6XSSOHPHQW6ZDUDVDQGY\DQMDQDVDWDJODQFH
à
V ddàee¦fghhààiidÚdÛd¡d_ àºqà}àV j¥§ kॠlॠmॠn¥ oà¥ ç¥ qॠrॠºà¥ »¥ ¼¥ ½¥ c¥ ॠॠzॠ¥ |ॠ}ॠ~ॠݥ§ ॠèॠॠà¥
¥ ॠॠॠॠॠ¥ ¥ Äà¥
sanskrit supplement 1. www.chitrapurmath.net
1/1
6XSSOHPHQW*UDPPDUZKDWFKDPDFDOOLWV7KHDEVROXWHEDVLFV 12816 $UHQDPHVRISHRSOHSODFHVDQLPDOVDQGWKLQJV)RU H[DPSOH.ULVKQD$ULVWRWOH.RONRWDGRJZKDOHV
}ààà
SRUSRLVHVLQNSHQFHOOSKRQHHWF7KHWKLQJVVHFWLRQ
FRYHUVMXVWDERXWDQ\WKLQJ\RXFDQQDPHQLJKWGD\ FRPSDVVLRQDQJHUNQRZOHGJH 35212816 $UHXVHGLQVWHDGRIDQRXQ+HVKHLWWKH\\RX,ZH
àà¦}ààà
XV
9(5%6
$UHZRUGVWKDWGHQRWHDFWLRQ,DPUHDGLQJWKHYHUELQ
©§àà~à
WKLVVHQWHQFHLVDPUHDGLQJ
7KH6DQVNULWYHUEOHWV\RXLQRQWRDJUHDWGHDORIKLGGHQ VWXII • :KRSHUIRUPVWKHDFWLRQ • +RZPDQ\SHUIRUPWKHDFWLRQ • :KHWKHUWKHDFWLRQLVLQWKHSUHVHQWSDVWRUWKH IXWXUHWHQVH • :KHWKHUWKHDFWLRQGHQRWHVDZLVKDQRUGHURUD VWDWHPHQW $'-(&7,9(6 $UHZRUGVWKDWWHOO\RXPRUHDERXWWKHQRXQ.
àÚàà
$EHDXWLIXOEDE\7KHEULOOLDQWVXQ
68)),;
$UHDGGHGWRWKHHQGRIDZRUG)RUH[DPSOHWKHOHWWHUV
~±àà
HGLQWKHZRUGDGGHGHQLQWKHZRUGVRIWHQ
35(),;
$UHDGGHGWRWKHEHJLQQLQJRIDZRUG
f~ààlà¦
&RPIRUWDEOH8QFRPIRUWDEOH
,1'(&/,1$%/(6
:RUGVWKDW1(9(5(9(5FKDQJH
dàà $'9(5%6
©§àààÚàà
$UHZRUGVWKDWWHOO\RXPRUHDERXWWKHYHUE. 6KHZDONVVORZO\+HVLQJVZHOO0DQ\DGYHUEVDUH DOVR
sanskrit supplement 2. www.chitrapurmath.net
dààV 1/1
6XSSOHPHQW9HUEFRQMXJDWLRQVLQWKHSUHVHQWWHQVH
~Ëà
à¥WRVSHDN ໥àj§à
SUHVHQWWHQVH ¹àoà}à ij§àoà}à
ààoà}à
3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà
àà
àà
à|àà
àà
àzà
fÐàà
ààà
ààà
à}à àzà ààà
~༥UHDGVWXG\ ໥àj§à
SUHVHQWWHQVH
~Ëà
ij§àoà}à
¹àoà}à
ààoà}à
3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà
~à¼à
~à¼à
à|àà
~à¼à
~à¼zà
fÐàà
~à¼àà
~à¼àà
~à¼}à ~à¼zà ~à¼àà
sanskrit supplement 3. www.chitrapurmath.net
1/5
~Ëà
kàà¥HDW ໥àj§à
SUHVHQWWHQVH ¹àoà}à ij§àoà}à
ààoà}à
3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà
kààà
kààà
à|àà
kààà
kààzà
fÐàà
kàààà
kàààà
kàà}à kààzà kàààà
àkà¥ZULWH ໥àj§à
SUHVHQWWHQVH
~Ëà
ij§àoà}à
¹àoà}à
ààoà}à
3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà
àkàà
àkàà
à|àà
àkàà
àkàzà
fÐàà
àkààà
àkààà
àkà}à àkàzà àkààà
sanskrit supplement 3. www.chitrapurmath.net
2/5
~Ëà
à¥ODXJK ໥àj§à
SUHVHQWWHQVH ¹àoà}à ij§àoà}à
ààoà}à
3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà
àà
àà
à|àà
àà
àzà
fÐàà
ààà
ààà
à}à àzà ààà
~Ëà
~àoà¥WRFRRN ໥àj§à
SUHVHQWWHQVH ¹àoà}à ij§àoà}à
ààoà}à
3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà
~àoàà
~àoàà
à|àà
~àoàà
~àoàzà
fÐàà
~àoààà
~àoààà
~àoà}à ~àoàzà ~àoààà
sanskrit supplement 3. www.chitrapurmath.net
3/5
~Ëà
Äà¥SURWHFW ໥àj§à
SUHVHQWWHQVH ¹àoà}à ij§àoà}à
ààoà}à
3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà
Äàà
Äàà
à|àà
Äàà
Äàzà
fÐàà
Äààà
Äààà
Äà}à
Äàzà
Äààà
~Ëà
}àà¥QDPDVNDDU ໥àj§à
SUHVHQWWHQVH ¹àoà}à ij§àoà}à ààoà}à
3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà
}ààà
}ààà
à|àà
}ààà
}ààzà
fÐàà
}àààà
}àààà
}àà}à }ààzà }àààà
sanskrit supplement 3. www.chitrapurmath.net
4/5
~Ëà
~àà~àॠGULQN໥àj§à
SUHVHQWWHQVH ¹àoà}à ij§àoà}à
ààoà}à
3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà
~ààà
~ààà
à|àà
~ààà
~ààzà
fÐàà
~àààà
~àààà
~àà}à ~ààzà ~àààà
~Ëà
à¥~àॠVHH໥àj§à
SUHVHQWWHQVH ¹àoà}à ij§àoà}à ààoà}à
3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà
~ààà
~ààà
à|àà
~ààà
~ààzà
fÐàà
~àààà
~àààà
~àà}à ~ààzà ~àààà
sanskrit supplement 3. www.chitrapurmath.net
5/5
Understanding the vibhaktis
Name
~±zààà The Nominative
¹àÜàà The Accusative
ààÜàà The Instrumental
oàËzàܦ
Functions j§à
j§
j§àà¦
j§à¦ j§
à
à~±à}à
The Dative
~àºoààÜ
d~ààà}à
The Ablative
à¼Ü
àà}|à
The Genitive
Significance
1. The naming case 2. Denotes the subject. 1. Denotes the object. Denotes 1. The agent 2. The instrument 3. The means 1. Indicates the direction in which the action denoted by the verb takes place 2. The purpose. Denotes 1. Separation 2. Source 3. Motive 1 Denotes possession
To be translated into English by
To be translated into Hindi by
_________
_________ 1. with 2. by 3. by means of
1. to 2. for
}Ú j§Ú 1 Ú 2. j§¹à
à 1. j§Ú 2. j§ài
1 from 2. out of
1 Ú 2 ¿Ú 3 ~à
Ú
1 of 2 belonging to
1 j§à 2 j§ 3 j§Ü
à~ààÜ
d|àj§
à
The Locative
ààÚ|à}à The Vocative.
