Sd282 Asg10

  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Sd282 Asg10 as PDF for free.

More details

  • Words: 1,414
  • Pages: 9
FLUID MECHANICS I Solution Manual 9 Question 1: Problem P5.71 z V

x

D

d

h

d ∆p = ∆p (ρ, V, ) D µ ¶ ∆p d ⇒ Cp = = C p 2 1/2ρV D model Cpm =

∆pm 5000 = 0.626 = 2 1/2 ρm Vm 0.5x998x42

geometric similarity For

dm Dm

=

dp Dp

then Cpp = Cpm

1

prototype Cpp =

∆pp = 1/2ρp Vp2

∆pp ³ 1/2 ρp

Qp π 2 4 Dp

´2 = 0.626

For best accuracy design system so that ∆pp = 15 kPa. "

8 Cpp ρp Q2p Dp = ∆pp π 2

#1/4

Dp = 0.151 m using ρp = 680 kg/m3 (Table A.3).

Question 2: Problem P5.75 Prototype Vp = 240 m/s Tp = 223 K Pp = 26.4 kP a ρp = 0.4125 kg/m3 ap = 299.5 m/s using Table A.6 (standard atmosphere). Model Lm 1 = Lp 12 Tm = 293 K Pm = unknown Vm = unknown speed of sound for model r √ cp am = Rm Tm = 1.40x287x293 = 343 m/s cv using Table A.4. Mach number for prototype M ap =

Vp = 0.801 ap

Mach number for model M am =

Vm = M ap ⇒ Vm = 275 m/s am 2

Viscosity (Assume only function of temperature, see Table A.2) µ µp = 1.71 10−5

Tm 273

µm = 1.8 10−5 N.s.m−2

¶0.7

= 1.48 10−5 N.s.m−2 (power law-Table A.2)

Reynolds number ρ p Vp L p ρ m Vm L m = Rem = µp µm Vp L p µ m = 5.25 kg.m−3 = ρp Vm Lm µp

Rep = ⇒ ρm Pressure pm

pm = ρm R Tm = 4.42x10 Pa = 4.37 atm 5

Question 3: Problem P6.79 z 1 Kv = f Le/d Le = 200 d

H= 3 m d=0.015 m 2 L = 10 m

Ke = 0.5

Bernoulli equation between 1 and 2 V12 p1 V2 p2 + + gz1 = 2 + + gz2 + ghf 1−2 2 ρ 2 ρ Losses V2 V2 LV2 + Kv +f 2 d¶ 2¸ · µ2 Le L V2 Ke + + f = 2 d d

ghf 12 = Ke ghf 1−2 Flow rate

π d2 Q˙ = V 4 ⇒ V = 1.13 m/s 3

Q = 2.010−4 m3 /s

x

with V1 ≈ 0 (large tank), p1 = p2 = patm and z2 = 0, · µ ¶ ¸ V2 Le L 1 + Ke + + f = gz1 2 d d £ 2gz1

¤ − 1 − Ke ¡ Le ¢ = 0.051 L d + d

V2

⇒f =

Using the Moody Diagram with f = 0.051 and Re =

ρV d µ

= 1.7x104 ,

² = 0.02 d ² = 0.3 mm

Question 4: Problem P6.103 z

1 H = 13.7 m 2 CV

water

x

LA = 6.10 m dA = 0.0254 m LB = 6.10 m dB = 0.508 m Assumptions: • steady flow • steady-state • 1D velocity • large reservoirs • fully developed flow Conservation of mass for CV around expansion: 0−ρ

πd2A πd2 VA + ρ B VB 4 4 d2 VB = VA 2A dB 4

Bernoulli equation from 1 to 2 V12 p1 V2 p2 + gz1 + = 2 + gz2 + + ghf 1−2 2 ρ 2 ρ using z2 =0, p1 = p2 = patm and V1 = V2 ≈ 0 · ¸ · ¸ V2 V2 LA LB ghf 1−2 = A Kent + fA + Kexp + B fB + Kexit = gH 2 dA 2 dB Kent = 0.5 sharp edged entrance (see Fig. 6.21b). Kexp = (1 − d2A /d2B )2 = 0.56 using Eq. 6.80. Kexit = 1 using Eq.6.80 with d/D → 0. ²A = ²B = 0.26 mm (Table 6.1). ²A /dA = 0.01 and ²B /dB = 0.005. v u 2gH u oi n VA = t h d4 LA Kent + Kexp + fA dA + d4A fB LdBB + Kexit B r 269 ⇒ VA = 1.12 + 240fA + 7.5fB Reynolds numbers ρVA dA = 2.5x104 VA µ ρVA dB d2A = . 2 = 1.27x104 VA µ dB ReA =

