Sets Key Part 001

  • Uploaded by: Nic105
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Sets Key Part 001 as PDF for free.

More details

  • Words: 1,740
  • Pages: 5
     1 1.

 P(A)    P(B)  A  B     n(X)    !"ก  X  A  B $ % &'ก ()*  "( A ⊆ B  ( A ∪ B = B + x ∈ A ∪ B )( x ∈ A +*, x ∈ B  $, x ∈ B  ,ก x ∈ A  ( {x} ∈ P(A) ( x ∈ B  ( {x} ∈ P(B) )( P(A) ⊆ P(B)  ( ") - .ก  ก.

2.

ก+   () A = {x ∈ R | x2  2x + 1 = 0}, B = {x ∈ R | x2  3x + 2 = 0}, C = { x ∈ R | x2  5x + 6 = 0} +$ % &'(   ก( , + !"ก ( ก(   A = {1}, B = {1, 2}, C = {2, 3} +0 )! ( A ⊆ B  C  .

3.

ก+ +  A, B, C    ) (!(  '  A ⊆ B  B ⊆ C    !"ก   $( ก 1   ,ก A ⊆ B  B ⊆ C )( A ∩ B = φ, A ∩ C = φ, B ∩ C = φ +*,ก0$,  -  A, B, C  " *(ก ก n(A ∪ B ∪ C) = n(A) + n(B) + n(C)  n(A ∩ B)  n(A ∩ C)  n(B ∩ C) + n(A ∩ B ∩ C) = n(A) + n(B) + n(C) -----(*)  ,ก - 3   " *(ก ก ก* (*) 7)(  !"ก.   - 3   $((ก   !"ก - 3   กก )(   !"ก ก 1  ก.

4.

 A   $  ก* x4  4x3  x2 + 16x  12 = 0, B = {1, 2, 3} +(  A  B  $ % &'ก ()*  ' -  * $ *.)7 2 *, $, *, ก *,*   *" ()+ !"ก  A  ,ก, ) A .( *. ก*%+1  ก*  ก*+

!"ก A 7)ก*ก ก*+$( x   -!:;< =;+,

ก+ + P(x) =  ,ก P(2) =  ( x  2 +* P(x) P(x) = = = ) x =   - A = +0 )! ( B ⊆ A

x4  4x3  x2 + 16x  12 16  32  4 + 32  12 = 0   )( (x  2)(x3  2x2  5x + 6) (x  2)(x + 2)(x2  4x + 3) (x  2)(x + 2)(x  3)(x  1) = 0  2, 1, 2, 3 { 2, 1, 2, 3}  .

5.

.ก , A  B    ) (!( (   ก. ) (.ก %* A ∩ B = {} ก0( , A ⊆ B ) (!( A ∪ B = {} ก0( , A ⊆ B  . .ก %* A ∪ (B ∩ C) = (A ∪ B) ∩ ( A ∪ C)  ก< *'ก  $. ) (.ก %* A  B = {x | x ∈ A  x ∉ B} ) (!( A  B = {x | x ∈ A  x ∈ B}  . ) (.ก %* A ∩ B = {x | x ∈ A  x ∈ B} ) (!( A ∩ B = {x | x ∉ A  x ∈ B}  .

6.

" ก* " ก* ∗  () A ∗ B = (A ∩ B′)  (B ∩ A′)  U   กB% % &', A, B, C    ) (  () (  ( *( ก  n(X) $,   !"ก  X %"*C(() -ก(.ก  %"*C ก. ก' A ∗ B = (A ∩ B′)  (B ∩ A′) = (A  B)  (B  A) = AB = A  B ∗ A = (B ∩ A′)  (A ∩ B′) = (B  A)  (A  B) = BA = B  ( ก. ) (.ก

()%"*C . ก (A ∗ B) ∗ C = =  A ∗ (B ∗ C) = =  ( . ) (.ก ()%"*C $. ก n(A ∗ B) = = =  n(B ∗ A) = = =  ( $. ) (.ก 7.

[(A ∩ B′)  (B ∩ A′)] ∗ C A∗C A ∗ (B  C) A∗B

n(A  B) n(A)  n(A ∩ B) n(A) ( ,ก n(A ∩ B) = 0) n(B  A) n(B)  n(A ∩ B) n(B) ( ,ก n(A ∩ B) = 0)   .

