1 1.
P(A) P(B) A B n(X) !"ก X A B $ % &'ก ()* "( A ⊆ B ( A ∪ B = B + x ∈ A ∪ B )( x ∈ A +*, x ∈ B $, x ∈ B ,ก x ∈ A ( {x} ∈ P(A) ( x ∈ B ( {x} ∈ P(B) )( P(A) ⊆ P(B) ( ") - .ก ก.
2.
ก+ () A = {x ∈ R | x2 2x + 1 = 0}, B = {x ∈ R | x2 3x + 2 = 0}, C = { x ∈ R | x2 5x + 6 = 0} +$ % &'( ก( , + !"ก ( ก( A = {1}, B = {1, 2}, C = {2, 3} +0 )!( A ⊆ B C .
3.
ก+ + A, B, C ) (!( ' A ⊆ B B ⊆ C !"ก $( ก 1 ,ก A ⊆ B B ⊆ C )( A ∩ B = φ, A ∩ C = φ, B ∩ C = φ +*,ก0$, - A, B, C " *(ก ก n(A ∪ B ∪ C) = n(A) + n(B) + n(C) n(A ∩ B) n(A ∩ C) n(B ∩ C) + n(A ∩ B ∩ C) = n(A) + n(B) + n(C) -----(*) ,ก- 3 " *(ก ก ก* (*) 7)( !"ก. - 3 $((ก !"ก- 3 กก )( !"ก ก 1 ก.
4.
A $ ก* x4 4x3 x2 + 16x 12 = 0, B = {1, 2, 3} +( A B $ % &'ก ()* ' - *$ *.)7 2 *, $, *, ก *,* *" ()+ !"ก A ,ก, ) A .( *. ก*%+1 ก* ก*+
!"ก A 7)ก*ก ก*+$( x -!:;< =;+,
ก+ + P(x) = ,ก P(2) = ( x 2 +* P(x) P(x) = = = ) x = - A = +0 )!( B ⊆ A
x4 4x3 x2 + 16x 12 16 32 4 + 32 12 = 0 )( (x 2)(x3 2x2 5x + 6) (x 2)(x + 2)(x2 4x + 3) (x 2)(x + 2)(x 3)(x 1) = 0 2, 1, 2, 3 { 2, 1, 2, 3} .
5.
.ก , A B ) (!( ( ก. ) (.ก %* A ∩ B = {} ก0( , A ⊆ B ) (!( A ∪ B = {} ก0( , A ⊆ B . .ก %* A ∪ (B ∩ C) = (A ∪ B) ∩ ( A ∪ C) ก< *'ก $. ) (.ก %* A B = {x | x ∈ A x ∉ B} ) (!( A B = {x | x ∈ A x ∈ B} . ) (.ก %* A ∩ B = {x | x ∈ A x ∈ B} ) (!( A ∩ B = {x | x ∉ A x ∈ B} .
6.
" ก* " ก* ∗ () A ∗ B = (A ∩ B′) (B ∩ A′) U กB% %&', A, B, C ) ( () ( ( *( ก n(X) $, !"ก X %"*C(() -ก(.ก %"*C ก. ก' A ∗ B = (A ∩ B′) (B ∩ A′) = (A B) (B A) = AB = A B ∗ A = (B ∩ A′) (A ∩ B′) = (B A) (A B) = BA = B ( ก. ) (.ก
()%"*C . ก (A ∗ B) ∗ C = = A ∗ (B ∗ C) = = ( . ) (.ก ()%"*C $. ก n(A ∗ B) = = = n(B ∗ A) = = = ( $. ) (.ก 7.
[(A ∩ B′) (B ∩ A′)] ∗ C A∗C A ∗ (B C) A∗B
n(A B) n(A) n(A ∩ B) n(A) ( ,ก n(A ∩ B) = 0) n(B A) n(B) n(A ∩ B) n(B) ( ,ก n(A ∩ B) = 0) .
