Universidade Federal do Rio de Janeiro Instituto de Física
Scaling relations and magnetic properties of nanoparticles José d’Albuquerque e Castro
PAN AMERICAN ADVANCED STUDIES INSTITUTE Ultrafast and Ultrasmall; New Frontiers and AMO Physics March 30 - April 11, 2008
Magnetic storage media: thin films ⇒ polycrystalline alloys of Co, Cr, and Pt with B or Ta ⇒ segregation of the non-magnetic elements: reduction of the coupling between grains ⇒ grain size ≈ 10 nm ⇒ areal density: 50 Gbit in-2 ( year 2000)
net magnetization
Problem: superparamagnetism limit 100 Gbit in-2
Superparamagnetism m
magnetic particle
energy barrier EB
Superparamagnetism m
magnetic particle
energy barrier EB
Superparamagnetism m
⇒ energy barrier for reversal: EB = KV volume: V net anisotropy: K ⇒ rate of switching: 1/τ = f0 exp(- EB/kT) f0 ≅ 109 s-1 storage time ≈ 10 years ⇒ EB ~ 40 kT
Patterned thin films Nanoimprint lithography ⇒ arrays of circular nanomagnets ⇒ cylinders with diameter D and height H 5 nm ≤ H ≤ 150 nm 50 nm ≤ D ≤ 500 nm
Lebib et al., JAP 89, 3892 (2001)
Patterned thin films
⇒ grains within particles are strongly coupled ⇒ particles cannot accommodate a domain wall ⇒ patterned thin films as recording media 200-260 Gbit in-2 (periodicity 50 nm) 1 Tbit in-2 periodicity 25 nm
R. P. Cowburn et al., Phys. Rev. Lett 83, 1042 (99)
A. Lebib et al., J. Appl. Phys. 89, 3892 (01) MFM vortex
single-domain
R. P. Cowburn et al., Phys. Rev. Lett. 83, 1042 (99) experimental phase diagram
Configurations I
in-plane
II
out-of-plane
III
vortex
core
Theoretical approach
Eij = classical dipolar interaction µi = magnetic moment on site i Jij = exchange coupling K = anisotropy constant
µi
{α1,α2,α3} = angles between µi and the principal (easy) crystalline axes
configuration of lowest energy ?
For smaller systems ( e.g. N ~ 106) ⇒ single domain configurations only Reason: strength of the exchange interaction J
Scaling approach J. d’A. e C., D. Altbir, J. C. Retamal, and P. Vargas, Phys. Rev. Lett. (2002)
J’ = x J
with x < 1
x = 0.04
x = 0.04 x = 0.06
x = 0.04 x = 0.06 x = 0.08
x = 0.04 x = 0.06 x = 0.08 x = 0.10
triple point
Ht (x) = Ht (1) xη
with η = 0.55
Scaling relations J’ = x J From the relation
Ht (x) = Ht (1) xη
⇒
Ht (1) = Ht (x)/ xη
we expect to find
H(1) = H(x) / xη D(1) = D(x) / xη
Truncated conical particles
C. A. Ross et al., J. Appl. Phys. 89, 1310 (2001) C. A. Ross et al., Phys. Rev. B 62, 14252 (2000)
Calculation for Ni particles ζ = 0.3 x = 0.010 x = 0.015 x = 0.020
J. Escrig, P. Landeros, J.C. Retamal, D. Altbir, and J. d’A. C., Appl. Phys. Lett. (2003)
Calculation for Ni particles ζ = 0.3 η = 0.55
J. Escrig, P. Landeros, J.C. Retamal, D. Altbir, and J. d’A. C., Appl. Phys. Lett. (2003)
Important point: value of η “Scaling relations for magnetized nanoparticles” P. Landeros, J. Escrig, D. Altbir, D. Laroze, J. d’A.C., and P. Vargas Phys. Rev. B 71, 094435 (2005)
value of η may depend on the model for the magnetic configurations!
model for the core
vortex core
Fast Monte-Carlo method Could we combine the scaling technique and the Monte-Carlo method? “Fast Monte-Carlo method for magnetic nanoparticles” P. Vargas, D. Altbir and J. d'Albuquerque e Castro Phys. Rev. B, 73, 092417 (2006)
Single domain limit: size L for which the flower and vortex states have equal energy.
http://www.ctcms.nist.gov/~rdm/mumag.org.html
Fast Monte-Carlo method µMag group (NIST)
L 8 lex
where
lex = (2A/µ0 M0²)1/2
A = exchange stiffness constant α J Co:
lex = 3.6 nm
a0 = 0.2 nm
J0 =2.35x103 kOe/µB
L 29 nm and N 3x106 atoms !
Fast Monte-Carlo method For given L’ (small): Monte-Carlo J’
x = J’/J0
?
L = L’/ xη
Calculations: L’1 = 5 a0 x1 = 2.240×10-3 L’2 = 7 a0 x2 = 4.125×10-3 L’3 = 9 a0 x3 = 6.509×10-3
η
η
η
Fast Monte-Carlo method Results L = 8.02 lex η = 0.551
Conclusion It is possible to combine the Monte-Carlo method with the scaling technique fast and reliable method for investigating the equilibrium properties of magnetic nanoparticles