sanskrit supplement 4. www.chitrapurmath.net
ààÚ|à}à
1 Denotes the place or the situation of a thing
1 The Nominative of address
1 in 2 on 3 among 4 between 5 in the midst of __________
1 ¿ 2 ~Ú 3 ~à
1 2 d
3 dÚ 4 èàÚ
1/1
6XSSOHPHQW9LEKDNWLWDEOHVIRU
àààà}àDQGàààà_
ààdj§à
à}à~Ë¡©X©t àèà¨à ~±zàààVXEMHFW ¹àÜààREMHFW ààÜààE\ZLWK oàËzàܦIRU ~àºoààÜIURP à¼ÜVKRZV SRVVHVVLRQ à~ààÜLQRQ ààÚ|à}àXVHG
ZKHQDGGUHVVLQJ
ij§àoà}à
àà
ààà¥
àÚà
àààà
àààà¥
ààà
¹àoà}à
ààÛ
ààÛ
àààèààà¥
àààèààà¥
àààèààà¥
àààÚ
ààoà}à
ààà
ààà}à¥
àà
àÚèà
àÚèà
àààààà¥
àÚ
àà
àààÚ
ààÛ
àÚË
ààà
àdj§à
à}à~Ë¡©X©t àèà¨à ~±zàààVXEMHFW ¹àÜààREMHFW ààÜààE\ZLWK oàËzàܦIRU ~àºoààÜIURP à¼ÜVKRZV SRVVHVVLRQ à~ààÜLQRQ ààÚ|à}àXVHG
ZKHQDGGUHVVLQJ
ij§àoà}à à àॠÚ}à ààà ààॠàà
¹àoà}à àÛ àÛ ààèààॠààèààॠààèààॠààÚ
ààoà}à àà àà}à¥ Û Úèà Úèà àà}ààà¥
Ú à
ààÚ àÛ
ÚË àà
sanskrit supplement 5 www.chitrapurmath.net
1/2
à}àdj§à
à}à}à~Ë¡àj§X©t àèà¨à ~±zàààVXEMHFW ¹àÜààREMHFW ààÜààE\ZLWK oàËzàܦIRU ~àºoààÜIURP à¼ÜVKRZV SRVVHVVLRQ à~ààÜLQRQ ààÚ|à}àXVHG
ZKHQDGGUHVVLQJ
ij§àoà}à à}àॠà}àॠà}Ú}à à}ààà à}ààॠà}àà
¹àoà}à à}Ú à}Ú à}ààèààॠà}ààèààॠà}ààèààॠà}ààÚ
ààoà}à à}àà}à à}àà}à à}Û à}Úèà à}Úèà à}àà}ààà¥
à}Ú à}à
à}ààÚ à}Ú
à}ÚË à}àà}à
ààààdàj§à
à}ààÜ©X©t àèà¨à ~±zàààVXEMHFW ¹àÜààREMHFW ààÜààE\ZLWK oàËzàܦIRU ~àºoààÜIURP à¼ÜVKRZV SRVVHVVLRQ à~ààÜLQRQ ààÚ|à}àXVHG
ZKHQDGGUHVVLQJ
ij§àoà}à àààà ààààॠààààà ààààÛ àààààà àààààà
¹àoà}à ààÚ ààÚ ààààèààॠààààèààॠààààèààॠààààÚ
ààoà}à àààà àààà ààààèà ààààèà ààààèà àààà}ààà¥
ààààààॠààÚ
ààààÚ ààÚ
ààààË àààà
sanskrit supplement 5 www.chitrapurmath.net
2/2
6XSSOHPHQWà¥+HLWVKH àà¦}ààà3URQRXQ ~Ë¡}à~Ë¡àÜ
1RWH3URQRXQVDUHQRWGHFOLQHGLQWKHYRFDWLYH
à¥7KDW+H~Ë¡©X©t àèà¨à ~±zàààVXEMHFW ¹àÜààREMHFW ààÜààE\ZLWK oàËzàܦIRU ~àºoààÜIURP à¼ÜVKRZV SRVVHVVLRQ à~ààÜLQRQ
ij§àoà}à à àॠÚ}à àÛ àààॠàà
¹àoà}à àÛ àÛ ààèààॠààèààॠààèààॠààÚ
ààoà}à Ú àà}à¥ Û Úèà Úèà Úààà¥
àà}à¥
ààÚ
ÚË
à¥7KDW,W}à~Ë¡àj§X©t àèà¨à ~±zàààVXEMHFW ¹àÜààREMHFW ààÜààE\ZLWK oàËzàܦIRU ~àºoààÜIURP à¼ÜVKRZV SRVVHVVLRQ à~ààÜLQRQ sanskrit supplement 6 www.chitrapurmath.net
ij§àoà}à àà¥à¥ àà¥à¥ Ú}à àÛ àààॠàà
¹àoà}à Ú Ú ààèààॠààèààॠààèààॠààÚ
ààoà}à àà}à àà}à Û Úèà Úèà Úààà¥
àà}à¥
ààÚ
ÚË 1/2
à¥7KDW6KHàÜX©t àèà¨à ~±zàààVXEMHFW ¹àÜààREMHFW ààÜààE\ZLWK oàËzàܦIRU ~àºoààÜIURP à¼ÜVKRZV SRVVHVVLRQ à~ààÜLQRQ
ij§àoà}à àà ààॠààà àÛ ààà ààà
¹àoà}à Ú Ú ààèààॠààèààॠààèààॠààÚ
ààoà}à àà àà ààèà ààèà ààèà ààààà¥