ReB =

ρVB dB µ

Iterative process to calculate the friction factors. Iteration 0 1

ReA ∝ 1.3 105

ReB ∝ 6.5 104

fA ( Moody diagram) 0.038 0.038 VA = 5.1 m/s

Q=

VA π 4

d2A

= 2.6x10−3 m3 /s

5

fB (Moody diagram) 0.03 0.031

VA (m/s 5.1 5.1

question 5: Problem 6.108 2

z

Kelbow Kexit Kv Kf 1 z=0 p1 =44.8 kPag

Kelbow d= 0.102 m (Table 6.2) ǫ = 0.046 mm (Table 6.1)

L = 24.4 m

Kv = 2.8 (Fig. 6.18b) Kelbow = 0.64 (Table 6.5) Kexit = 1.0 (exit loss Fig. 6.22) Q = 1.13x10−2 m3 /s ⇒ V = 1.39 m/s. Re =

ρV d = 1.4 105 µ

using water at 20◦ C (Table A.3). ²/d = 0.00045. Using the Moody diagram f = 0.0193 (Fig. 6.13). Bernoulli equation between 1 and 2 V12 p1 V2 p2 + gz1 + = 2 + gz2 + + ghf 1−2 2 ρ 2 ρ Losses ghf 1−2 = Kv

V2 V2 V2 V2 LV2 + Kf + 2 Kelbow + Kexit +f 2 2 2 2 d 2

using z1 = 0, V2 ≈ 0 (large reservoir) and p2 = patm , ¸ · V2 f L p1 Kv + 2Kelbow + Kexit + − 1 + Kf = − gH 2 d ρ Kf =

· ¸ 2 P1 L − gH + 1 − Kv − 2Kelbow − Kexit − f V2 ρ d Kf = 9.9 6

x

Second part Kf = 7.0 and Kv = 0.0 (see Fig. 6.18b) In this case V (and f) are unknown). From Bernoulli equation, h

 V =

2

p1 ρ

i − gH

Kv + 2Kelbow + Kf + Kexit + f Ld − 1 r V =

36 8.28 + 239f

Reynolds number Re = 1.02 105 V iterative process: Start by guessing a value for f. iteration 0 1 2

Re / 1.75x105 1.70x105

f 0.0163 0.0195 0.0195

Q=V

V (m/s) 1.72 1.67 1.67

πd2 = 1.36x10−2 m3 /s 4

7

1/2 

question 6: Problem 6.110 z

p1 =patm 1

Kv = 4.0 (Fig. 6.18b) H=40m

Kent=0.5 (Fig. 6.21) x

2 p2 = patm

Turbine Assumptions • fully developed flow • steady flow • steady state • large reservoir Bernoulli equation between 1 and 2 (multiplied by the mass flow rate) in W · 2 ¸ · 2 µ ¶¸ V1 p1 V2 p2 V2 L m ˙ + + gz1 = m ˙ + + gz2 + 2 Kent + f + Kv + P owerturbine 2 ρ 2 ρ 2 d Using z1 = H, z2 = 0, V1 ≈ 0, p1 = p2 = patm and V2 = V, · µ ¶¸ V2 L P owerturbine = m ˙ gH − 2 1 + Kent + f + Kv 2 d Use Table A.3 (20◦ C) Q˙ = 2.04 m/s πd2 /4 ρV d Re = = 1.02x105 µ ² ² = 0.005 ⇒ f (Re, ) = 0.031 d d m ˙ = ρ Q = 3.99 kg/s V =

Powerturbine = 877 W Notice that no losses are assumed in the turbine; typical efficiencies are 85%95%. 8

question 7: Problem 6.107 z p1 =patm 1 galvanised iron ǫ=0.15 mm

L=2 d = 0.05 m Kv

H=5 2 p2 = patm

∆ = 0.06 m Bernoulli equation between 1 and 2

V12 p1 V2 p2 + + gz1 = 2 + + gz2 + ghf 12 2 ρ 2 ρ Using V1 ≈ 0, p1 = p2 = patm , z2 = 0 and V = V2 , µ ¶ V2 L ghf 12 = Kent + Kv + f 2 d s V =

2gH 1 + Kent + Kv + f Ld

Some iteration are required to determine f. Use f = 0.0255 as initial guess. Summary of results Case base a b

Kent 1.0 0.5 1.0

Kv 80 80 0.25

f 0.028 0.028 0.026

Re 5.4x104 5.4x104 3.0x105

V (m/s) 1.09 1.09 5.46

% increase 0 0 +444

For Kent in base use Fig. 6.21a, in a) use Fig.6.21b. For Kv in base and a) use Fig. 6.19 (30◦ ), in b) use Fig.6.19 (90◦ ).

9

x

Related Documents

Sd282 Asg10
October 2019 1
Sd282 Asg9
October 2019 3
Sd282 Asg8
October 2019 2
Sd282 Asg7
October 2019 2
Sd282 Asg5
October 2019 3
Sd282 Asg2
October 2019 3