Cold room calculations Product Storage Requirements Refrigeration Load Calculations Wall Heal Gain Air Change Load
PaSe 1
1 2 2 2
Product Load Product Temperature Reduction Product F reex l ng
2
.2
Product Respiration Heat Equivalent of Occupaw Lighting Load Mlscelhneous Loads Cooler Fan Load
3 3 3
Example Product Storage Data K Values for Common Insulation Materials Average Number of Air C h a m per 24 hours for Storags Rooms due to Omr O w i n g and infiltration Heat Removed in Cooling lo Air Storage Conditims Heat Equivalent of Occupancy . Heat Equivalmt of Electric Motors Allowance for Solar Radiation Physieal Promties of Materials
4 5
3 3
a
Equipment seiection Rapid Selection Tables
P i a n g Relrigerant Piping Sektion Oata Corrmtion Factw Tables Equivalent Straight Pipe Lengths in Mtres fw Refrigerant Line Valves and Fittings Suction Line Sizes R I2 Suction Line Sizes R22 Suction Line Sizes R502 Suction Line Sizes R7 17 (NH31 Liquid Line S i z R ~ 12, R22, R502, R717 {NH31 Delivery Line Sizes R12, R22. R W , R717 INH3) Minimum Capacities to Carry Oil Up Piping Weight of Refrigerant Pipelines Liquid Line Subcwling
Pipe layout Refrigerant Pipework byout Expndon Valve PMat and External Equaliw location Dellwry Lines Condenser to Receiver Pipitq Liquid Line Piping Suction tine Liquid Line Heat lntereharrgerr Temperature Conversion Conl~rsionFactors
-
Whilst every care has been taken in cmpil ing this manual. the company cannot be reg#onsiblefor its interpretation Acknowledgmmts to ASHRAE Guide
-
7 8 8 8 8 9
9
PRODUCTSTORAGE REQUIREMENT ..', -Table 1 shows recommended storage cxlmditions for a wide variety of products. Most fresh fruit and " vegetables are best stored just above their freezing point. Some varieties of fruit and vegetables howaver are susceptible to cold and freezing injury. Commodities which are highly susceptible to injury are denoted*'A' in the Table, whilst those commodities which are moderately susceptible are denoted '0'. General!y, fruit and vegetables are best stored at 8595% relative hurnidity; but there are exceptions, such as onions, garlic and winter squash where lower humidities are required. Unwrapped fresh and froze0 m a t should be stord at high humidity to avoid excessive weight loss during starage. frozen produce temperatures are generally shown as -18'C in the Table, hmwer,it can be reckoned that food would deteriorate two t~ threa times as slowly at -28" C and two to three times as quickly a t 4C. Most meat and meat products are excellent for freezing, and it is difficuIt to detect any difference between fresh and frozen meat after freezing, provided care has been taken over freezing and thawing. Meat should be frozen as smn as possible after slaughtering and conditioning to rninimise rancidity. This particular1y applies to pork and bacon. Most vegetables which are subsequently cooked, freeze well. They should however be correctly blanched prior to freezing to prevmt enzymatic action which would othwwise cause undesirable chemiml changes in the frozen vegetable. Vegetables which are eaten raw are not generally satisfactory for frsezing. Many fruits are satisfactory for freezing but a suitable variety must be chosen in each case. 'e r e detailed information regarding the dorage of fruit and vegetables can be obtained through the 'stry of Agriculture Devetopment and Advisory Services, Information about mat storage can mined from the Meat Research Institute. TEMPERATURE DIFFERENCE DEG. F. A G u m to Room Rakilva H u d i t k tw V u b w YmmpzIwa Olffrmc+land E w ~ t h Tmpm~ra ( B a d w taled Morm with rtady 0m4thp mnditknr)
In pracriw it b sntremsly difficult to pd413, mimain or mearue t b relative humidity wilHn s c ~ L dstore. Many wrying fecto~lsuch as opanlngs, cornpasor running tlm, mrdmnring p . ~~ p,l r a t i q tonppra~uredifferma, at&, dimlly dfwt ~ h relativa s humidity.
I
5
f
$
A
TEMPERATURE DIFFERENCE DEG.C
'
PER CENT RELATIVE HUMIDITY AT STEADY STATE CONDITIONS
&
-
-
REFR IGERATlOPl LOAD CALCULATIONS The following loads must be ca lculsted when aserring cooling rquiremenU for refrigerated cold room:1) Wall, floor and ceiling heat gain due to conduction of haat through cold room walls. 2) Air change load due to ingress of freshair through infiltration and door opening. 31 Product load required to cool incoming product down to storage room tempratwe, plus where applicable the load to freeze the product or to cater for the heat of respiration. 4) H a t equivalent of occupancy of cold room operatives. 51 Lighting load, 6) Any other miscellaneous loads imposed by other appliances operating in the cold room, 7 ) Cooler fan load.
*
$i
-
I
All the following loads must be assessed and added together after which suitably sized equipment can be dected. I t is normal practice to select equipment so that it has enough capacity to cope with the daily load without runhing continuousl~.This leaves time for def rating. I n the case of high temperature rooms using natural, ar off cycle, defrosting, a 16 hour running time is aimed at. 0.
q
: I
r 4
1
\
With forced defrost systems, an 18 hour running time is satisfactory.
.I
1
1. WALL HEAT GAIN WallHeatGain = KxAxTD
II
NOTE:
"C (see Table 2).
=
C&fficientofthermalconductivityforaspecificthick&afwatlw/m1
= =
Total ex temal surface area ma
Temperature difference across wall 'C
For cold rooms having sunlit walls the TD needs to be increased in accordance with table 7. This allows for eflmn of solar radiation.
2. AIR CHANGE LOAD -
Air
Room Volume (m3)
Load (W)
'
Heat Removed per Cubic Metreof Air
.
(Table 4)
X
Number of Air - ChangesperDay(Table3)
86.400
----
The average number of air changes per day for various w l u m of ~ cold room is shown in Table 3. ' The figure of 86,400is the number of seconds in a day. This is introduced to convert from jou lss pw day to watts. The amount of heat to bq rernpvd'in cop ling a cubic'metre of air from ambient duwn to the room * condition is shown in Table 4.
I
L
I
.
3. PRODUCT LOAD Product load can be divided into four types Product temperaturq reduction above freexing Product freezing Product temperature reduction below freezing Product respiration bad
Weight of Product
load (W)
LoBdedpeiDayIkg)
=
.
Product Temperature Reduction ("C) 86,400
4
-*
1
"
Product Specific Heat ( kJ/kg O C ) (Table 11
3.2 PRODUCT FREEZING
'
Product
Load IW) I
=
Latent Heat of Freezing (kJ/kgJ f
Weight of Product Loaded ~r Day (kg)
able 1)
86,400
MOTE: It may be specified that the product is to be frozen over a period of less then a day, in which mse the load will need to be increased accordingly. The heat load of any product packing material must be included, also any handling equipment such as trolleys.
/
C .
pt ;,&< 65-
a&
- ,! 7
.
.
*
-
;
bL4.
:'
. r
-
-*
.
a
L. ,3.3
PRODUCT RESPIRATION Fresh fruits and vegetables in storage ace alive, consequently their heat of respiration must be included in load calculations.