àààà¥
ààÚ
ààË
sanskrit supplement 6 www.chitrapurmath.net
2/2
6XSSOHPHQWià¥+HLWVKH àà¦}ààà3URQRXQ ~Ë¡}à~Ë¡àÜ
ià¥7KLV+H~Ë¡©X©t àèà¨à ~±zàààVXEMHFW ¹àÜààREMHFW ààÜààE\ZLWK oàËzàܦIRU ~àºoààÜIURP à¼ÜVKRZV SRVVHVVLRQ à~ààÜLQRQ
ij§àoà}à ià iàॠiÚ}à iàÛ iàààॠiàà
¹àoà}à iàÛ iàÛ iààèààॠiààèààॠiààèààॠiààÚ
ààoà}à iÚ iàà}ॠiÛ iÚèà iÚèà iÚààà¥
iàà}à¥
iààÚ
iÚË
ià¥7KLV,W}à~Ë¡àj§X©t àèà¨à ~±zàààVXEMHFW ¹àÜààREMHFW ààÜààE\ZLWK oàËzàܦIRU ~àºoààÜIURP à¼ÜVKRZV SRVVHVVLRQ à~ààÜLQRQ sanskrit supplement 7. www.chitrapurmath.net
ij§àoà}à iàà¥iॠiàà¥iॠiÚ}à iàÛ iàààॠiàà
¹àoà}à iÚ iÚ iààèààॠiààèààॠiààèààॠiààÚ
ààoà}à iàà}à iàà}à iÛ iÚèà iÚèà iÚààà¥
iàà}à¥
iààÚ
iÚË 1/2
ià¥7KLV6KHàÜX©t àèà¨à ~±zàààVXEMHFW ¹àÜààREMHFW ààÜààE\ZLWK oàËzàܦIRU ~àºoààÜIURP à¼ÜVKRZV SRVVHVVLRQ à~ààÜLQRQ
ij§àoà}à iàà iààॠiààà iàÛ iààà iààà
¹àoà}à iÚ iÚ iààèààॠiààèààॠiààèààॠiààÚ
ààoà}à iàà iàà iààèà iààèà iààèà iààààà¥
iàààà¥
iààÚ
iààË
sanskrit supplement 7. www.chitrapurmath.net
2/2
6XSSOHPHQW 9HUEFRQMXJDWLRQVLQWKH,PSHUDWLYH0RRG
JPJ&'¥WRJR ODHTONDU,PSHUDWLYH0RRG SXD
#NYFQ
LgYFQ
EKXYFQ
6LQJXODU
'XDO
3OXUDO
jZP
J&'WX
J&'WDP
J&'1WX
P;\P
J&'
J&'WP
J&'W
bP
J&'DLQ
J&'DY
J&'DP
3HUVRQ
S4UHDGVWXG\ ODHTONDU,PSHUDWLYH0RRG SXD
#NYFQ
LgYFQ
EKXYFQ
6LQJXODU
'XDO
3OXUDO
jZP
S4WX
S4WDP
S41WX
P;\P
S4
S4WP
S4W
bP
S4DLQ
S4DY
S4DP
3HUVRQ
YGWRVSHDN ODHTONDU,PSHUDWLYH0RRG SXD
#NYFQ
LgYFQ
EKXYFQ
6LQJXODU
'XDO
3OXUDO
jZP
YGWX
YGWDP
YG1WX
P;\P
YG
YGWP
YGW
bP
YGDLQ
YGDY
YGDP
3HUVRQ
sanskrit supplement 8 www.chitrapurmath.net
1//2
RDGHDW ODHTONDU,PSHUDWLYH0RRG SXD
#NYFQ
LgYFQ
EKXYFQ
6LQJXODU
'XDO
3OXUDO
jZP
RDGWX
RDGWDP
RDG1WX
P;\P
RDG
RDGWP
RDGW
bP
RDGDLQ
RDGDY
RDGDP
3HUVRQ
LOR¥ZULWH ODHTONDU,PSHUDWLYH0RRG SXD
#NYFQ
LgYFQ
EKXYFQ
6LQJXODU
'XDO
3OXUDO
jZP
LORWX
LORWDP
LOR1WX
P;\P
LOR
LORWP
LORW
bP
LORDLQ
LORDY
LORDP
3HUVRQ
sanskrit supplement 8 www.chitrapurmath.net
2//2
6XSSOHPHQWdà¥Ëà¥_
dॠ, GHFOLQHGIRUPV
àèà¨à ~±zàààVXEMHFW ¹àÜààREMHFW ààÜààE\ZLWK oàËzàܦIRU ~àºoààÜIURP à¼ÜSRVVHVVLRQ
ij§àoà}à dॠààà¥àà ààà àÂàà¥Ú àॠààÚ
¹àoà}à dàààॠdàààà¥}àÛ dàààèààॠdàààèààà¥}àÛ dàààèààॠdàààÚ}àÛ
ààoà}à ààॠdàà}à¥}à dààèà dàèàà¥}à dàॠdààj§à¥}à
à~ààÜLQRQ
àà
dàààÚ
dààË
舴
sanskrit supplement 9 www.chitrapurmath.net
àà
ËààÚ
ËààË
1/1
6XSSOHPHQWà¥DQGj§à¥_
7KHWDEOHVKDYHEHHQUHDUUDQJHGVRDVWRKDYHFRPSOHWHWDEOHVRQDVLQJOH SDJH
LNP(ND(Q)~Ë¡©X©t #NYFQ(Singular)
LgYFQ(Dual)
EKXYFQ(Plural)
j
N!
