Sd282 Asg8

  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Sd282 Asg8 as PDF for free.

More details

  • Words: 1,302
  • Pages: 10
FLUID MECHANICS I Solution Manual 7 Question 1: Problem P3.158 z

11

1

x

2 CO2

D2 = 6 cm

D1 = 10 cm

p1 = 170 kPa T1 = 20 Deg. C

H=8 cm

Meriam red oil

Assumptions: • ρ is constant ? -needs to be checked. • 1D flow at 11, 1 and 3 • steady-state • Steady flow • neglect losses Conservation of mass for a CV: Z Z ∂ρ ~. n dV ol + ρ(V ˆ ) dA = 0 CV ∂t CS 0 = −ρ

π D22 π D12 V11 + ρ V2 4 4 0 = −m ˙ 1+m ˙2 1

Using the perfect gas law ρ=

p1 = 3.07 kg/m3 RT1

using RCO2 = 189 m2 /s2 K (see Table A.4). Manometer p1 = p2 + ρwater SG gH ⇒ p2 = 169.4kPa Bernoulli equation from 1 to 2 V12 p1 V2 p2 + gz1 + = 2 + gz3 + + ghf 2 ρ 2 ρ V1 ≈ 0 this is the stagnation point z1 = z2 and there is no loss, therefore s 2(p1 − p2 ) V2 = ρ V2 = 20.5m/s ¿ Speed of sound, incompressibility OK. flow rate πD22 Q˙ = V2 = 0.058m3 /s 4

Question 2: Problem P3.165 Assumptions: • steady flow • steady state • incompressible • no losses • 1D flow at Points 1 and 2 Conservation of mass: Z CV

∂ρ dV ol + ∂t

Z ~. n ρ(V ˆ ) dA = 0 CS

0 − m˙ 1 + m˙ 2 = 0 m˙ 1 = m˙ 2 D2 ⇒ V1 = V2 22 D1 2

z

1

2

D2

D1

h

flow rate Q = V2

πD22 = V2 A2 4

Manometer p1 = p2 + (ρm − ρ)gh p1 − p2 = (ρm − ρ)gh Bernoulli equation from 1 to 2 V12 p1 V2 p2 + gz1 + = 2 + gz2 + + ghf 2 ρ 2 ρ z1 = z2 (horizontal) and no losses V22 2

µ

D2 D1

¶4

p1 V2 p2 = 2 + ρ 2 ρ v u 2(p1 −p2 ) u ρ V2 = t 2 4 (1 − (D D1 ) ) +

v u u Q = A2 t

2(ρm −ρ)gh ρ (D2 4 (1 − D1 ) )

3

x

Question 3: Problem P3.172 s D2 = 0.075 m

H= 1.83 cm D1 = 0.025 m D3 = ?

1

2

3

x

patm = 1.01 105 Pa

water at 35 Deg. C sketch of p variation

p

patm pv x Assumptions • pseudo-steady state in tank • steady flow • cavitation occurs at pv • pv = 5.809 103 Pa (linear interpolation in Table A.5) Conservation of mass: ρ

πD12 πD32 πD22 V1 = ρ V3 = ρ V2 4 4 4 D12 V1 = D32 V3 = D22 V2 µ ¶2 D3 ⇒ V1 = V3 D1 4

Bernoulli equation from s to 3 Vs2 ps V2 p3 + gzs + = 3 + gz3 + + ghf s−3 2 ρ 2 ρ Vs ≈ 0, zs = H, ps = patm = p3 , z3 = 0 and no losses p ⇒ V3 = 2gH = 6.0m/s Bernoulli equation from 1 to 3 V12 p1 V2 p3 + gz1 + = 3 + gz3 + + ghf 1−3 2 ρ 2 ρ Using z1 = z3 , p3 = patm , p1 = pv and no losses, µ 2 ¶2 2 V3 pv V2 patm D3 + = 3 + 2 D1 2 ρ 2 ρ Solve for D3 D34

(patm − pv )/ρ +

=

V32 2

V32 2D14

D3 = 0.040m To avoid cavitation we need to increase p1 (pv in above relationship) which means that D3 must be decreased, i.e. D3 < 0.040m

Question 4: Problem P3.161 Assumptions: • steady flow • steady-state • 1D exit flow at 1 and 2 • az ≈ 0 for fluid in tube at point of motion • no losses (but once flow starts up in tube there will be mixing losses. Conservation of mass: 0−ρ

