Sejarah Ditemukannya Mikroskop Azin.docx

  • Uploaded by: Anonymous Th7hopkTGz
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Sejarah Ditemukannya Mikroskop Azin.docx as PDF for free.

More details

  • Words: 1,972
  • Pages: 6
SEJARAH DITEMUKANNYA MIKROSKOP Istilah mikroskop berasal dari bahasa Yunani, yaitu kata micros = kecil dan scopein = melihat. Ilmu yang mempelajari benda kecil dengan menggunakan alat ini disebut mikroskopi, dan kata mikroskopik berarti sangat kecil, tidak mudah terlihat oleh mata. Menurut sejarah orang yang pertama kali berpikir untuk membuat alat yang bernama mikroskop ini adalah Zacharias Janssen. Janssen sendiri sehari-harinya adalah seorang yang kerjanya membuat kacamata. Dibantu oleh Hans Janssen mereka mambuat mikroskop pertama kali pada tahun 1590. Mikroskop pertama yang dibuat pada saat itu mampu melihat perbesaran objek hingga dari 150 kali dari ukuran asli. Temuan mikroskop saat itu mendorong ilmuan lain, seperti Galileo Galilei (Italia), untuk membuat alat yang sama. Bahkan Galileo mengklaim dririnya sebagai pencipta pertamanya yang telah membuat alat ini pada tahun 1610. Galileo menyelesaikan pembuatan mikroskop pada tahun 1609 dan mikroskop yang dibuatnya diberi nama yang sama dengan penemunya, yaitu mikroskop Galileo. Mikroskop jenis ini menggunakan lensa optik, sehingga disebut mikroskop optik. Mikroskop yang dirakit dari lensa optik memiliki kemampuan terbatas dalam memperbesar ukuran obyek. Hal ini disebabkan oleh limit difraksi cahaya yang ditentukan oleh panjang gelombang cahaya. Secara teoritis, panjang gelombang cahaya ini hanya sampai sekitar 200 nanometer. Untuk itu, mikroskop berbasis lensa optik ini tidak bisa mengamati ukuran di bawah 200 nanometer. Setelah itu seorang berkebangsaan belanda bernama Antony Van Leeuwenhoek (16321723) terus mengembangkan pembesaran mikroskopis. Antony Van Leeuwenhoek sebenarnya bukan peneliti atau ilmuwan yang profesional. Profesi sebenarnya adalah sebagai ‘wine terster’ di kota Delf, Belanda. Ia biasa menggunakan kaca pembesar untuk mengamati serat-serat pada kain. Tetapi rasa ingin tahunya yang besar terhadap alam semesta menjadikannya salah seorang penemu mikrobiologi. Leewenhoek menggunakan mikroskopnya yang sangat sederhana untuk mengamati air sungai, air hujan, ludah, feses dan lain sebagainya. Ia tertarik dengan banyaknya benda-benda kecil yang dapat bergerak yang tidak terlihat dengan mata biasa. Ia menyebut benda-benda bergerak tadi dengan ‘animalcule’ yang menurutnya merupakan hewan-hewan yang sangat kecil. Penemuan ini membuatnya lebih antusias dalam mengamati benda-benda tadi dengan lebih meningkatkan mikroskopnya. Hal ini dilakukan dengan menumpuk lebih banyak lensa dan memasangnya di lempengan perak. Akhirnya Leewenhoek membuat 250 mikroskop yang mampu memperbesar 200-300 kali. Leewenhoek mencatat dengan teliti hasil pengamatannya tersebut danmengirimkannya ke British Royal Society. Salah satu isi suratnya yang pertama