ND(
NH
Lg
NP
ND(
NDQ
W
NHQ
NDB\DP
N(!
F
N6P(
NDB\DP
NHB\!
S
N6PDW
NDB\DP
NHB\!
D
N6\
N\DH!
NHDP
V
NL6PQ
N\DH!
NHX
LYBDL.W
sanskrit supplement 10. www.chitrapurmath.net
1/4
LNP(ND(Q)}à~Ë¡àj§X©t #NYFQ(Singular)
LgYFQ(Dual)
EKXYFQ(Plural)
j
LNP
NH
NDLQ
Lg
LNP
NH
NDLQ
W
NHQ
NDB\DP
N(!
F
N6P(
NDB\DP
NHB\!
S
N6PDW
NDB\DP
NHB\!
D
N6\
N\DH!
NHDP
V
NL6PQ
N\DH!
NHX
LYBDL.W
LNP(ND(Q)àÜX©t #NYFQ(Singular)
LgYFQ(Dual)
EKXYFQ(Plural)
j
ND
NH
ND!
Lg
NDP
NH
ND!
W
N\D
NDB\DP
NDL!
F
N6\(
NDB\DP
NDB\!
S
N6\D!
NDB\DP
NDB\!
D
N6\D!
N\DH!
NDVDP
V
N6\DP
N\DH!
NDVX
LYBDL.W
sanskrit supplement 10. www.chitrapurmath.net
2/4
\G(MDH)~Ë¡©X©t #NYFQ(Singular)
LgYFQ(Dual)
EKXYFQ(Plural)
j
\!
\D(
\H
Lg
\P
\D(
\DQ
W
\HQ
\DB\DP
\(!
F
\6P(
\DB\DP
\HB\!
S
\6PDW
\DB\DP
\HB\!
D
\6\
\\DH!
\HDP
V
\L6PQ
\\DH!
\HX
LYBDL.W
\G(MDH)}à~Ë¡àj§X©t #NYFQ(Singular)
LgYFQ(Dual)
EKXYFQ(Plural)
j
\W
\H
\DLQ
Lg
\W
\H
\DLQ
W
\HQ
\DB\DP
\(!
F
\6P(
\DB\DP
\HB\!
S
\6PDW
\DB\DP
\HB\!
D
\6\
\\DH!
\HDP
V
\L6PQ
\\DH!
\HX
LYBDL.W
sanskrit supplement 10. www.chitrapurmath.net
3/4
\G(MDH)àÜX©t #NYFQ(Singular)
LgYFQ(Dual)
EKXYFQ(Plural)
j
\D
\H
\D!
Lg
\DP
\H
\D!
W
\\D
\DB\DP
\DL!
F
\6\(
\DB\DP
\DB\!
S
\6\D!
\DB\DP
\DB\!
D
\6\D!
\\DH!
\DVDP
V
\6\DP
\\DH!
\DVX
LYBDL.W
33333333333333333333/
sanskrit supplement 10. www.chitrapurmath.net
4/4
6XSSOHPHQWj§|ààË_໥àÚ»¥àj§à
_33IRUPV
j§83WRGR໥àj§à
_3UHVHQWWHQVH33IRUPV ~Ëà ~±zàà à|àà fÐàà
ij§oàà}à ààààॠj§
Úà à¡j§
Úà d¡j§
Úà
¹àoà}à
ààoà}à
àÛÚÚ Úàààà}à j§à j§à¦}à Ëàà¡j§zà Ìà¡j§zà dààà¡j§à¦
àà¡j§à¦
j§83WRGRàÚ»¥àj§à
,PSHUDWLYHPRRG33IRUPV
~Ëà ~±zàà à|àà fÐàà
ij§oàà}à ààààॠj§
ÚË à¡j§ d¡j§
ààà
¹àoà}à
ààoà}à
àÛÚÚ Úàààà}à j§ààॠj§à¦}Ë Ëàà¡j§àॠÌà¡j§à dààà¡j§
ààà
àà¡j§
ààà
1RWH2QO\WKH33IRUPVKDYHEHHQJLYHQ:HFDQGRWKH$3IRUPVDWD ODWHUGDWH
sanskrit supplement 11 www. chirapurmath.net
1/1
6XSSOHPHQWàÚ»¥àj§à
LQWKH$3IRUPV
~Ëà
$àèà¥WRREWDLQ$3àÚ»¥àj§à
ij§àoà}à ¹àoà}à ààoà}à
3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà à|àà fÐàà
àèàààॠàèàà àèÛ
àèÚààॠàèÚzààॠàèààà
àèà}ààॠàèà|àॠàèààà
6RPHH[DPSOHVRIURRWZRUGVRIWKH*DQD
Úà¥$3WRVHUYH àèà¥$3WRREWDLQ à|থ$3WRJURZ àÚ¥$3WRUHMRLFH à¥$3WREHDUWROHUDWH ààoà¥83WREHJ }àÜ}àà 83WRWDNHDZD\ Ã
83WRVWHDOWDNHDZD\
%qà}à¥qàà WRHPHUJHWRJURZIURPWREHERUQIURPf~à}}àÚ}àà $3àÚ»¥àj§à
~Ëà ij§àoà}à ¹àoà}à ààoà}à 3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà à|àà fÐàà
qàààààॠqàààà qààÛ
qààÚààॠqààÚzààॠqààààà
qààà}ààॠqààà|àॠqààààà
$QRWKHUH[DPSOHRIWKH*DQDLVË|à¥$3WRILJKW
sanskrit supplement 12. www.chitrapurmath.net
1/2
&Ëoà¥ËºoॠWROHWJR83àÚ»¥àj§à
$3IRUPV ~Ëà ij§àoà}à ¹àoà}à ààoà}à 3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà à|àà fÐàà
˺oàààॠ˺oàà ˺oÛ
˺oàààॠ˺oÚzààॠ˺oààà
˺oà}ààॠ˺oà|àॠ˺oààà
'j§zà¥WRWHOO83àÚ»¥àj§à
$3IRUPV ~Ëà ij§àoà}à ¹àoà}à ààoà}à 3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà à|àà fÐàà
j§zààààॠj§zààà j§zàÛ
j§zàÚààॠj§zàÚzààॠj§zàààà
j§zàà}ààॠj§zàà|àॠj§zàààà
6RPHH[DPSOHVRIWKH*DQD
oà}à¥83WRWKLQN oË
¥oàÚ
¥ 83WRVWHDO èàÄà¥83WRHDW
sanskrit supplement 12. www.chitrapurmath.net
2/2
6XSSOHPHQWj§|ààË໥DQGàÚ»¥àj§à
$3IRUPV