'
5
0.
Product
Load (W)
=
Total Weight of Product in Room (kg)
Heat of Respiration (kJ/kp)(Table 1)
86,400
*
5.
Table 1 shows specific heat, latent heat and heat of respiration for a wide variety of produce.
Z
4, HEAT EQUIVALENT OF OCCUPANCY Operatives working in cold rooms will produce a heat load. shown in Table 5 at different cold store temperatures. The number of operatives working in the room, and hours per day that they are actually in the room differs with each application and has to be estimated on a common sense basis. Number of Hours of Occupancy
Number of
Heat Equivalent per Occupant (W) (Table 6)
24 I
,
"
-
5. LIGHTf NG LOAD Lighting levels vary in different stores, but when information is not available it is reasonable to assume an intensity of 10 watts per square metre of floor area. Lights would normally be operated by a door switch so the number of hours per day during which lights are on can t x taken to be the same as the occupancy. Lighting
er
Load IW)
Lighting Power (W 1
Hours of Operation
X
6. MISCELLANEOUS LQADS When the equipment load is intermittent calculate as follows 4-
+
,siiscellaneous
Loads (W)
Equiphent
=
X
Output {W1
'
Hours o f
Oper&ion
If this load,is high in relation to the others it is advisable to consider it as continuous in which case MISCELLANEOUS LOAD = Equipment Watts
7. COOLER FAN LOAD this bad is continuous and Motor Heat shown in the relevant catalogue must be included. Running Time ihra)
-
Total Load x
24
System Capacity
THE SUMMATION OF ALL LOADS GIVES THE TOTAL LOAD; IT CAN BE COMPARED WITH THE SELECTED SYSTEM CAPACITY TO GIVE DAILY RUNNING TIME.
EXAMPLE REFRIGERATION LOAD CALC.VLAJ)ON.
*
,
.
.
, - -
..
+
MiwU u s g e t a h stor-
Outside Ambieht Rmm Tmmqmmtwr Room Dimnsiom lntml Ertrrnd Rwm Volum L r k e Arm Outri& w8II8 floor and Culling
bngth 226m Wdth 2.Sm Hdaht 2,2m Lngvh 2.4m Width Z.&n H&g?tt2.3m 2.25 n 2.66 r 2.2m I
lnulrtion IC Value
80mm Foaned h l y u r l t h a n 0.24 w/mZ ' C
f3.tma 4
+
(2.4 2.0) x 2 2.4 n 2 6 x 2
u 2.36
24.44nr' 13.44m1 Totrl h e r
m Lord Rrrom Volurm Wumber of C h m w of Air
.
.
Prducl ~ t ~ i at n Mc, g 100 kglday
Appliesliwr
=
37.88d
$. Alr C I -
13.lm3
D.y
h a t R m i m d p l r Cubic Mmof Air
Lard
28.4 . 70.6 kJ 1X 1 x 70,W x 28.4
.+.
80,400
3.3 H c t d R r p k r t b n b d Weipht d all Prduct Storad lieat of Respiration
w
4. HrlEqulvlknt oirOc#i#n~y Mat Equhlait par hrrm Nu& of Persons )lour of Oeeulmc~ Lond
6. W U ~ S Liphuno-
Horn d illumination
w
16 hr running
PA ELIMINARY SELECTION TO MATCH A DUTY OF l a 7 IS KBH48 UNIT P
. j
7. Fmlnputhwr (KBH491 k l a m plr Day Owration L w
6-
180W
-
16 1BO r 24
.
16
Totet Lord = I67B.7W F IMAL SELECTION TO MATCH THE DUTY OF 1679.7W is KIH65, TD 4B0c ,-
-
.-
.
PRODUCT STORAGE DATA
-
.
c.
'
*. ,-
C'
-
PRODUCT
nELaTIvt
yv. C
HULHDIW %
UPROXIMATL ITORA~C
LlCC
HKHCS~
WCCIFIC WECIFIC * g ~ HEAT t MLW f AEtZlWO lllLtZlUO Wg'C klMwC
r R E E Z ~ W G24-1 PqIMT
C
L<r~ HRAT
,
Bacun-Fresh Frozen Beef Fresh Frozen Ham Fresh Frozen
Lamb
- Fresh Frozen
Lard
- Froxan - Fresh
Liven Pork
Frozen Poultry- Fmsh Frozen Rabbit- Fresh Frozen Samager-Frsh Frozen Veal - Fresh From
,
\.
.
1.1 -4.4 -18 0-1.1. -18 0 11
85 90-95 88-92 90-95 85-90
-18
90-95 85-90 90-95 24-95. 90-95
-18 1 1 -18 7
-18
90-95
0 - 1 -18 0
85-80 90-95
-18
90-96 90-96 90-95 85-90 90-95
01.1
-18 0-1.t -18 0-1.1 -18
85-80
90-96 90-95
2-6 weeks .
4-6 months 1-6 w-mks 9-t2months 7-12 days 6-8 months
5-12dayr 8-10 months 4 - 8 months 12-14 months 3-4 months 3-7 days 4-6 months 1 week 8-1 2 months
1-5dap 0-6 m a n t h 3-12 days 2-6 months 5-10days 8-10rnonrhs
-2
1.83
1.1
-2
3.2
1.67
231
-2
2.53
1.46
167
-2
3.0
1,86
216
2.09
1.42
210
2.13
1.3
33
1.76
246
3.1
1.67
228
-2
3.72
234
216
-2
3.08
1.67
223
-2
-2.7
60
.
128
HIAT OT ~UI~ATIW
u m
URI
MEAT AND MEAT PRODUCTS
-
..
ST OR^^
,
I&K~
I
PRODUCT
R-ARKI LWt
I
C
I
I
I
I
I
I
1
FRUIT Apples Apricots
Avocados Bananas Bladtberries Cherries Coconuts Crankrrier Currants Deter Dried Figs Dried Goosbrries Grapefrult Gram Lemons Oranges Peaches , Pears
4
-1.1-3,3 90 -0.6-0 . 90 72-13 , 85-90 t3.3-15 90 -0.6-0 95 -0.6-0 90-95 7 80-85 2.2-4.4 90-95 -0.6-0 9&95 -18orO Below75 0-4.4 50-60 -0.6-0 90-95 10-16 85-90 -1-0 85-90 14.4-15.686-88 0-9 85-90 -0.6-0 90 -1.75 O,B 90-95
'
Pineapplm Mature Green 10- 13 Ripe 7.2
06-90
Plum
-0.&0
Pamegranates Raspberries Strawberries Tmgeriner
0 -0.&O -0.6-0
85-90 00-95 90 811-95 90-95
0-3.3
96-90
Fish-Fresh
0.6-2.0
90-95
Fish-Smoked
4.4-10 4.4-1 0
WM)
1-45 months 1-2 weeks 2-4 weeks
5-lodays 3 days 2-3 weeks I-2mmths 2-4 mmths 10-14days 6-12months 9-12 months 2-4 weeks 4-6 weeks 1-6monthr 1-6monchs 3-12
2-4 wwks
2-7 weeks 3-4 waeks 2-4 weeks 2-4 weeks 2-4 weeks 2-3 days 5-7 days 2-4wwkr
FISH
Fish-Brine salted Fish- Mild c u r d Fish-Frozen Shell Fish-Fresh . I Shell Fish-Frozen
i Bumr I Butter-Frozen Cheese Cream
Lw Cream
90-95 75-90 90-95 -1.1-0.6 85-95 -18 to-29 90-95
-2.2-1.7 -18
80-85 70-85 66-70
04.4
-18
-1.f-1.7 -18 -18
Pasteurized Conden&
Evaporated Mil k-Dried Whole Milk
Non fat Eggs-shell Eggs-whole liq.