pada tanggal 7 September 1674 ia menggambarkan adanya hewan yang sangat kecil yang sekarang dikenal dengan protozoa. Antara tahun 1963-1723 ia menulis lebih dari 300 surat yang melaporkan berbagai hasil pengamatannya. Salah satu diantaranya adalah bentuk batang, coccus maupun spiral yang sekarang dikenal dengan bakteri. Penemuan-penemuan tersebut membuat dunia sadar akan adanya bentuk kehidupan yang sangat kecil yang akhirnya melahirkan ilmu mikrobiologi. Bila Di Eropa, mikroskop sudah dikenal sejak abad ke-17 dan digunakan untuk melihat binatang-binatang sejenis mikroba. Menariknya, orang Jepang senang menggunakannya untuk mengamati serangga berukuran kecil, dan hasilnya berupa buku-buku berisi pemerian tentang serangga secara mendetail.  Mikroskop Optis Jenis paling umum dari mikroskop, dan yang pertama diciptakan, adalah mikroskop optis. Mikroskop ini merupakan alat optik yang terdiri dari satu atau lebih lensa yang memproduksi gambar yang diperbesar dari sebuah benda yang ditaruh di bidang fokal dari lensa tersebut. Pada 1674 Leeuwenhok dengan menggunakan mikroskop sederhana, dia dapat melihat mikroorganisme. Mikroorganime terlihat dari setetes air danau yang diamati dengan menggunakan suatu lensa gelas. Benda-benda itu disebut ‘animalcules’ terlihat dalam berbagai bentuk, ukuran dan warna. Leeuwenhoek mengamati organisme yang dikorek dari sela-sela giginya. Kemudian hasil pengamatannya digambarkan dalam bentuk sketsa sel bakteri dengan bentuk seperti bola, batang, dan spiral sama seperti bentuk bakteri yang dikenal pada saat ini. Leeuwenhoek telah membuat lebih dari 500 gambar mikroskop. Dalam desain dasar mikroskop Leeuwenhoek, sebagian orang menganggap itu hanyalah kaca pembesar (karena hanya terbuat dari 1 lensa saja), bukan mikroskop seperti yang digunakan sekarang (yang terdiri dari 2 lensa). Dibandingkan dengan mikroskop modern, mikroskop buatannya adalah perangkat yang sangat sederhana, hanya menggunakan satu lensa, terpasang dalam lubang kecil di piring kuningan yang membentuk tubuh instrumen. Spesimen dipasang pada titik fokus yang menempel di depan lensa, dan posisi dan fokus bisa disesuaikan dengan memutar dua sekrup. Seluruh instrumen panjangnya hanya 3-4 inci dan harus diangkat mendekat dengan mata dan memerlukan pencahayaan yang baik serta kesabaran yang besar dalam penggunaanya. Meskipun pada jamannya telah ditemukan mikroskop 2 lensa yang hampir mirip dengan mikropskop saat ini, namun pada saat itu pembuatannya masih rumit dibandingkan mikroskop ala Leewenhoek. Dan dengan ketrampilan Leewenhoek dalam membuat lensa, dia berhasil membuat mikroskop yang mampu memperbesar objek sampai lebih dari 200 kali sehingga gambar yang dihasilkan lebih jelas dan lebih terang. Meskipun ia sendiri tidak bisa menggambar

dengan baik, ia mempekerjakan ilustrator untuk menggambar objek yang ia amati dan gambar itu digunakan untuk elengkapi uraian tertulis dari objek yang ia amati.  Mikroskop Cahaya Mikroskop cahaya atau dikenal juga dengan nama “Compound light microscope” adalah sebuah mikroskop yang menggunakan cahaya lampu sebagai pengganti cahaya matahari sebagaimana yang digunakan pada mikroskop konvensional. Pada mikroskop konvensional, sumber cahaya masih berasal dari sinar matahari yang dipantulkan dengan suatu cermin datar ataupun cekung yang terdapat dibawah kondensor. Cermin ini akan mengarahkan cahaya dari luar kedalam kondensor. Keterbatasan pada mikroskop Leeuwenhoek adalah pada kekuatan lensa cembung yang digunakan. Untuk mengatasinya digunakan lensa tambahan yang diletakkan persis didepan mata pengamat yang disebut eyepiece, sehingga obyek dari lensa pertama (kemudian disebut lensa obyektif) dapat diperbesar lagi dengan menggunakan lensa ke dua ini. Pada perkembangan selanjutnya ditambahkan pengatur jarak antara kedua lensa untuk mempertajam fokus, cermin atau sumber pencahayaan lain, penadah obyek yang dapat digerakkan dan lain-lain, yang semua ini merupakan dasar dari pengembangan mikroskop modern yang kemudian disebut mikroskop cahaya Light Microscope (LM). LM modern mampu memberikan pembesaran (magnifikasi) sampai 1.000 kali dan memungkinkan mata manusia dapat membedakan dua buah obyek yang berjarak satu sama lain sekitar 0,0002 mm (disebut daya resolusi 0,0002 mm). Seperti diketahui mata manusia yang sehat disebut-sebut mempunyai daya resolusi 0,2 mm. Pada pengembangan selanjutnya diketahui bahwa kemampuan lensa cembung untuk memberikan resolusi tinggi sudah sampai pada batasnya, meskipun kualitas dan jumlah lensanya telah ditingkatkan. Belakangan diketahui bahwa ternyata panjang gelombang dari sumber cahaya yang digunakan untuk pencahayaan berpengaruh pada daya resolusi yang lebih tinggi. Diketahui bahwa daya resolusi tidak dapat lebih pendek dari panjang gelombang cahaya yang digunakan untuk pengamatan. Penggunaan cahaya dengan panjang gelombang pendek seperti sinar biru atau ultra violet dapat memberikan sedikit perbaikan, kemudian ditambah dengan pemanfaatan zat-zat yang mempunyai indeks bias tinggi (seperti minyak), resolusi dapat ditingkatkan hingga di atas 100 nanometer (nm). Hal ini belum memuaskan peneliti pada masa itu, sehingga pencarian akan mode baru akan mikroskop terus dilakukan.  Mikroskop Elektron Pada tahun 1920 ditemukan suatu fenomena di mana elektron yang dipercepat dalam suatu kolom elektromagnet, dalam suasana hampa udara (vakum) berkarakter seperti cahaya,

