Sciaga - Calki

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Sciaga - Calki as PDF for free.

More details

  • Words: 690
  • Pages: 1
Całki nieoznaczone ′ ∫ f ( x)dx = F ( x) + C ⇒ (F ( x) + C )′ = [ ∫ f (x)dx] = f (x) ∫ a ⋅ f (x)dx = a ∫ f ( x)dx [∫ f (x) ± g( x)]dx = ∫ f ( x)dx ±∫ g (x)dx ∫ f ( x) ⋅ g ′(x)dx = f ( x) ⋅ g (x)∫ f ′(x) ⋅ g ( x)dx ∫ f [ g ( x)] ⋅ g ′(x)dx = ∫ f (t )dt; t = g ( x) ∧ dt = g ′( x)dx Wskazówki przy całk. przez części: 1.∫

xn sin ax n n ax u = x ∫ x e  n

a

a

2.∫ x ln x − u = ln x 3.∫ eax sin bx − u − dow. 4.∫ xn arcsina xdx − u = arcsina x Całki f. wymiernych ln ax + b dx = +C ax + b a (ax + b)n+1 2 +C ∫ (ax + b) dx = a(n + 1) cx + d c ad − bc dx = x + ln ax + b + C ∫ 2 ax + b a a f ′( x)dx = ln f ( x) + C ∫ f ( x) dx 1 x = arctan +C ∫ 2 b b x +b dx 1 x−k = arctan +C ∫ b b ( x − k)2 + b ∫

Całki oznaczone

Całki f. elementarnych ∫ dx = x + C ∫ adx = ax + C x n +1 n +C ∫ x dx = n +1 dx = ln x + C ∫ x ax x +C ∫ a dx = ln a x x ∫ e dx = e + C ∫ sin xdx = − cos x + C ∫ cos xdx = sin x + C ∫ tan xdx = − ln cos x + C ∫ cot xdx = ln sin x + C 1 dx = tan x + C ∫ cos 2 x 1 dx = − cot x + C ∫ 2 sin x 1 1 x dx = arctan + C ∫ 2 a a x + a2 1 x dx = arcsin + C ∫ a a2 − x2

1 dx = ln x + x 2 − a 2 + C x 2 − a2 1 1 a+x dx = ln +C ∫ 2 2a a−x a − x2 Wzory na ... ∫

b

b

P = ∫ f ( x)dx

a a

L = ∫ 1 + [ f ′( x)]2 dx

b ∫ f ( x)dx = [ F ( x)]a = F (b) − F (a)

a b a

∫ f ( x)dx = 0

a b

c

b

a b

a b

c

a

a

∫ f ( x)dx = ∫ f (x)dx + ∫ f ( x)dx; a ≤ c ≤ b ∀

∫ f ( x)dx ≤ ∫ g ( x)dx ⇔ x ∈ a; b f (x) ≤ g ( x)

b

V = π ∫ [ f ( x)]2dx a

b

Pb = 2π ∫ f (x) 1 + [ f ′(x)]2 dx a

Pochodne f. elementarnych c′ = 0 (ax + b)′ = a (ax 2 + bx + c)′ = 2ax + b ( x a )′ = axa −1 1 ( x )′ = 2 x ′  a  = −a   x x2 1 n ′ x = n n x n −1 (sin x)′ = cos x (cos x)′ = − sin x 1 (tan x)′ = cos2 x 1 (cot x)′ = − sin 2 x x′ x a = a ln a ′ ex = ex eax ax ′ e = −? a ′ ( ln x) = 1 x ( loga x)′ = 1 x ln a ( arcsin x)′ = 1 1 − x2 ( arccos x)′ = − 1 1 + x2 ( arctan x)′ = 1 2 1+ x ( arc cot x)′ = − 1 2 1+ x

( )

( ) ( ) ( )

Related Documents