j§83WRGR໥àj§à
_3UHVHQWWHQVH$3IRUP ~Ëà ~±zàà à|àà fÐàà
ij§oàà}à ààààॠj§Ú à¡j§Ú d¡j§Ú¦
¹àoà}à
ààoà}à
àÛÚÚ Úàààà}à j§àà¦Ú j§à¦Ú Ëàà¡j§àà¦zÚ Ìà¡j§|Ú dààà¡j§à¦
àà¡j§à¦
j§83WRGRàÚ»¥àj§à
,PSHUDWLYHPRRG$3IRUP
~Ëà ~±zàà à|àà fÐàà
ij§oàà}à ààààॠj§ààॠà¡j§à d¡j§
à
¹àoà}à
ààoà}à
àÛÚÚ j§àà¦ààॠËàà¡j§àà¦zààà¥
Úàààà}à j§à¦ààॠÌà¡j§|àà¥
dààà¡j§
ààà
àà¡j§
ààà
sanskrit supplement 13 www.chitrapurmath.net
1/1
6XSSOHPHQW3DVWWHQVH33àn¥àj§à
_
$làà¥làoç¥ WRJR33àn¥àj§à
~Ëà ij§àoà}à ¹àoà}à ààoà}à 3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà à|àà fÐàà
dlàoçॠdlàoç dlàoçà¥
dlàoçààॠdlàoçàॠdlàoçàà
dlàoç}ॠdlàoçà dlàoçàà
~Ëà
%}àà¥WRGDQFH33àn¥àj§à
ij§àoà}à ¹àoà}à ààoà}à
3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà à|àà fÐàà
d}ààॠd}àà d}ààà¥
d}ààààॠd}àààॠd}àààà
d}àà}ॠd}ààà d}àààà
&~±oç¥~àoç¥ WRDVN33àn¥àj§à
~Ëà ij§àoà}à ¹àoà}à ààoà}à 3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà à|àà fÐàà
d~àoçॠd~àoç d~àoçà¥
d~àoçààॠd~àoçàॠd~àoçàà
d~àoç}ॠd~àoçà d~àoçàà
sanskrit supplement 14 www.chitrapurmath.net
1/2
~Ëà
'oË
¥oàÚ
¥ WRVWHDO33àn¥àj§à
ij§àoà}à ¹àoà}à ààoà}à
3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà à|àà fÐàà
doàÚ
àॠdoàÚ
à doàÚ
àà¥
doàÚ
àààॠdoàÚ
ààॠdoàÚ
ààà
doàÚ
à}ॠdoàÚ
àà doàÚ
ààà
sanskrit supplement 14 www.chitrapurmath.net
2/2
6XSSOHPHQW3DVWWHQVH$3àn¥àj§à
_
~Ëà
$àèà¥WRREWDLQ$3àn¥àj§à
ij§àoà}à ¹àoà}à ààoà}à
3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà à|àà fÐàà
dàèàà dàèàzàà dàèà
dàèÚààॠdàèàzààॠdàèààà
dàèà}à dàèà|àॠdàèààà
%qà}à¥qàà WRJURZIURPHPHUJHWREHERUQ$3àn¥àj§à
~Ëà ij§àoà}à ¹àoà}à ààoà}à 3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà à|àà fÐàà
dqàààà dqàààzàà dqààÚ
dqààÚààॠdqàààzààॠdqààààà
dqààà}à dqààà|àॠdqààààà
&Ëoà¥Ëºoà WROHWJR83àn¥àj§à
$3IRUP ~Ëà ij§àoà}à ¹àoà}à ààoà}à 3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà à|àà fÐàà
d˺oàà d˺oàzàà d˺oÚ
d˺oÚààॠd˺oàzààॠd˺oààà
d˺oà}à d˺oà|àॠd˺oààà
sanskrit supplement 15. www.chitrapurmath.net
1/2
'j§zà¥WRWHOO83àn¥àj§à
$3IRUP ~Ëà ij§àoà}à ¹àoà}à ààoà}à 3HUVRQ
6LQJXODU
~±zàà à|àà fÐàà
dj§zààà dj§zààzàà dj§zàÚ
'XDO
dj§zàÚààॠdj§zààzààॠdj§zàààà
3OXUDO
dj§zàà}à dj§zàà|àॠdj§zàààà
sanskrit supplement 15. www.chitrapurmath.net
2/2
6XSSOHPHQW3DVWWHQVH33DQG$3àn¥àj§à
_j§|ààË
$j§WRGR83àn¥àj§à
33IRUP ~Ëà ij§àoà}à ¹àoà}à ààoà}à 3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà à|àà fÐàà
dj§
Úॠdj§
Ú dj§
àà¥
dj§ààॠdj§àॠdj§à¦
dj§à¦}ॠdj§à dj§à¦
%j§WRGR83àn¥àj§à
$3IRUP ~Ëà ij§àoà}à ¹àoà}à ààoà}à 3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà à|àà fÐàà
dj§à dj§zàà dj§à¦
dj§àà¦ààॠdj§àà¦zààॠdj§à¦
dj§à¦à dj§|àॠdj§à¦
sanskrit supplement 16. www.chitrapurmath.net
1/1
6XSSOHPHQW,PSHUDWLYHPRRGDQG3DVWWHQVHdà¥|ààË_
$dà¥WREH33àÚ»¥àj§à
,PSHUDWLYHPRRG ~Ëà ij§àoà}à ¹àoà}à ààoà}à 3HUVRQ
6LQJXODU
~±zàà à|àà fÐàà
dË i|à dàà}à
'XDO
3OXUDO
ààॠàॠdààà
à}Ë à dààà
%dà¥WREH33àn¥àj§à
3DVWWHQVH
~Ëà
ij§àoà}à
¹àoà}à
ààoà}à
3HUVRQ
6LQJXODU
'XDO
3OXUDO
~±zàà à|àà fÐàà
dààÜॠdààÜ dààà¥
dàààॠdààॠdàà
dàà}ॠdàà dàà
sanskrit supplement 17 www.chitrapurmath.net
1/1
Supplement 18 a.