0.6 4.4 Rmmtemp
7-1 3 7-13 -1 -7-0 0
2 months 8- 12 months
-
2-3 months
-
7 days several months 1 year
-.
Milk-F luid
5-115 days 6-8 months t k 1 2 months 4-8 months 6-1 2 months 3-7 days 3-8 manths
low
low 86-90
-
1-2 months
few months several month 5-6 manth 1 year
YISCE LLANEOUS Bmr-UK Bred Honey HOPS log
Mushroom Spawn-Manure Grain Nwrery stock Salad d l Margarine
12.2 -18
'
Below 10
-1.6-0 -4 1.t 0-4.4
0-2 2 2
3-6 weeks 4-6 rnmh 1 year several months
-
8 months 2 weeks 3-6 months t year 1 year
-1.5 -1.05 -0.3 -0.8 -0.8 -1.8 -0.8 -0.8 -1.0 -16.7
3.64
3.63 3.01 3.35 3.68 3.64 2.43 3.77 3.68
1.88 1.92 1.67 1.76 1.92 1.88 1.42 1.93 1.88
281 284
219 251 284 280
3.77 3.77
1.92
3.60
1.88
-1.0
3.68
-1.1
3.68
-0.83 3.63
1.88 1.88 1.88
283 283 274
-3.0 -0.6 -0.8 -1.05
1.86 1.76 1.03
284
-1.1 -1.1
-2.2 .-1.4
-0.8 -0.94 -1.5
3.56 3.85 3.77
1.08
1
.
1,93 1,93 1.84 1.93
1.92
25.6
B- same A A A'
1.8
156
288 280 67 80 293 293 270 296 288 288 274
1.51. 1.63 3.77 3.81 3.60 3.81
1.92
300 290
1.1
B
3.6 0.4 4.24 1.68
B B A 3 8
1.34 0.93
0.64 5.47 3.78
'
3
B
n
TABLE 2 K VALUES FOR COMMON INSU LATION MATERIALS W/deg C
Cork
-
kg/m3 baked slab
-
Cork baked slab wet Cork raw granulated Cork - baked granulated Glass wool- white Glass wool bitumen bonded Kapox Polystyrene
-
Polyurethane
- cellullar
Slag wool felted Stag wool loose Walt: board insulating Wood wool slabs
,
20 1.8
112 144 192 80-1 12
2.7 2.45 2.45
80-96
1.95
80 48-80 16
1 1.65 1 1.65 1.50. 1-65
24
32 64
'- Polyurethane - Foamed
-
INSULATION THICKNESS mm
DENSITY
MATERIAL
88
1.75
@ 48 136 176
0.95 1.90 1 1.82
320
2.9
480
4.7
40 MI 0.925 0.62 1.05 1.22 1.22 0-97, 0.82 0.82 0.80 0.82 0.75 0.82 0.87 0.47 0.95 0.84
0.70 0.82
0.82 0.65
80.
0.46 0.52 0.61 0.61 0.49 0.41 0.41 0.40 0.41
(&I20
140
0.37 0.31
0.26 0.m
0.42 0.35 0.49 0.41 0.49 0.41
0.39 0.32
0.35
0.35 0.28
0.31 0.24 0.21 0.21
0.41
0.27 -0.27 0.26 0.27 0.30 0.25 0.33 0.27
0.58
0.44
0.35 0
0.24 025 0.22
0.32
P.24. 0.47 0.42 0.45 0.72 1.17
6.7$ 0.16
0.14
0.38 0.32
0.27 0.24
0.55
0.55 0.53 0.55 -0.50 0.53
0.63
0.91
0.56 0.61
1.45 2.35
097 1.56
0.37
0.33 0.33 0.32 0.33
0.28 0.36 0.30 0.34
0.58 0.94
0.48 0.78
0.24 0.24 0.23 0.24 0.21
160 0.23 0.26 0.31
0.20 0.21 0.19 0.21 0.12
0.24 0.21 0.26 0.23 0.41 0.36 0.67 0.57
180
0.2
200 0.18 0.21 0,24 0.24
0.23 0.27 0,27 0.22 0.19 0.18 0.16 0.18 0.16 0.18 0.16 0.18 0.16 0.17,.0.15 0.18 0.16 0.19 0.17 0.10 0.10 0.21 0.19
0.19
0.17
0.20
0.18 0.29
0.32 0.52 0.47
TABLE 3 AVERAGE NUMBER O f AIR CHANGES PER 24 HOURS FOR STORAGE ROOMS DUE TO W O A OPENING AND 1NFlLTRATlON AIRCHANGE
ROW
VOLUME
ROW
PER 24 HRS VOLUME
AIRCHANGE . ROW PER 24 HRS VOLUME
,AIRCHANGE ROW PER 24 HRS VOLUME
AIRC~~ANGES PER 24 HRS
ABOVE OOC
70
2.6
3.0 4.0
5.0
.
20 25
63 53 47
7.5 10.0
38 32
1SD
26
30 40 50 80 80
.
22 19.5 17.5 15.0
250
5.3
13.0
300
4.0 4.1 3.6
20QO
1 -66 1.45 1.3
100
9
6W
3.2
15Q
7
800
28
200
'6
tOOO
2.4
1500
I35
4w
12.0 10.9
500'
2500 3000
N.B. for heavy usage multiply the above values by 2 For long storage multiply the atiovo values by 0.6
TABLE 4
.
.
HEAT REMOVED IN COOL~NGAIR Wlo joule per eubi m a r l ( k ~ l r n ' ]
cmmnms
to STORAGE R-
WT$tE AIR CONDITION
tnse an.
m% ae.
70%flH 80WH W W H 6 0 M H W
la5 228
13.8 26.2 37.8
349 44.6
482
56.8
5a4
64.5 734 629 92.6
68.2
2-77
7.0
18.a
23.3
la6
B.O 333
4R8
46.4 %8
30.87 43.7 W9
37.5 50.5 62.8
68.4 77.0 07.2
73.6 84.2 94.6
51.2 61.4 71.3
77.1
80.4
808
80.1 99.8
1020
96.5 10&0
113.0
Ill0
B% me. H BoKRH
IlOa 121.0
&I 76.1 853
M.6
104x3
1
107.0
lax) Il5.0 126.0
117.0 127.0 138.0
1140 125.0 I S 0 147.0
TABLE 5 . HEAT EQUIVALENT OF OCCUPANCY AOOPA TEMPERATURE *C
HEAT EQUlVALENT PER PERSON
10"c
5°C O*C -5'c 1oOc -15'~ . -20°c -25'~
-
210 W 240 W 270 W 3 w W -
m w 36OW
390 W 420 W
TABLE 6 HEAT EQUIVALENT OF ELECTRIC MOTORS W A O FAeTOR MOfOR LOSS FACTOR PERUNlTWAn PERUNlTWAn MOTOR AATING IN REF. SPACE OUTSIDE REF. SPACE
5 0 W - 375W 375W 2.2 kW 2.2 kW- 1 5 k W
-
1.67
1
1.45 1.16
1 1
.
