Exercise Session 11, November 29th ,2006 Mathematics for Economics and Finance Prof: Norman Schürho¤ TAs: Zhihua Chen (Cissy), Natalia Guseva Solutions Problem 1 Find the moment generating function for the following distributions: (a) bernoulli(p), (b) exp( ), (c) N ormal( ; 2 ) and N ormal(0; 2 ) and compute the …rst and second moments. Ans: a). P (X = 0) = 1
p; P (X = 1) = p:
X (u)
E [X] =
@ @u
E X2 =
X (u) u=0 2
@ @u2
X (u)
V ar(X) = p(1
p)
b). fX (x) = 1 e
x
= E euX = eu 1 p + eu 0 (1 = 1 + p [eu 1] = eu pju=0 = p
u=0
= eu pju=0 = p
> 0 and u < 1 Z 1 1 uX = eux e X (u) = E e
; x > 0;
x
0
E [X] =
@ @u
E X2 = V ar(X) =
X (u) u=0 2
@ @u2 2
p)
X (u)
=
u=0
(1
=
=
u)2 u=0 2 2 (1 u)3 u=0
1
=2
2
dx =
1 1
u
c). X
N( ;
2
);
uX
X (u)
= E(e
)=
1 2
+1 Z
1 p 2
+1 Z
1 p 2
+1 Z
=
=
=
p
= e
+1 Z
p
1
e
1 2
(x )2 2 2
eux e
x2 + 2
2 2 ux
2x 2 2
dx
dx
1
(
x2
2x
2 + 2u
) (
e
E [X] =
@ @u
dx
1
(x (
+ 2u
e
+1 Z
1 p 2
2 u2 2
2
))
2 2
1
u+
E X2 =
2
@ @u2
X (u)
V ar(X) = E X 2
X
N (0;
X (u) = e E [X] = 0 E X2 =
u+
X (u) u=0
2
)
2 2
|
+
u+
(x ( e
2 u2 2
+ 2u
1
2 u2 2
=( +
u=0
2
2
= (( +
(E [X])2 =
u+
u)e
2
u)2 +
+
);
2 u2 2
2
2
2
2
dx
{z
2 u2 2
dx
))
2 2
=1(b ecause integral of pdf N ( +
= e
2 + 2u + 2
) (
+ 2u +
}
2 u; 2 ))
=
u=0 2 u+
)e
2
=
2
2 u2 2
u=0
=
2
+
2