lçácçvlç DçJ³ç³ç s ( convey the meaning: for the purpose of.) Oççlçá
Serial
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.
‚þ + ²−à „¸Ã + ¬˜þþ ˆÅ˜þà ˆ¼Å ÇÅúÛà âþ¥þà ¹âþœþà ‰þþ¸Ã ŠþŸþà þœþà ¸þ ´ªþà ›þú œþÚà œþþ œêþà #Ï» Ÿþ¼þà ¡éšþà £âþà ¥þžþÃ
Meaning of the Oççlçá
to climb to get up to tell to do to play to clean to throw to eat to go to do mantra-japa to give to see to take away to read/ study to drink to worship to speak to wipe to fight to protect to obtain
sanskrit supplement 18a. www.chitrapurmath.net
© Shri Chitrapur Math
lçácçvlç DçJ³ç³ç of the Oççlçá ‚þ£øºŸþà „·˜þþ·éŸþà ˆÅ˜þ¹¡þ·éŸþà ˆÅ·þĺŸþà ÇÅú¹Û·éŸþà âþþ¥þ¹¡þ·éŸþà âøœ·éŸþà ‰þþ¹¸·éŸþà Šþ›·éŸþà þ¹œþ·éŸþà ¸þ·éŸþà ͫٺŸþà ›ø·éŸþà œþ¹Ú·éŸþà œþþ·éŸþà œêþ¹¡þ·éŸþà ¨þÆ·éŸþà ŸþþþĹ¡þ·éŸþà ¡þøÖºŸþà £âþ¹·éŸþà ¥þ#šéŸþà 1/2
32.
¹¥þ‰þà ¨þ,þà ¨þ›¸Ã ýº ¬ø¨þà ¬·é ¬˜þþ ¬˜þþ ¬›þþ ¬œþ¼ªþà ¬Ÿþ¼
33.
−¬þÃ
22. 23. 24. 25. 26. 27. 28. 29. 30. 31.
to write to speak to do namaskar to listen to serve to praise to keep to wait to bathe to touch remember/recall/thi nk to laugh
sanskrit supplement 18a. www.chitrapurmath.net
© Shri Chitrapur Math
¥ø¹‰þ·éŸþà ¨þÆ·éŸþà ¨þ¹›¸·éŸþà ýø·éŸþà ¬ø¹¨þ·éŸþà ¬·þø·éŸþà ¬˜þþœþ¹¡þ·éŸþà ¬˜þþ·éŸþà ¬›þþ·éŸþà ¬œÏ«ÙºŸþà ¬Ÿþ·þĺŸþà −¹¬þ·éŸþÃ
2/2
Supplement 18 b. Additional Tumants.
Oççlçá
Serial
Meaning of the Oççlçá
lçácçvlç DçJ³ç³ç of the Oççlçá
34.
kç=À
to heat
G
35.
kç=À
to cool
MççÇlçuççÇkçÀlç&ácçd
36.
KçC[d
to break
KçC[çƳçlçácçd
37.
kçÀlç&d
to cut
kçÀlç&çƳçlçácçd
38.
çÆpçIç´d
to smell
çÆpççÆIç´lçácçd
39.
Dçç + çÆ#çHçd
to complain
Dçç#çíÊçácçd Dçç#çíHççƳçlçácçd
40.
¢Mçd
to show
oMç&çƳçlçácçd
41.
içáHçd
to hide
iççíHççƳçlçácçd
to call
Dçç»çƳçlçácçd
42.
Dçç
Ȓ
43.
çÆJç + mcç=
to forget
çÆJçmcçlç&ácçd
44.
mLçç
to abide
mLççlçácçd
45.
Hççuçd
to obey
Dçç%ççb HççuççƳçlçácçd
46.
HççÆj + cçç
to limit
HççÆjcççlçácçd
47.
çÆvç
to prevent
çÆvçJççjçƳçlçácçd
+
Jç=
+
48.
Hççþd
to teach
HççþçƳçlçácçd
49.
Hçþd
to learn
HççÆþlçácçd
50.
éçmçd
to breathe
méççÆmçlçácçd
to relax
çÆJçÞççvlççÇkçÀlç&ácçd
51.
çÆJç
52.
mçb + Hç=®sd
to consult
mçbHç=äácçd
53.
DçJç + içcçd
to understand
DçJçiçvlçácçd
54.
mçcç + DççHçd
to finish
mçcççHççƳçlçácçd
+
Þçcçd
sanskrit supplement 18b. www.chitrapurmath.net
© Shri Chitrapur Math
55.
Òçí<çd
to dispatch
Òçí<ççƳçlçácçd
56.
mçíJçd
to attend
mçíçÆJçlçácçd
57.
çÆvç
+
Jç=
to eliminate
çÆvçJççjçƳçlçácçd
58.