TABLE 7
-
ALLOWANCE FOR SOLAR RADlATlON "C
+
T o be added to T.D. in wall heat gain calculation to compensate for run effect. Not to be used forsair conditioning design.
TYPE OF SURFACE
East Wall
Dark coloured surfaces such as slate roofing, tar rwfing, black paints.
4,4
Medium coloured surfaces, such as unpainted wood, brick, red tile, dark cement, red, grey or green
3.3
South Wall West Wall
"
2.8
Flat R
4.4
11
3.3
8.3
2.2
5
w
.
paint.
Light coloured surfaces such as white stone, cobured
2.2
1-0
cement, white paint.
TABLE 8 PHYSICAL PROPERTIES OF MATERIALS Specific
PRODUCTS
Density
kdm' 1
Aluminium Bakelite laminated 0 rass Brickwrk r ,,
Hsat kJ/kg
mlC
'
Concrete Copper Cork Baked slab
J
011s
- crown Flint Pyrex
Iron
- Grey Cast Wrought
Lead Nickel paw Polythene Polystyrene Rubber fin
- Fir Oak Pine
Zinc
928 958 1048
I504 7808 7328
Steel Wood
11328 8880
0.12 0.42 1.34 2.3 t .26 2.00 0.50 0.2 1
2.72 2.39
400 752 544
2.80
7088
0.38
TABLE 9
RAPID SELECTION TABLES +Z'C COLD ROOM INSIDE ROOM n o w TOTAL COOLER DtMENSIONS DIMENSIONS VOLUME LOAD SELECTION mLxWxH ~ L x W X H m3 W 1.2xl.Bx2.15 1,05x1,46x2.0 3.0 700 SU21 1.2xZOx2.15 1 . 0 5 ~ 1 . 8 6 ~ 2 . 0 29 770 SU28 f . 6 x t,8 n2.15 1.45,~1 . 4 5 ~ 2 0 4.2 800 SU28 1.6~ 20a2.15 1,45x 1BSx2.0 5.4 915 SU28 1.8~2,4~2,161.45~2.26~2.0 8 6 loOO SU35 2 . 0 ~ 2 . 0 ~ 2 ~ 3 15. 8 6 ~ 1 . 8 5 ~ 2 . 2 7,6 1100 SU35 2.0 M 2.4 x 2.35 sU36 1 . 8 5 ~2.25 x 2.2 9.2 1140 2.4x2.4x2.35 2 . 2 5 ~ 2 , 2 6 % 2 , 2 11.1 1230 SV35 2.4 x 2.0 x 2.35 226x 2.65 x 2.2 13.1 1420 K6H46 2.4 n 3.2 x 2.55 2.25 x 3.05 x 2.4 16.5 1620 K6H45 2.8 3.2x 2.55 265 x 3,05 x 2 4 19.4 .t 720 K6H45 2.8 x BB x 2.68 2.65 x 3.46 x 2.4 22.0 1840 K6H45 3.2 x 4.0 x 2*65 305 x 335 x 2.4 28.2 2100 K6H65 3.2 ~t4.4 x 2.95 3.05 x 4.26 x 2.8 KIHGS 76.3 2360 2910 KBHHb 3 . 2 ~ 6 . 2 ~ 2 . 8 5 3 . 0 6 x S . d 5 ~ 2 . 8 43.1 KW8b 3.8 x 5.6 x 2.95 3.45 x 5.45 x 2.8 52.6 3210 3.6x7.2x2.95 3670 K6H86 3 . 4 5 ~ 7 . 0 5 ~ 2 . 8 BB.1
wmaE ROOM
*
SELECTION DATA 3 0 ' ~60% RH FOAMED POLYURETHAK THICKNESS 75 mrn PRODUCT LOAD 16 kg PER CUBIC METRE PER DAY COOLEL THROUGH 6-c PROOUCTSPECIFICHEAT 38kJ/kgdegC LIGHTINGLOAO t0Wlrn2 FLOOR AREA RUNNING TIME 76 HOURS AMBl ENT
INSULATION
SELECTION DATA
AMBIENT
30°c W R H
INSULATION THICKNESS
FOAM=
POLYURETHANl
76 mm PRODUCT LOAD 16 kg PER CUBIC METRE PER DAY COOLEE THROUGH BOC a . PRODUCT SPEC1 FIC HEAT t.8 kJlkg dsg C ~ AREA LIGHTlMG LOAD 1 0 ~ l r nFLOOR
RECKQNEDASW OF HEATER LOAD FOR 2 HOURS PER DAY 18 HOURS
DEFROSTHEAT RUNNING TIME
SELECT16N DATA AMBIENT 300~60% RH INSULATION FOAMED FOLYURETHAN: TH tCKNESS 100 rnm PRODUCT LOAD 16 kg PEH CUBIC METRE PER DAY COOLEL THROUGH ~ O C PRODUCTSPECFFtC HEAT 0. t 8 kJlkg d q C LIGHTINO LOAD 1OW/mq FLOOR AREA DEFROST HEAT RECKONED AS SO?6 OF HEATER LOAD FOR 2 HOURSPER DAY RUNNING TIME 18 HOURS '
REFRIGERANT PIPING SELECTION DATA -The tables of refrigerant piping selections are based on the following conditions:38"C Liquid temperature entering evaporator Condensing temperature 40"C ' Suction temperature for liquid line and delivery lineselection tables -15°C '
The selection should give the following maximum refrigerant equivalent temperature drops in the lines. Suction and delivery l i n g la) R12, R22, R602 (bl R717 1NH3). Llquid lines R 12, R22, R502, R717(NH3) The columns headed C/R an the liquid line charts are reoomnaencled sizes for condenser to receiver connections. They will give a maximum refrigrant velocity of 0,s mis. On at1 the tables the figure shown in the WATTS column represent the eveporator duty at the specified conditions. For any other conditions, the system evaporator duty must%be multiplied by the relevant correction factor M o r e using the table.
