
ADM
Common SDH NE REG z Two ports device: LU (W) & LU (E) zUsed due to the long distance between Multiplexers z O/E, Signal regenerating
W
E REG
STM-N
Internal Use
STM-N
Common SDH NE DXC z Multi-port device z Used to interconnect larger number of STM-N signals z Can be used for the grooming (consolidating & segregating) of STM-Ns z Used in complex & backbone network z DXC m/n (m ≥ n) m represent highest cross-connect rate n represent lowest cross-connect rate
m or n
0
1
2
3
rate
64kb/s
2Mb/s
8Mb/s
34Mb/s 140Mb/s 155Mb/s
Internal Use
4
5
6
622Mb/s 2.5Gb/s
SDH Logical Functional Blocks
ITU-T recommends a unified basic functional block standard
Internal Use
Logical Functional Block for SDH Equipment TTF
w STM
A
SPI
B
RST
C
MST
D
MSP
E
MSA
F
HOI 140Mb/s
G.703
M
PPI
L
G
LPA
HPC
HPT F
LOI 2Mb/s 34Mb/s
G.703 K
PPI
HOA
J LPA
I
LPT
H LPC H
Note: Taking 2Mb/s as example
G
SEMF OHA
OHA Interface
SETS Internal Use
HPA
Q Interface F Interface
MCF
P D4—D12 SETPI
F HPT
N D1—D3
External Synchronous Signal Interface
SPI Functional Block SPI: Synchronous Physical Interface Æ Implements interface function Æ O/E, extracts timing signal from STM-N Æ Monitors corresponding alarm
SPI
Receiving AÆB
O/E Extract Timing Signal
Internal Use
Receive Fail R-LOS
Transmitting BÆA
E/O
RST Functional Block Receiving
BÆC
R-LOS
Framing
Put all “1” at C
A1, A2
RST: Regenerator Section Termination Æ Processes RS overheads Æ Processes RSOH in Rx direction Æ Writes RSOH in Tx direction Internal Use
Fail
Normal
R-OOF, R-LOF
Unscramble
All “1” at C
Process E1, D1~D3
Verify B1
RS-BBE
RST Functional Block
Transmitting CÆB
Internal Use
Writes
Scrambles
RSOH
STM-N frame
Calculates
Add E1
B1
D1-D3
MST Functional Block MST: Multiplex Section Termination Æ Processes MSOH
Receiving
CÆD
Extract APS
Detect
Detect
K1, K2 (b1-b5)
K2 (b6-b8)
B2
110 MS-RDI
Internal Use
111
Abnormal
MS-AIS All “1” at D
MS-BBE
Overflow MS-EXC (B2)
All “1” at D
MST Functional Block
Transmitting D→C
Write MSOH
Internal Use
Receiving MS-BBE
Receiving MS-AIS
Return M1ÆMS-REI
Return K2Æ110 MS-RDI
MST Functional Block
Concept of RS, MS
MST
RST
SPI
SPI RS (regenerator section) MS (multiplex section)
Internal Use
RST
MST
MSP Functional Block
MSP: Multiplex Section Protection Æ Implements MS layer protection switch Æ Switch conditions: R-LOS, R-LOF, MS-AIS alarm
Network topology
Functional Block Main Signal Path
Main TM
TM Stand-by
M S A
M S P
MST
MST
M S
MST
MST
P
Stand-by Signal Path
Internal Use
M S A
MSA Functional Block Receiving
MSA: Multiplexing Section Adaptation Æ Implements AUG to VC-4 or VC-4 to AUG conversion
EÆF
De-interleaved AUG Æ N×AU-4
Read AU-PTR
H1H2H3 are all “1” AU-AIS All “1” at F Internal Use
Invalid pointer or 8 NDF AU-LOP All “1” at F
MSA Functional Block
Transmitting FÆE
Internal Use
Writes
Byte interleaved
AU-PTR
N×AU- 4 Æ AUG
Functional Blocks
HPC: High-Order Path Cross-connection HPT: High-Order Path Termination Æ Processes HPOH in VC-4
Internal Use
HPT Functional Block
Receiving FÆG
Verify B3 Invalid Æ HP-BBE
Internal Use
Detect J1 Mismatch Æ HP-TIM
Detect C2 Mismatch Æ HP-SLM Æ 00H: HP-UNEQ
All “1” at G
All “1” at G
Transmit H4 to HPA
HPT Functional Block Transmitting GÆF
Write HO-POH
Internal Use
Receiving HP-BBE Return HP-REI (G1)
Receiving HP-TIM, HP-SLM, HP-UNEQ Return HP-RDI (G1)
Functional Block
z HOI: High-Order Interface (HPT, LPA, PPI) Æ 140 M --- VC-4 z HOA: High-Order Assemble (HPT, HPA) Æ VC-12 --- VC-4 z LPC: Low-Order Path Connection Æ For VC-12 & VC-3 Cross-connect Matrix Æ Only chooses route, does not process signals z LPT: Low-Order Path Adaptation Æ Real-Time Monitoring of Low-Order VC-12
Internal Use
Functional Block
LPA: Low-Order Path Adaptation Æ Implements pack/unpack and restores original signal Æ PDH <---> C PPI: PDH Physical Interface Æ Extract PDH tributary signal timing Æ Code pattern conversion Æ Interface between device and PDH line
Internal Use
PPI Functional Block
PPI
Receiving
Transmitting
LÆM
MÆL
JÆK
KÆJ
Code pattern conversion
Internal Use
Code pattern
No input signal
conversion
T-ALOS,
Extract timing
EX-TLOS
HPA Functional Block Receiving
HPA: High order Path Adaptation Æ Implements C4 to VC-12 conversion
GÆH
De-interleaved C4 Æ 63XTU-12
Read
TU-PTR
Internal Use
V1V2V3 are all “1”
Invalid pointer or 8 NDF
TU-AIS
TU-LOP
All “1” at H
All “1” at H
HPA Functional Block
Transmitting HÆG
Write Pointer TU-PTR, VC-12ÆTU12
Internal Use
Byte Interleave TU12ÆC-4
LPT Functional Block
LPT: Low-Order Path Termination Æ Process LO-POH
LPT
Receiving HÆI
Transmitting IÆH
Detect V5 LP-BBE LP-SLM, LP-UNEQ
Write LO-POH Receive LP-BBE, Return LP-REI Receive LP-SLM, UNEQ, Return LP-RDI
Internal Use
Auxiliary Functional Blocks
SEMF: Synchronous Equipment Management Function Æ Monitoring center of the whole equipment Æ Implements OAM of local equipment and other equipment MCF: Message Communication Function Æ Provides D1~D3 Interface for communication Æ Implements network management termination interface to equipment: f/Qx
Internal Use
Auxiliary Functional Blocks
SETS: Synchronous Equipment Timing Source Æ Provides local timing clock signal to other functional blocks Æ Provides timing clock signal to other equipment SETPI: Synchronous Equipment Timing Physical Interface Æ Provides external interface of SETS Æ External timing clock signal and output timing clock signal OHA: Overhead Access Æ Processes order wire messages E1, E2, F1
Internal Use
Alarm Flow Chart
R-LOF
R-LOS
MS-EXC
AU-LOP
MS-AIS
AU-AIS
HP-UNEQ
TU-AIS Internal Use
HP-TIM
HP-SLM
Internal Use