πD12 πD22 V1 + ρ V2 4 4 D2 V2 = V1 12 D2 5

z 2 1 water

V2

V1

D2 p2 = patm

h

water tube patm = p1 + ρgh Bernoulli equation from 1 to 2 V12 p1 V2 p2 + gz1 + = 3 + gz2 + + ghf 2−3 2 ρ 2 ρ sing z1 = z2 and no losses, µ ¶4 V12 patm − ρgh V12 D1 patm + = + 2 ρ 2 D2 ρ Ã ! µ ¶ 4 D1 V12 1− = gh 2 D2 s V1 =

2gh (1 − D41 /D42 )

6

x

Question 4: P3.173 y

Q2 p2 D2

Q1

D1

Fx

x

p1 Fy

D3 p3 Q3 Assumptions: • steady flow • steady-state • 1D exit flow at 1, 2 and 3 • no losses • no shear forces on CV Mass flow rates: Vi =

˙

Qi πDi2 4

m ˙ i = ρQ˙ i

7

i 1 2 3

Q˙ i (m3 /s) 0.142 0.071 0.071

Vi (m/s) 7.8 15.2 8.7

m ˙ i (kg/s) 142 71 71

Ai (m2 ) 0.0181 0.0045 0.0082

conservation of momentum x momentum 0−m ˙ 1 V1 + m ˙ 2 V2 sinθ2 + m ˙ 3 V3 sinθ3 = +p1

πD12 πD22 πD32 − p2 sinθ2 − p3 sinθ3 + Fx 4 4 4

Bernoulli equation from 1 to 2 V12 p1 V2 p2 + gz1 + = 3 + gz2 + + ghf 2−3 2 ρ 2 ρ Using z1 = z2 and no losses, ρ p2 = p1 + (V12 − V22 ) 2 p2 = 87.1 103 Pa(gage) Bernoulli equation from 1 to 3 (similar to previous equations) ρ p3 = p1 + (V12 − V32 ) 2 p2 = 165.0 103 Pa(gage) back to x momentum πD12 πD32 πD12 sinθ2 + p3 sinθ3 − p1 4 4 4 Fx = 540 + 473 − 1108 + 196 + 1036 − 3113

Fx = m ˙ 2 V2 sinθ2 + m ˙ 3 V3 sinθ3 − m ˙ 1 V1 + p2

Fx = −1976 N Fx acts to the left. y momentum πD32 πD22 cosθ2 + p3 cosθ3 + Fy 4 4 πD22 πD32 Fy = m ˙ 2 V2 cosθ2 − m ˙ 3 V3 cosθ3 + p2 cosθ2 − p3 cosθ3 4 4 Fy = 935 − 397 + 339 − 870

0+m ˙ 1 (0) + m ˙ 2 V2 cosθ2 − m ˙ 3 V3 cosθ3 = 0 − p2

Fy = 7.3 N Fy acts to the top. 8

patm = 101 kPa z

4

CVA

CVB

x alcohol SG = 0.79

F=425 N

1

2

D1 = 0.05 m

D2 = 0.02 m

Question 6: P3.149 Assumptions: • steady flow • steady-state • 1D exit flow at 1-4 • no losses • no shear forces on CVA conservation of mass for CVA 0−m ˙ 2+m ˙ 3+m ˙4 x momentum for CVA 0−m ˙ 2 V2 = −Fx µ ¶ m ˙2 Fx = m ˙ 2 V2 = m ˙2 ρA2 ρ = rhowater SG = 788kg/m3 πD22 A2 = = 3.1 10−4 m2 4 m ˙2=

p ρA2 Fx = 10.3 kg/s 9

3

⇒ V2 = 42 m/s conservation of mass for CVB 0−m ˙ 1+m ˙2 ⇒m ˙1=m ˙2 V1 =

m ˙1 = 6.7 m/s ρA1

Bernoulli equation from 1 to 2 V12 p1 V2 p2 + gz1 + = 2 + gz2 + + ghf 1−2 2 ρ 2 ρ Using z1 = z2 , p2 = patm and no losses, ρ p1 = patm + (V22 − V12 ) 2 p1 = 785 kPa

10

Related Documents

Sd282 Asg8
October 2019 2
Sd282 Asg8
October 2019 2
Sd282 Asg9
October 2019 3
Sd282 Asg7
October 2019 2
Sd282 Asg5
October 2019 3
Sd282 Asg2
October 2019 3