GORRECTION FACTOR TABLES 1. TABLE 10 Suction tine Sizes
CORRECTION FACTOR
i
LIQUID TEMPERATURE TO EVAPORATOR 'C
R12, R22, R502
XI 0.83
30 0.92
R717{NH3)
0,92
0,97
TABLE 1 1 Delivery Line Sizes (2) R12, R22, R502
60
1.O2
50 1 .I 3
126
1 -02
1.06
1-09
40
( b ) Ammonia R717(NH3)
LIQUID TEMPERATURE 'C
20 1.35
-5
1.42
1.10
0.92 0.78 0.96 .O.&l
c 2 -15
1.48
1.23
1.00
0.82
-25
1.54
1.27
1.03
0.84
-35
1.58
1.30
1.06
0.86
5 0
2
4Q
1
TABLE 1 2 Liquid Line Sizes (a) R12, R22, A502
(b) Ammonia R717( NH3) LIQUID TEMPERATURE "C
LIQUl D TEMPERATURE 'C
v O2
5 -5
9
.-E
Z -5
g
5k m k
50
30 I,l2
20
30
40
50
80
0.77
0.84
0.93
1.05
1.18
0.79 0.87 0.82 0.91
0.98
1.10
1.24
1.03
1.16
1.31
i
1
-25
0.86
0.95
1.07
1.21
1.36
-35
0.91
0.99
1.15
1.28
1.45
5
0
1g mj-
-5
20
30
40
50
0.87
0.89
0.98
1.05
0.88
0.94
1.00
1.07
5
0.89 0.95
1.00
1.08
-5 -35
9 0 0.91
0.96
1.02
1.10
0.97
1.03
1.11
-
1,
P M R- . W R B ~ P S S B 8 8 8 8 8 -8 8 mm mm w 7
F
LO 0 % 8 9 R R R m o $ 8 8 Z 8 % 8 8 - 8 8 R R -
7
+
7
8 E R i f 1 3 f i % % S 8 S 8a-. ma ma m 8 8 8 8 g 8 S Z a % R R % $ $ 8 8 8 % % % % 8 8 8 P
*L
7
Z 8 $ 8
7
m N I
5 S 5 E
E Z Z l F l a R f l a f l Z a H R
F
--
F
8 R % 8 % 3 S 8 8 8 % % 8 8 8 R R # 8 8 8 3 8 % % 8 g 8 8 N 8 % 8 $ $ 3 8 8 % % % . 8 8 8 8 R mm . mmo, $ 8 8 8 3 % 8 8 8 8 7
-y
7
7
7
R E E E a 3 R % m m o S 8 8 E % % 8 8 8 7
m r n o
a
r
~u1 9
~
~
E
v
R 'a M m~ m m0 0m 0 m0 p
Z
7
In cn
p
p
F
m
~
c
g 8 -" % 2 8 a ; 1 8 + # S $ % B S 3 8 8 8 8 -, 8
c
F
X * + 7 " W 5 E ? ? M W ~ : ~ 3 3 8 P 8 5 1 8 8 $-8 8
' 3 E E Z ~ ~ R R : % 8 8 $ 8 8 3 % 8 8 8 8 7
q R m m m m m I-
- - - - 3 W W % 3 E ~ S l8n rZn o~o * W ~
~
-a~
3
,'P
~
FN
-
N
Y
-
)
8, m a-, , -
FL D-
-
~
r
L
O
N ~ ~N
. m ~mR m o
-
%rn ~n ~o~
~ ~oX~o R
E
S
~LC) LB~
a
~0
8
~
S
~
---.
n m S S ? " E Z N % %l ~ , o..'rto, o! ~ P rEo t n P oO S ~ O ~ J
.'
s 4 +C J-L-D m -m - C- I D ~ $ $ M~ U 7, r C, ) r, n O, ~ ~ ~ % ~ ~ m m F -. - ~ . )- -m - mm rR nR m% mm rn m mS S S 8 8 3 %
~ ~ ,
1
- - F F - - - f l w m R R 8 F , w m* 8o 8o % 8 O N N N l n C V r n C V N O O
S 3C Y~r n- r n- ~- a -n tms l ~c D wa D# ? # % 3 3 8 5 ? ~ % 8 % $,,,,,C In
+
N a 3 R % % ~ S % 3 8 3 mm 0m
V I n m L n m N
m m ~ n o o o Lnlflu) m - - . - - - - ~ R w mm - . m m e e * 8 a m a O C Y N L n l O l D Q 3 N
- ---
-
8 " " - " m * w a a % W 3 8 % g % 8 Sln : rnw ( P g o ~ e ~ m , ~ c l r n ~ a o ~ 0 N W R F S 8 % $ m: 0 w m 3 E 7
-
~
-
s
F
F
F
7
F
7
8- L $ R R iU i
8
# 8 G8 d ~ 6
G8
8
~
---,,sdsSi-S
~ F
~
~
TABLE 15 SUCTION LINE SIZES R22 Multiply Evaporator Duty by Correction F & ~ M Table 10 b f o r s using fable
SUCTION TEMPERATURE *C
TOTAL EQUIVALENT LENGTH - METRES
WATTS
10 20 30 40 50110 20 30 40 60110 2Q 30 40 50110 20 30 40 5 0 1 1 0 20 30 40 50
TABLE 16
\
SUCTION LINE SIZES R502 Multiply Evaporator Duty by Cormion Factw Table 10 before using Table
SUCTION TEMPERATURE "C
I
+5
WATTS
800
lo00 1200 1500
2000 2500
12
12 15
15 15
6000
8000
18 22
4500
22 28
22 22 28
12,000
22 28 28 28 28 22 28 28 35 35 28 28 35 35 35
20,000 25,000
30.000 45,000
60,000 80,000
100,000
28
28
10,000
15,000
-
-1 5
I
28
2835352540 2835354040 35 40 40 50 50 4 0 4 0 5 0 S O 40 50 50 50 65 50 50 50 65 65
-35
-25
TOTAL EQUIVALENT LENGTH - METRES 10 M 30 40 50110 20 30 40 50 10 20 30 40 SO 10 20 30 40 10 12 I2 12 12 10 12 12 12 12 12 12 12 15 15 12 15 15 15 10 12 12 12 12 .I2 12 12 15 15 12 12 15 15 15 15 15 18 18 12 12 12 12 12 12 -12 '15 I5 15 12 15 15 15 18 15 18 18 I8 12 12 12 15 15 12' 15 15 15 15 12 15 15 18 18 15 18 18 22
1.2 15 15 15 18 12 15 15 18 18 15 18 18 18 22 18 18 22 22 22
3000
-5
50
1 0 2 0 30 40
15 18
t 5 15 18
22
50
18 18 15 I8 .18 22 22 18 18 22 22 22 18 22 22 28 28
22 12 15 15 18 18 15 18 18 18 22 18 18 22 22 22 22 22 28 28 28 15 15' 18 18 18 15 18 18 22 22 18 22 22 28 28 22 28 28 28 28 I5 18 18 22 ' 2 2 18 18 22 22 22 18 22 28 28 28 22 28 28 36 35 18 22 22 22 28 18 22 28 28 28 22 28 28 28 35 28 35 35 35 40 18 22 22 28 28 22 28 28 28 28 28 28 35 35 35 28 35 35 40 40 35 40 3 5 4 0 40 50 50 22 28 28 2 8 - 2 8 28 28 28 35 35 28 35 22 28 28 . 3 5 35 28 28 35 35 35 28 35 40 40 40 35 40 50 50 50 28 28 2 8 ' 3 5 35 28 35 35 35 40 35 4040 40 50 4040 50 50 50 28 28 35 35 35 28 35 40 40 40 35 4040 50 50 4 0 5 0 50 50 50 50 66 65 28 35 35 40 40 35 40 '40 50 50 40 50 50 50 50 50 35 3 5 4 0 ~ 4 0 3 5 4 0 ~ 5 0 5 0 45 00 5 0 5 0 5 0 5 0 5 0 65 6 5 6 5 3 5 4 0 4 0 ~ 5 0 4 0 4 0 5 0 5 0 5 0 5 0 5 0 5 0 6 5 6 55 0 0 6 6 6 6 8 0 40 50 50 50 50 40 50 50 €6 65 50 6 5 6 6 65 80 6565 80 80 100 5 0 4 0 ~ S O 5 0 6 5 4 0 S O 6 5 ~ ~ 5 0 ~ 8 0 8 €06 880 100 0 1 0 0 1 0 0 50 50 65 65 65 50 66 65 80 80 65 80 80 80 IOO 80 100100 100 100 60 65 65 65 80'66 65 80 80 80 65 80100100100 80 100100100 125
=
.