" ก* " ก* ∆   A ∆ B = {x  y | x ∈ A, y ∈ B  x > y}  , A = {2, 1, 0, 1, 2, 3}, B = { 1, 0, 1, 2, 3} () -ก(.ก  ก A ∆ B = {x  y | x ∈ A, y ∈ B  x > y} %"*C !"ก   A ∆ B  ,ก x ∈ A, y ∈ B  x > y +0 ( 0 > 1, 1 > 1, 1 > 0, 2 > 1, 2 > 0, 2 > 1, 3 > 1, 3 > 0, 3 > 1, 3 > 2 )( A ∆ B = {1, 2, 3, 4} %"*C ,ก ก. *+(  {x | x5  6x4 + 12x3  12x2 + 11x  6 = 0} *ก  !"ก)*   + P(x) = x5  6x4 + 12x3  12x2 + 11x  6 = 0 :;< =;+,)( P(1) = 0 )( P(x) = (x  1)(x4  5x3 + 7x2  5x + 6) !:;< =;+,ก$* -)( P(2) = 0   - P(x) = (x  1)(x  2)(x3  3x2 + x  3) = (x  1)(x  2)[x2(x  3) + (x  3)] = (x  1)(x  2)(x  3)(x2 + 1) = 0   - {x | x5  6x4 + 12x3  12x2 + 11x  6 = 0} = {1, 2, 3, i, i}  ( {1, 2, 3, 4}  {x | x5  6x4 + 12x3  12x2 + 11x  6 = 0}  $,  ก. ) (.ก

%"*C ,ก . )( (A ∆ B) ∪ A = {2, 1, 0, 1, 2, 3, 4}  (A ∆ B) ∪ B = {1, 0, 1, 2, 3, 4}  ,ก n[(A ∆ B) ∪ A] > n[(A ∆ B) ∪ B]  ( (A ∆ B) ∪ A  (A ∆ B) ∪ B   -  . ก() (.ก ()%"*C ,ก $. ก (A ∆ B)  A = {4}  (A ∆ B)  B = {4} +0 ( (A ∆ B)  A = (A ∆ B)  B  ( $. ก(.ก 8.

  .

" ก* " ก* +!  () A + B = {x + y | x ∈ A, y ∈ B  x + y ≠ 0} ก+ + A = {1, 0, 1}, B = {0, 1, 2}, C = {0, 1}  n(X) $,  !"ก  X () ก(.ก (%"*C ,กก')  %"*C ,ก ก. %"*C$( x + y  x ∈ A, y ∈ B  x + y ≠ 0 กก**    ก*C x = 1 ) (1, 0), (1, 1), (1, 2) *  ) 3 "& ก*C x = 0 ) (0, 0), (0, 1), (0, 2) *  ) 3 "& ก*C x = 1 ) (1, 0), (1, 1), (1, 2) *  ) 3 "& +0 ( % (1, 1)  (0, 0) ( - ) (*ก , )( x + y ≠ 0  (  A + B   !"ก$, {(1 + 0), (1 + 2), (0 + 1), (0 + 2), (1 + 0), (1 + 1), (1 + 2)} = {1, 1, 2, 3}  $, n(A + B) = 4 ≠ n(A) + n(B) = 6 %*F -  ก. ) (.ก ()%"*C . %"*C  ก  ก. )( n[(A + B) + C] = 5 ≠ n(A) + n(B) + n(C) = 8 %*F -  . G" ()%"*C $.  ,ก n(A + B) = 4 %*F -     -+   A + B (ก 24 = 16 %*F -  $. .ก   .

9.

 0ก 1  (A  B′) ∩ (C  D′) ∩ (E  F′) ∩ & ∩ (Y  Z′)  A ⊆ B ⊆ C ⊆ D & ⊆ Y ⊆ Z  A, B, C, &, Z   ) (( $,  () (%"*C ,กก')  %"*C  (A  B′) ∩ (C  D′) ∩ (E  F′) ∩ & ∩ (Y  Z′) = A∩B∩C∩D∩&∩X∩Y∩Z  ) -+ $ (   !"ก(  1   (%*'ก+ , )(1ก   ) (() .(   + 7  " *' ก! ก  ('ก+ , )%" " ( A ⊆ B ⊆ C ⊆ D & ⊆ Y ⊆ Z  (  $, ) -+  - %   0ก 1 $,  A     ก.

10. ก+ + P, Q    * "&"I   0 ก%+1  ก* n (n    0 ก)   Pn(x) = {a0, a1, a2, &, an}  Qn(x) = {b0, b1, b2, &, bn}  P ≠ Q  an, bn ≠ 0 " ก*  " ก* +! $, P + Q = {ci = ai + bi 1ก 0 ≤ i ≤ n | ai ∈ P, bi ∈ Q} () -ก(G"   ก.  . +0 )! (.ก ($1C  *%" . ')(( G 7ก*%" . ') %"*C $. ก a1 = a0 + a2  b1 = b0 + b2 )( a1 + b1 = (a0 + b0) + (a2 + b2)  $, c1 = c0 + c2 ) (  * *1)( 2 | c1 %*F -  $. ) (.ก   .      

Related Documents

Sets Key Part 001
June 2020 2
Sets Key Part 002
June 2020 2
Sets
May 2020 20
Sets
April 2020 25
Sets
August 2019 51
Invertebrates Key Part I
December 2019 6

More Documents from ""

Sets Key Part 001
June 2020 2
Sets Key Part 002
June 2020 2
June 2020 1
June 2020 1
June 2020 1
June 2020 2