dengan panjang gelombang yang 100.000 kali lebih kecil dari cahaya. Selanjutnya ditemukan juga bahwa medan listrik dan medan magnet dapat berperan sebagai lensa dan cermin terdapat elektron seperti pada lensa gelas dalam mikroskop cahaya. Untuk melihat benda berukuran di bawah 200 nanometer, diperlukan mikroskop dengan panjang gelombang pendek. Dari ide inilah, di tahun 1932 mikroskop elektron semakian berkembang lagi. Sebagaimana namanya, mikroskop elektron menggunakan sinar elektron yang panjang gelombangnya lebih pendek dari cahaya. Karena itu, mikroskop elektron mempunyai kemampuan pembesaran obyek (resolusi) yang lebih tinggi dibanding mikroskop optik. Mikroskop electron mampu pembesaran objek sampai 2 juta kali, yang menggunakan elektro statik dan elektro magnetik untuk mengontrol pencahayaan dan tampilan gambar serta memiliki kemampuan pembesaran objek serta resolusi yang jauh lebih bagus daripada mikroskop cahaya. Mikroskop elektron ini menggunakan jauh lebih banyak energi dan radiasi elektromagnetik yang lebih pendek dibandingkan mikroskop cahaya. Sebenarnya, dalam fungsi pembesaran obyek, mikroskop elektron juga menggunakan lensa, namun bukan berasal dari jenis gelas sebagaimana pada mikroskop optik, tetapi dari jenis magnet. Sifat medan magnet ini bisa mengontrol dan mempengaruhi elektron yang melaluinya, sehingga bisa berfungsi menggantikan sifat lensa pada mikroskop optik. Kekhususan lain dari mikroskop elektron ini adalah pengamatan obyek dalam kondisi hampa udara (vacuum). Hal ini dilakukan karena sinar elektron akan terhambat alirannya bila menumbuk molekul-molekul yang ada di udara normal. Dengan membuat ruang pengamatan obyek berkondisi vacuum, tumbukan elektron-molekul bisa terhindarkan. Dengan mikroskop elektron yang mempunyai perbesaran lebih dari 10.000x, kita dapat melihat objek mikroskop dengan lebih detail. Perkembangan mikroskop ini mendorong berbagai penemuan di bidang biologi, seperti penemuan sel, bakteri, dan partikel mikroskopis yang akan dipelajari berikut yaitu virus. Penemuan virus melalui perjalanan panjang dan melibatkan penelitian dari banyak ilmuwan. 

Mikroskop Elektron Mode Scanning 1. Transmission Electron Microscopy (TEM) Dikembangkan pertama kali oleh Ernst Ruska danMax Knoll, 2 peneliti dari Jerman pada tahun 1932. Saat itu, Ernst Ruska masih sebagai seorang mahasiswa doktor dan Max Knoll adalah dosen pembimbingnya. Karena hasil penemuan yang mengejutkan dunia tersebut, Ernst Ruska mendapat penghargaan Nobel Fisika pada tahun 1986. Sebagaimana namanya, TEM bekerja dengan prinsip menembakkan elektron ke lapisan tipis sampel, yang selanjutnya