'
,
TABLE 19
DELIVERY LINE S l f ES ,RIP, R22, RM12, R717 (NH3) Multiplq Evaporator Duty by ,Correction Factol Table 11 before using Tables
.
1
.
REFRIGERANTS
.
L
C
R12
I
R22 r
TOTAL EQUIVALENT LENGTH
RSM
- METRES
I
R717(NH3)
1
TABLE I8 LIQUID LINE SIZES R12, R22, RW2, R717(NH3) Multlply Evaporator Duty by Cormtiam Factar Table 12 M a r e using Tables REFRIGERANT
I
R12
W
rO
~10
A
R22
-
6 6 6 1 0 t b 6 6 8 6 6 6101010'6 8 6 6 6 6 10 10 10 10 6 6- 6 6 10 6 10 10 10 10 10 '6 6 10 10 10 10 10 10 10 10 6 10 10 10
2500
10 j O 10 10 10 1 2 10 12
4 m 8000
10
12 12
12,000
15.000 '
10 12 12 12 1515
10 12 12 12
6 6 6 6 6 6 6 1 0 6 8 8 8 8 8 8 .. 6 6 6 6 1 0 1 0 1 0 6 10 6 6 6 tO 10 10 10
tO 6 6 10 10 10 10 10 10 10 10 10 10 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10, 12 12 10 10 10 12 12 12 10 12 12 12 12 10 10 12 12 12- 12 10 I2 12 12 15- 10 12 12 12 ' 1 2 12 12 12 12 15
15 15 1.6 12 12 12 12 15 15 12 15 15 15 18 18 - 12, * 12 12 15 15 15 15 ;5 '15 18 18 18- 12 1 2 15 15 15 18 !,5 t5 18 18 22 22- 12+,15I5 15 18 22 15 18 22 22 22 28 15 15 18 18 18 22 ,
10,000'
20,MK) 25.000
10
12 12 15 12 12 15
'
R717(NH31
TOTAL EQUIVALENT LENGTH METRES 30 a0 50 C/R 10 -20 30 40 50C/R 10 20 30 40 SO C/R10. 20 30 4 0 ' 5 0 W R
800 loo0 1200 1500 MOO
3000
1
R502
30,WO
18 18 22 22 28 28
45.000
22 22 3 28
28
35
15 15 18 1 8 12 18 15 18 22 22 22 28
2 28 28 28 35 22 28 28 28 35 35 18 Z 60,000 28 28 35 35 36 38 22 28 28 28 28 38 80,000 1W.000 128 36 35 35 35 50 22 B 28 36 35 38 *
10 10 10 12 12 5 16 12. 12 1 5 . 15 15 12 15 16.15 18 12 15 18 1 8 16'18.18 1 8 " ~ 15 18 18 22 2 2
(3
18 18 22 18 22 18 22 28 28 22 28 28 28 28 35
22 la 28 35 35
10 10 10 10
12 15 15 18
.
18 22 ~:-28 28 22 28 8 8 8 8 8 18 35 8 8 8 8 8 28 35 8 8 8 8 8 35 50 8 10 10 10 10 35 50 8 10 10 10 10 ,
8 10
1.5 76 15
I..
4
TABLE 20
-
MINIMUM CAPACITIES TO CARRY OIL UP PIPING - CAPACITIES ARE IN KW R12 Suction Lines Pipe Sixe mm
-.
EVAPORATING f EMPERATURE 'C
-35
-25-15-5
5
Pipe Size
mm -
12
12
15
I5
18
18
22
22
28 35
28
32
32
40
40
50
50 65 80
35
100 125 150
126 150
.-
R22 Suction Lines
I Pipe Size
-
R22 Delivew Lines
.
Pipe Size
EVAPORATING TEMPERATURE "C
-35
-25
-15
-5
5
12
0.68
0.77
0.82
087
15
1.29
0.72 1.37
1.47
1.56
1.66
18
1,96
2.08
2.33
252
22
3,OS
2.22 3.46
mni
3.25
3.M 3.92 5.48 5.82 6.20 6.61 7.03 9.78 10.4 11.1 . 11.8 I26
28 35
19.0
14.9' 15.9 20.3 21.7
23.0
34.3
36.3
38.7
41.3
44.0
65
64.5
73.0
78.0
80
99.4
68.4 105
113
120
82.6 127
100
198' 211
225
239
256
125
340
361
385
41 1
437
150
517
549
586
624
664
'
32
13.1
13.9
40
17.9
50
Liquid Temperature O C
20
30
40
50
60
Correction Factor
1.16
1.07
0.98
0.89
0.80
16.8
t i 1d !
T A B L L L ~ OPE RAT^^‘
t'IPELINES DURING . . I :802, R717 (NH3) kg per 100 METRES b..
,
-
TABLE 22 LIQUIDLINES
Amwnt of subcooling rsquird to ~~npematm for liquid Mis Amrunt of sdxooIing requird is exp& as 'C per meke of lift. REFfllGERANT
R 12 R22
R502
Ammonia
LlOUlO TEMPEAAT WRE "C
0.818 0.466 0.475
0217
0.650 0.364 0.370 0.168
0523
0.423
0.293 0.298
0.135
OZ4' 0.245 0.106
0.345 0,202 0.1 97
-
'
*
-
.REFRIGERANT PIPEWORK LAYOUT (a) Suction Lines Suction lines should be arranged so as to prevent:(1) Oil or liquid csrryover from evaporator affecting expansion valve phiah (2) Oil trapping in an idle evaporator in a multiple installation. (3) Refrigerant flow from one valve in a multiple imtallation affecting the phial of another one, (4) Liquid drainage into compressor. - ,b 5'
a
Compressor above evaporator he trap ensures that liquid refrigerant and oil drain away from expansion valve phial. Make trap as short as possible to minimise the amount of oil.
The loop prevents liquid from draining back to compressor. This can be eliminated if system has automatic pump down.
(c) Multidection evaporator C o m p t m b l o w
-
.,
Flow from upper evaporator can not affect valve phial of lower evaporator,
Id) Multi saction wapora tor, Compressor abow Fit double pipe risw if necessary.
I
(e) Multiple waporators at different Ievds, Compressor atma The inverted traps at the main suction prevent oil drawing into an idle evaporator. 1
(f) Multiple evaporators at different levels, Compressor below Eliminate loops if automatic pump down is used. -.
-
'
.
-
,
.