çÆJç
+
%çç
to distinguish
çÆJç%ççlçácçd
59.
mçppççÇ
to prepare
mçppççÇkçÀlç&ácçd
+
kç=À
60.
Òç + kçÀçMçd
to publish
ÒçkçÀçMççƳçlçácçd
61.
cçáê³çd
to print
³cçáêçƳçlçácçd
62.
içCçd
to calculate
içCççƳçlçácçd
63.
Òç + Jç=Oçd
to magnify
ÒçJçOç&çƳçlçácçd
64.
çÆJç + kçÀmçd
to maximize/expand
çÆJçkçÀçÆmçlçácçd
65.
kç=À
to minimise
DçvlççÆn&lçb kçÀlç&ácçd
66.
çÆJç + kç=À<çd
to reduce
çÆJçkçÀä&ácçd
67.
Dçç + H³çÌ
to enlarge
DççH³ççlçácçd DççH³ççHççƳçlçácçd
68.
DçHç + kç=À<çd
to extricate
DçHçkçÀä&ácçd
69.
©Oçd
to arrest
jçí×ácçd
70.
kç=À
to judge
çÆvçCç&³çb kçÀlç&ácçd
to justify
MççíOççƳçlçácçd
to mystify
J³ççcççíçÆnlçácçd
to command
MçççÆmçlçácçd
to order
Dçç%ççHççƳçlçácçd
71.
MçáOçd
72.
çÆJç
causal
Dçç
+
+
cçánd 73. 74.
Mççmçd Dçç
+
%çç
75.
kç=À
to practice
DçY³ççmçb kçÀlç&ácçd
76.
yçOçd
to endanger
yççÇYççqlmçlçácçd
77.
$çç
to save
$ççlçácçd
78.
mç=pçd
to create
ñçäcçd
sanskrit supplement 18b. www.chitrapurmath.net
© Shri Chitrapur Math
79.
çÆJç + ¬çÀçÇ
to sell
çÆJç¬çíÀlçácçd
80.
OççJçd
to run
OççJççƳçlçácçd
81.
cçvçmçç kçwuç=Hçd
to envision
cçvçmçç kçÀuHççƳçlçácçd
82.
³çlçd
to strive
³ççÆlçlçácçd
83.
DçJç + lç=
to incarnate
DçJçlççÆjlçácçd
84.
ÒççÆlç + %çç
to promise
ÒççÆlç%ççlçácçd
85.
Jç=
to close
JççÆjlçácçd
86.
God + Içìd
to open
GodIççìçƳçlçácçd
87.
çÆJç + içcçd
to see off
çÆJçiçvlçácçd
88.
¬çáÀOçd causal
to irritate
¬çÀçíOççƳçlçácçd
89.
Mçcçd
to pacify
MççÆcçlçácçd
90.
kç=À
to surprise
çÆJçmcç³ççÇkçÀlç&ácçd
91.
Hç= causal
to overcome
HççjçƳçlçácçd
92.
kç=À
to criticise
çÆvçvoçb kçÀlç&ácçd
93.
Hçvçd
to appreciate
HççÆvçlçácçd
94.
God + mçnd
to encourage
Glmççí{ácçd
Contact Us: This supplement is in response to a student's request. Please let us know if you have better words/ more accurate words for the ones we have provided. Contact us at
[email protected]
sanskrit supplement 18b. www.chitrapurmath.net
© Shri Chitrapur Math
6XSSOHPHQWeDQGe¦j§à
à}àZRUGV NLYNDUD1WSX LYBDL.W
#NYFQ6LQJXODU
LgYFQ'XDO
EKXYFQ3OXUDO
j
NLY!
NY,
NY\!
Lg
NLYP
NY,
NY,Q
W
NLYQD
NLYB\DP
NLYL!
F
NY\H
NLYB\DP
NLYB\!
S
NYH!
NLYB\DP
NLYB\!
D
NYH!
N9\DH!
NY,QDP
V
NYD(
N9\DH!
NLYDX
V
KHNYH
KHNY,
KHNY\!
PLW(EXLÅ)NDUD1W6d, LYBDL.W
#NYFQ6LQJXODU
LgYFQ'XDO
EKXYFQ3OXUDO
j
PLW!
PW,
PW\!
Lg
PLWP
PW,
PW,!
W
P7\D
PLWB\DP
PLWL!
F
P7\(
PW\H
PLWB\DP
PLWB\!
S
P7\D!
PWH!
PLWB\DP
PLWB\!
D
P7\D!
PWH!
P7\DH!
PW,QDP
V
P7\DP
PWD(
P7\DH!
PLWDX
V
KHPWH
KHPW,
KHPW\!
sanskrit supplement 19 www.chitrapurmath.org
1/2
QG,(QG,) NDUD1W6d, LYBDL.W
#NYFQ6LQJXODU
LgYFQ'XDO
EKXYFQ3OXUDO
j
QG,
Q D(
Q !
Lg
QG,P
Q D(
QG,!
W
Q D
QG,B\DP
QG,L!
F
Q (
QG,B\DP
QG,B\!
S
Q D!
QG,B\DP
QG,B\!
D
Q D!
Q DH!
QG,QDP
V
Q DP
Q DH!
QG,DX
V
KHQLG
KHQ D(
KHQ !
YDLU(MO)NDUD1WQSX LYBDL.W
#NYFQ6LQJXODU
LgYFQ'XDO
EKXYFQ3OXUDO
j
YDLU
YDLU^D,
YDU,L^D
Lg
YDLU
YDLU^D,
YDU,L^D
W
YDLU^DD
YDLUB\DP
YDLUL!
F
YDLU^DH
YDLUB\DP
YDLUB\!
S
YDLU^D!
YDLUB\DP
YDLUB\!
D
YDLU^D!
YDLU^DDH!
YDU,^DDP
V
YDLUL^D
YDLU^DDH!