informasi tentang komposisi struktur dalam sample tersebut dapat terdeteksi dari analisis sifat tumbukan, pantulan maupun fase sinar elektron yang menembus lapisan tipis tersebut. Dari sifat pantulan sinar elektron tersebut juga bisa diketahui struktur kristal maupun arah dari struktur kristal tersebut. Bahkan dari analisa lebih detail, bisa diketahui deretan struktur atom dan ada tidaknya cacat (defect) pada struktur tersebut. Hanya perlu diketahui, untuk observasi TEM ini, sample perlu ditipiskan sampai ketebalan lebih tipis dari 100 nanometer. Dan ini bukanlah pekerjaan yang mudah, perlu keahlian dan alat secara khusus. Obyek yang tidak bisa ditipiskan sampai order tersebut sulit diproses oleh TEM ini. Dalam pembuatan divais elektronika, TEM sering digunakan untuk mengamati penampang/irisan divais, berikut sifat kristal yang ada pada divais tersebut. Dalam kondisi lain, TEM juga digunakan untuk mengamati irisan permukaan dari sebuah divais.

2. Scanning Electron Microscopy (SEM) Tidak jauh dari lahirnya TEM, SEM dikembangkan pertama kali tahun 1938 oleh Manfred von Ardenne (ilmuwan Jerman). Konsep dasar dari SEM ini sebenarnya disampaikan oleh Max Knoll (penemu TEM) pada tahun 1935. SEM bekerja berdasarkan prinsip scan sinar elektron pada permukaan sampel, yang selanjutnya informasi yang didapatkan diubah menjadi gambar. Imajinasi mudahnya gambar yang didapat mirip sebagaimana gambar pada televisi. Cara terbentuknya gambar pada SEM berbeda dengan apa yang terjadi pada mikroskop optic dan TEM. Pada SEM, gambar dibuat berdasarkan deteksi elektron baru (elektron sekunder) atau elektron pantul yang muncul dari permukaan sampel ketika permukaan sampel tersebut discan dengan sinar elektron. Elektron sekunder atau elektron pantul yang terdeteksi selanjutnya diperkuat sinyalnya, kemudian besar amplitudonya ditampilkan dalam gradasi gelap-terang pada layar monitor CRT (cathode ray tube). Di layar CRT inilah gambar struktur obyek yang sudah diperbesar bisa dilihat. Pada proses operasinya, SEM tidak memerlukan sampel yang ditipiskan, sehingga bisa digunakan untuk melihat obyek dari sudut pandang 3 dimensi. Demikian, SEM mempunyai resolusi tinggi dan familiar untuk mengamati obyek benda berukuran nano meter. Meskipun demikian, resolusi tinggi tersebut didapatkan untuk scan dalam arah horizontal, sedangkan scan secara vertikal (tinggi rendahnya struktur) resolusinya rendah. Ini merupakan kelemahan SEM yang belum diketahui pemecahannya. Namun demikian, sejak sekitar tahun 1970-an, telah dikembangkan mikroskop baru yang mempunyai

resolusi tinggi baik secara horizontal maupun secara vertikal, yang dikenal dengan “scanning probe microscopy (SPM)”. SPM mempunyai prinsip kerja yang berbeda dari SEM maupun TEM dan merupakan generasi baru dari tipe mikroskop scan. Mikroskop yang sekarang dikenal mempunyai tipe ini adalah scanning tunneling microscope (STM), atomic force microscope (AFM) dan scanning near-field optical microscope (SNOM). Mikroskop tipe ini banyak digunakan dalam riset teknologi nano.  Mikroskop dan Teknologi Nano Sejak sekitar tahun 1970-an, telah dikembangkan mikroskop baru yang mempunyai resolusi tinggi baik secara horizontal maupun secara vertikal, yang dikenal dengan “scanning probe microscopy (SPM)”. SPM mempunyai prinsip kerja yang berbeda dari SEM maupun TEM dan merupakan generasi baru dari tipe mikroskop scan. Mikroskop yang sekarang dikenal mempunyai tipe ini adalah scanning tunneling microscope (STM), atomic force microscope (AFM) dan scanning near-field optical microscope (SNOM). Sampai hari ini telah berhasil dikembangkan mikroskop dengan teknologi nano. Yaitu teknologi yang berbasis pada struktur benda berukuran nano meter. Satu nano meter = sepermilyar meter). Tentu yang dimaksud di sini bukanlah mikroskop biasa, tetapi mikroskop yang mempunyai tingkat ketelitian (resolusi) tinggi untuk melihat struktur berukuran nano meter.

Related Documents


More Documents from "ita"