Multiple
,
HORIZONTAL SUCTION LINES SHOULD BE PITCHED TOWARDS COMPRESSOR DOUBLE PIPE RISER Table 21 gives minimum loadings on suction and delivery lines, to ensure oil return u i vertical piping. Should there be a possibil i ty that under partial loading, the capacity of the pipelins is too great to return the oil, then a double pipe riser shw Id be installed The double pipe riser consists of two risers of different diameters, operating in parallel, with an oil trap between the two legs. The capacity of the rikrsshould be such that the combined capacity is equal to the maximum system ldad add the capacity of the smaller risers should be sized so as to return oil under minimum load conditions.
b
Under part load conditions the gas will pass up both risers until such times as the trap fiHs with oil. Gas will then,onty go up the small riser. On return to full duty, the pressure drop up the small r i m will be so great that the oil in the trap will be forced up the large riser by the pressure difference across it It will flow , . , into the main suction and the system is now back to normal operation.
CW~AN619rhlVALVE P H M L AND
E ~ R R gQU&tllrbb ~L ~MYh~ldbl~
I
'
Ifkmflf/# ~ ~ ! b e x p r n i o n v 8 l v e p h l akcurm3f/ylocated, r 1oen&f8h0vIOmWdhwr&%#y. h
should be located so that it is not influencd by any chilled oil droplets, or liquid refrigerant carryover from the coil. This implies that itmust bclocated out of the path normally taken by such influences. T h e external equaliser connection, where fitted. should normally be located a few inches downstream of the phia I, rather than upstream. This eliminates the effect of any leakage of liquid refrigerant from the valve along the equaliser line. .
-
a
DELIVERY LINES ' Delivery lines should be selected for a practical pressure drop, but must not be oversized to the extent wherk oil will not be carried up defivery line riwrs. If the system is to operate under partial load, and designing delivery lines to carry oil up riser at minimum loading means that pressure drop would be excessive , under full load, then either an oil V a r a t o r or a double pipe riser should be fitted Whenever the condenwr is located above the compresor, the delivery line should loop towards the ffaor, immediately aftar the c m p ~before , rising to the condenser. This prevents any refrigerant which has wndenkd in the delivery line from draining back to the compressor head, Horizontal pipes should be pitched in the diration af flow to help circulate the oil around the system. ,
,
.
$
-
If the condenser is located in a position where the ambient can be higher than a t the compwssor, a check valve should be installed in the deliwry l ins close to the condenser to prevent refrigerant boiling off in the condenser and condensing in the delivery line and compressor during the off cyct e,
"5.', . .
CONDENSER TO RECEIVER PlPiNG Liquid piping from condenser to receiver should allow free draining of liquid. Pipe runs should be as short as possible, and sized for a maximum of 0.5mls refrigerant velwity. Pipes should be pitched towards the , receiver with a minimum slope of mmm per metre.
Liquid lines must be sized for a practical pressure drop and precautions must b taken to prevent flash gas forming. Liquid lines normally run through areas which are cooler than the liquid, so flashing due to heat gain in the liquid llne and should present no problems. ' Liquid leaving air cooled condensers normally has about 3°C subcooling, so provided pressure drop due to . friction isnotexcessiveandthere isonly asmallliquidlift, then theliquidshouldarriveat theexpansion j valve slightly subcooled. I-' If however, there is a large lift, then the liquid has to have additional sub-cool ing either by fitting a . sub-cooling section at the condenser or by installing a suction line/l iqu id line heat exchanger. ,
,
,
/
k
- -
SUCTION LINE - LIQUID LINE HEAT INTERCHANGERS - The advantages of incorporating a suction Iinelliquid line heat exchanger are as follows:-
: ,
1. Subcooled liquid a)Eliminatesflashinginliquidlinecausedbyexcessivepressuredropduetofrictionorliquidlik b) Reduce amount of flash gas after expansion valve leaving more liquid available for cooling. c) Ensure that expansion valve performs a t full capacity and reduces wear on valve seat.
2 Superheated Suction Gas,
o
u
-2
a) Permits lower expansion valve superheat setting due to fact that any liquid carry over wilt be vaporised in tRe heat emhanger. This results in improved cooler performance as more of the coil surface is effective for cooling work. b) Superheating suction gas could eliminate the need for insulating suction line. c) Superheating the sqction gas will improve thevolumetric efficiency of 612, R22, and RM12 compressors.
It can be reckoned that system performances can be increased by approximately 1% for each 1°C of subcool ing.
n.
'.
. TlWeRATURE COW ERSlaN
c -273
-2118
-m
-262
-uO
-367
-m
-261 -246
-110
-3DO
-2ZB
-3BP
-223
-510
-212
.
-207
f
-
'I f
I
-= -860 -ml
-201 -196 -180
a
-164 -178 -I73
400
-1B.Q -183
-Ib
-270
3
-16? -?m -151 -e50 -151 -210 -186 -X#
-1111 -15.6
3 4
-418
-3 -130
5
-113 -128 -12.2
-42.8 -42.2
-17 46
-%
- 48 -41.1 a -10.0 - 4J -40.0 - 40 -3B.1 -a3 - 88 -a3 - 37 - 9 W - 36 -32 - a 7 - Jr 44
-11.7
-3+4
-3%8 -W
-32.8
-321 -31.7 -3I.i -3P.6
72 -6.7
--
- 99 -P - 31 - JO -- 29# - 24 -p7
-a - 24
74
165.2
24.4
3
167.0 l66d
R
m
z o
n
~mm
25.6
70
172,4
71.1 71.7
180 181
320.0
162 163
3238
164 lai
327.2 3 ~ 9 . ~
1BB 787 1W la 170 171 112 lfs 174
X1RB 332.6
322
re4.o
73.9
19Z8 187.8 199.4 201.2 2U3.0 2W.B 208.0 20B.4 210.2 212.0 213.8 215.6 217.4
74.4
210.2
3hO
96
3k6
W8
m7
97 98
*-3.9 -33 2.8 -22
a ta P7
n4.e BO.6
38.9
82.8 84.7
39.4
M.0,
4au 41.1
Ice 108
41.7 42.2
107
93.2 g5 3 9B.f
128 43.3
98. 100.1
7'.6 ?,L4
33.2 x5.0
41g
5 3
231.8
44.4 45.0 446
86,6 6&1
186 186
187
m.6
867
188
873
188
87.8 BB3 889
1W 191
J70,4 372.2 374.0
1OZ
377.6
244.4
89,4
183
379.4
1M 1106 1H 187 IS8
at.2
46.1
LO
4t
-27.6
5.6
G?