" ก* " ก* ∆ A ∆ B = {x y | x ∈ A, y ∈ B x > y} , A = {2, 1, 0, 1, 2, 3}, B = { 1, 0, 1, 2, 3} () -ก(.ก ก A ∆ B = {x y | x ∈ A, y ∈ B x > y} %"*C !"ก A ∆ B ,ก x ∈ A, y ∈ B x > y +0 ( 0 > 1, 1 > 1, 1 > 0, 2 > 1, 2 > 0, 2 > 1, 3 > 1, 3 > 0, 3 > 1, 3 > 2 )( A ∆ B = {1, 2, 3, 4} %"*C,ก ก. *+( {x | x5 6x4 + 12x3 12x2 + 11x 6 = 0} *ก !"ก)* + P(x) = x5 6x4 + 12x3 12x2 + 11x 6 = 0 :;< =;+,)( P(1) = 0 )( P(x) = (x 1)(x4 5x3 + 7x2 5x + 6) !:;< =;+,ก$*-)( P(2) = 0 - P(x) = (x 1)(x 2)(x3 3x2 + x 3) = (x 1)(x 2)[x2(x 3) + (x 3)] = (x 1)(x 2)(x 3)(x2 + 1) = 0 - {x | x5 6x4 + 12x3 12x2 + 11x 6 = 0} = {1, 2, 3, i, i} ( {1, 2, 3, 4} {x | x5 6x4 + 12x3 12x2 + 11x 6 = 0} $, ก. ) (.ก
%"*C,ก . )( (A ∆ B) ∪ A = {2, 1, 0, 1, 2, 3, 4} (A ∆ B) ∪ B = {1, 0, 1, 2, 3, 4} ,ก n[(A ∆ B) ∪ A] > n[(A ∆ B) ∪ B] ( (A ∆ B) ∪ A (A ∆ B) ∪ B - . ก() (.ก ()%"*C,ก $. ก (A ∆ B) A = {4} (A ∆ B) B = {4} +0 ( (A ∆ B) A = (A ∆ B) B ( $. ก(.ก 8.
.
" ก* " ก* +! () A + B = {x + y | x ∈ A, y ∈ B x + y ≠ 0} ก+ + A = {1, 0, 1}, B = {0, 1, 2}, C = {0, 1} n(X) $, !"ก X () ก(.ก (%"*C,กก') %"*C,ก ก. %"*C$( x + y x ∈ A, y ∈ B x + y ≠ 0 กก** ก*C x = 1 ) (1, 0), (1, 1), (1, 2) * ) 3 "& ก*C x = 0 ) (0, 0), (0, 1), (0, 2) * ) 3 "& ก*C x = 1 ) (1, 0), (1, 1), (1, 2) * ) 3 "& +0 ( % (1, 1) (0, 0) ( - ) (*ก , )( x + y ≠ 0 ( A + B !"ก$, {(1 + 0), (1 + 2), (0 + 1), (0 + 2), (1 + 0), (1 + 1), (1 + 2)} = {1, 1, 2, 3} $, n(A + B) = 4 ≠ n(A) + n(B) = 6 %*F - ก. ) (.ก ()%"*C . %"*C ก ก. )( n[(A + B) + C] = 5 ≠ n(A) + n(B) + n(C) = 8 %*F - . G" ()%"*C $. ,ก n(A + B) = 4 %*F - -+ A + B (ก 24 = 16 %*F - $. .ก .
9.
0ก 1 (A B′) ∩ (C D′) ∩ (E F′) ∩ & ∩ (Y Z′) A ⊆ B ⊆ C ⊆ D & ⊆ Y ⊆ Z A, B, C, &, Z ) (( $, () (%"*C,กก') %"*C (A B′) ∩ (C D′) ∩ (E F′) ∩ & ∩ (Y Z′) = A∩B∩C∩D∩&∩X∩Y∩Z ) -+ $ ( !"ก( 1 (%*'ก+ , )(1ก ) (() .( + 7 " *' ก! ก ('ก+ , )%" " ( A ⊆ B ⊆ C ⊆ D & ⊆ Y ⊆ Z ( $, )-+ - % 0ก 1 $, A ก.
10. ก+ + P, Q * "&"I 0 ก%+1 ก* n (n 0 ก) Pn(x) = {a0, a1, a2, &, an} Qn(x) = {b0, b1, b2, &, bn} P ≠ Q an, bn ≠ 0 " ก* " ก* +! $, P + Q = {ci = ai + bi 1ก 0 ≤ i ≤ n | ai ∈ P, bi ∈ Q} () -ก(G" ก. . +0 )!(.ก ($1C *%" . ')(( G 7ก*%" . ') %"*C $. ก a1 = a0 + a2 b1 = b0 + b2 )( a1 + b1 = (a0 + b0) + (a2 + b2) $, c1 = c0 + c2 ) ( * *1)( 2 | c1 %*F - $. ) (.ก .