107,8
17.2
-25.6
BI
43
1OPA
47.6
918
-23+fl
6-3
U
111.2 1 113.0 48 114.1
483
48.1
9.9
It0
rza
24&2
gad
240.0
90.6
24e.8
91.1 1 . 922
PI
116.8
4m WO
8.9
4I
l
la4
50.6
123
9.4 10.0
48
120.2
51.1
121
253A 255.2
60
122.0
I
1 s
257.0
70.6
61 82
l23.8
52.2 52.8 5x3
127
280.6
1N
28ZA
53.9
129 130
264.2 266.0 267,B m.8
12.2 178 tW 1&9_
W 64
M # 51
lm
lW
m.n
1Oti.a
11.7
177
IPho
40
125.6 127.4 129.2 131JY
in m a
W.6
230.0
4
11.1
80.0
110
3902.1 1 W.0
9.4
345.2 w.0
83.9 84.4
38 .9
-11.2 - 23 -30.0 - 22 - 7.6 - 21 - 5.8 -29.4 4a -lea - 2a -a83 - 10 - 2.2 -278 - 11 - 0.4
34a4
228.2
3.3 lg
-13.0
339.8 341.6
fOB
lf2 , 233.6 113 235.4 t l 4 237.2 115 2m.O 116 210.0 117 242.6
-la6 -14.0
a 2 338.0
3bB.O 357.3 8BB.6 381.4
ioe
4
132.8
55.0
13.6
556
122
251.6
218
131 131
92.a
-
D3.3 93.9 94.4 9~h0 96.6 1
9 97.2
t80
m 201
ma
362.4 a . 2
Wd,B
3758
ma
m B 36.6 388.4 380.2 392.0
3918 395.3
XOJ
31.4
209 205
'89.2 401.0 da2a 4W.6
aw 207
1
L
34.4
62.8 893
34 1 a6 37
-1B.4
in
L
T
326.4
2ZZ.B 224.6
1.1 -1.7 22 2.11
7.2 7.8 8.3
WA
1
9tb
180 181 182 183
0.8
-22.0 -20.2
78.9
312.8 314.6
221.0
0.0
- 29.2
778 78.3
311.0
in
- 4 ~ 8 -d1,8
91.1
101 102 IW 1M
77.2
166 157
81.7 622
40D
-45.4
~88.6
1W
750 75.8 76. 76.7
lm
e1.1
# 31 X2 33
878
88
IP
300,2 32.0 3038 3066 37.4 -2
3166
9.0
iB.0 @I8
1st L
29&4
3t32
192.2
34.4
fw
S 3 X )
S4.8 2-
189
i7.2
-
2W.l 2W.2
1-
773.3
33.9
286.8
70.0 0
72.2
3J.3
146 144 H7 W $48
6
190.4
328
W 144
63.9 84.4 EL0 1 a 7
az.2 m.0
laz a7.6
63.3
188.6
372 378 383
-3t.O
140 141
81
75.2 71.0
-a0 -38.2 -38.4 -31.6 -JL8
g0.0
3 3.7
23 24
a
rw
Sl
62.8 fa.4 -2
PO
+
'=\,
rn 280.4
59.4
#).8
88 00 80 91 81 93 84
137
0
3RO
530 %4
I#
B7.8 583
l&.O 1888
-5.0 4.4
- 1.7 -1.1' - 0.B
57.Z
1a.2
508 518
a
517
'F 2fi.4 273.2 275.0 276.8 278.8
153 1
81 W
88
133 134 136
5&l
67.2 67.8 683 683 69.4
28.3
n
-
,;..
6.1
-
-523 -9.0 4 . 0 ' -47.2
n
159.8 181.6 163.4
-5.6
-
-m
1-4
71
2B.B 29.4
18 IB 20 21
- 78
1 -54.4
lo
622 82.8
48.2
-
40
61.7
158.2
g
17
-58.0
154.4
H
8
-13
bO
bB
20.6 21.1 11.7 12.2 22.8 23.3 2x9
sP
-89
---
2r),o
27.0
-210
-133 -112 e M - 04 -BD.c76*
BP.a 61.1
44.6 46.4
7
-9.4
-80
fSOB I~ZA
177.0 ln,6 181.4
-VPB
-
83
81
-m
-148
€4
174.2
11 16 11
-184
18.9 19.4
176.0
-10A
-166
149D c,
78
-2% -23
-la -202
66
Em
-tW
-32B
64
143.6 145A 147.2
26.7 27.2
-107
-364 -346
62 83
1
414.
-362
16.7 17.2 17.8 18.3
41.0 42,
1%
-3.0
a?
-4b1 -435
1
2
-10.6
-43.9 -1Z3
,
-4w.d
-271
-381 -3.6
L
o
-11.7 - 1 1.1
-100 0Q
19.4 21.2 220
302 3.0 23.8 ~6 33.4 38.2
-B2
-73
17.6
1
-130
-120 -110
15,B
28.4
-1M -170
-84 -7%
140
2
-If.B -17.2 -16.7
-4ML
1z.z
3
-118 -1 I2
-444
-
,-
6.0 8.6 IQ.~
24.0 3266
10 11 12
-a.o
8.-
-
4
-1W
-57 -5 -45.6
I
5
1
-210 -m0
-m
*,
'-
-220
-8B
:&
--- 1011 - 9 -- n7 - 4
-134 -1Zg -123
+
;4
-15 14 13 12
-IPO
-101 -86
,
-22.6 -22.2 -21.7 -21.1 -20.6
-10.4
4
1418
5.0
-310
-ZW)
a1
-XI
15.0
-9PO
-1m
90
12
-2O+O
-2m
1R6
10 I
-26.7 - 1 8
58 SS
-
,*-
*:-*-F\ *
'C
F' I= 1382 ldO.0
14.4
-239 -213 #
'c
1.1
-24.4
a
F'
- 17
-25.6 -25.0
-110
-2do -234
-218
'C -27.2
F
*
I
*
Find the known temperature in the centre column. read right to convert Centigrade t o Fahrenheit, vefi F~hrqnheitto Centigrade.
, "
-. ...-- . -- .I
.7---
.'
c
-r*. r
-.
1
c.-
- - ' 7
'
TABLE 24
'k,
CONVERSION FACTORS 4
S.1. Unit
Quantity
Metre (m) Millimetre Imm) mi
Length
-
Metric Unit
Imperial Unit
m xl.0 m m x 1.0
Foot x 0.305 Inch x 25 4 Square feet x 92.9 x70" ft3 x 28.3 x Ga Ilon x 4.55 Seconds ft3/min x 0.472 x lo-' Gal/min x 75.8 x Pound x 0.454 I b force x 4.45 Ib force/inz x 6.9 x 10' in water x 249 ft/min x 5.08 x lo-' Ib/ft3 x 16 Ib/h x 0.126 x lo-" O F x 0.555 Btu x 1.055 x f03 Btulh x 0.2931 Horse power x 745.7.: Ton refrigeration x 3.517 (kcallh x 1.163) Btu in/h/ftf degF x 0.144 Btu/h/ft2 d q E x 5.678 B t d b x 2.326 x 10" Btullb deg F x 4.187 x 10' Btullb x 2.326 x lo3
Area Volume
rn' x 1.0 x 1.0
Time Volume flow rate
Smonds
Kilcgramme (kg) Newton (N) = kg m/s2 N/m7
Mass . Force
kg x 1.0
m/s
Velocity
m3 Litre 11)
Seconds (sl
m31s
mJ/min x 1.67 x 10-I
h
Kg/m Kg/s
'
Density Mass flow rate
degCaT Joule {J)
Temperature diff.
Watt (W)
Heat Flow
Wlrn deg C W/mz deg C
Thermal conductivity Heat trans coeff. Specific enthatpy Specific heat, x Latent heat
Energy
J/kg
Jlkgdeg C
Jlkg *
Pressure
.
+
kgf x 9.807 mm w.g x 9.807 kgf/cm2 x 9.807 x 1O4 m/s x 1.0
kglm3 x 1.0 kds x 1.0 " C A T X1.0 kcalh x 4.187 x 103 k d / h x 1.!63
kcal/h/m°C x 1.163 kal/h/m2 O C x 1.163 kcallkg x 4.187 x 103 kcal/kg°C x 4.187 x 10' kcal/kg x 4.1 87 x lo3