YDLUDX
V
KHYDLUYDUH
KHYDLU^D,
KHYDU,L^D
sanskrit supplement 19 www.chitrapurmath.org
2/2
6XSSOHPHQWNDUD1W0)1 DQGANDUD1W) JXp(JXp) NDUD1WSX LYBDL.W
#NYFQ(Singular)
LgYFQ(Dual)
EKXYFQ(Plural)
j
JXp!
JXr
JXUY!
Lg
JXpP
JXr
JXrQ
W
JXp^DD
JXpB\DP
JXpL!
F
JXUYH
JXpB\DP
JXpB\!
S
JXUDH!
JXpB\DP
JXpB\!
D
JXUDH!
JXYDH5!
JXr^DDP
V
JXUD(
JXYDH5!
JXpDX
V
KHlË
Ú
KHJXr
KHJXUY!
VD[X(VD[X)NDUD1WSX LYBDL.W
#NYFQ(Singular)
LgYFQ(Dual)
j
VD[X!
VD[8
VD[Y!
Lg
VD[XP
VD[8
VD[8Q
W
VD[XQD
VD[XB\DP
VD[XXL!
F
VD[YH
VD[XB\DP
VD[XB\!
S
VD[DH!
VD[XB\DP
VD[XB\!
D
VD[DH!
VD;YDH!
VD[8QDP
V
VD[D(
VD;YDH!
VD[XDX
V
KHVD[DH
KHVD[8
KHVD[Y!
sanskrit supplement 20. www.chitrapurmath.net
EKXYFQ(Plural)
1/3
[HQX(JD\)NDUD1W6d, LYBDL.W
#NYFQ(Singular)
LgYFQ(Dual)
EKXYFQ(Plural)
j
[HQX!
[HQ8
[HQY!
Lg
[HQXP
[HQ8
[HQ8!
W
[H1YD
[HQXB\DP
[HQXL!
F
[H1Y([HQYH
[HQXB\DP
[HQXB\!
S
[H1YD![HQDH!
[HQXB\DP
[HQXB\!
D
[H1YD![HQDH!
[H1YDH!
[HQ8QDP
V
[H1YDP[HQD(
[H1YDH!
[HQXX
V
KH[HQDH
KH[HQ8
KH[HQY!
Y[8(EK8)ANDUD1W6d, LYBDL.W
#NYFQ(Singular)
LgYFQ(Dual)
EKXYFQ(Plural)
j
Y[8!
Y;YD(
Y;Y!
Lg
Y[8P
Y;YD(
Y[8!
W
Y;YD
Y[8B\DP
Y[8L!
F
Y;Y(
Y[8B\DP
Y[8B\!
S
Y;YD!
Y[8B\DP
Y[8B\!
D
Y;YD!
Y;YDH!
Y[8QDP
V
Y;YDP
Y;YDH!
Y[8DX
V
KHY[X
KHY;YD(
KHY;Y!
sanskrit supplement 20. www.chitrapurmath.net
2/3
P;DX(]KG)NDUD1WQSX LYBDL.W
#NYFQ(Singular)
LgYFQ(Dual)
EKXYFQ(Plural)
j
P;DX
P;DXQ,
P;D8LQ
Lg
P;DX
P;DXQ,
P[8LQ
W
P[XQD
P[XB\DP
P[XL!
F
P[XQH
P[XB\DP
P[XB\!
S
P[XQ!
P[XB\DP
P[XB\!
D
P[XQ!
P[XQDH!
P[8QDP
V
P[XLQ
P[XQDH!
P[XDX
V
KHP[XP[DH
KHP[XQ,
KHP[8LQ
sanskrit supplement 20. www.chitrapurmath.net
3/3
!
"
!"
# $
$ % $& ' $ ( )* ),
sanskrit supplement 21. www.chitrapurmath.net
%
# !"
#
$%%
$'
$(
)*+
*
),
,
1/7
! " # $
-.' -. -0. -#.& -2. 3.& 3.
&
'
-.'
/-.'
-. -0.
-#.&
-#.1
-2.
$-2.
3.&
3.1
3.
! " # $
3.% 30. , , , 5
5& 6 7 8
9
sanskrit supplement 21. www.chitrapurmath.net
&
&
3.%
3.%4
30.&
/30.
,
/,
,
,
,
,
5
$5
5
$5
5&
6
7
6
/
2
/2
9
9
2/7
! " # $
7 7
7 7 ; 7 % ! 2 " W # 7 $ &/( & &
(% )
)
*
+'
)
:
/ :
7
/7
7
/7
7
7
7
/7
;
;
7
7
%
/%4
/
2
<
7
&*+
/&/(
&
/&
&=
&
) ? >
&, &0 @(
sanskrit supplement 21. www.chitrapurmath.net
)
)
&, &0
/&0
&2*+
/@(
3/7
! " # $
1 2 2 8
(
&
! " #
2
A
&
!$ ! ! ! !
* % *
sanskrit supplement 21. www.chitrapurmath.net
)
&
) &
)
%
& ,
)
)
1:
1
2
2
/
6
*+
(
&
2
<
/
A
/A4
- . :*
/
%
/%4
:*
4/7
! ! !! !" !# "$ " " " " " " "! "" "# #$ # # # # # # #!
7 B " # , 7 *
27 7 , &
sanskrit supplement 21. www.chitrapurmath.net
)
)
)
)
&'
*
7
/7
2*+
/2 B
" &
&
$<
:
,
/,
<
7
*
/*
/
/
/
7
/7
)*+
7
&
,
/,
&
1
&
5/7
#" ## $$ $ $ $ $ $ $ $! $" $# $ ! " # $
5 & & ( 2 2 2 2* ( (, ( ( C C0 2 27
sanskrit supplement 21. www.chitrapurmath.net
)
)
)
&
)
%
)
$
5
5
$< $&
1
&
1
$
$*
$:*
$
:
*+
( 2
2
/2
*
2*
(
(
(, (
/(
(: C
C
C0
/C0
/
<
*
:
/
2 2*+
27
6/7
! "
# $
: ' ' 2( 2
D
D*
sanskrit supplement 21. www.chitrapurmath.net
)
%
% %
)
) & %
&
:
*:
'
/'
'
'
2*+
/2(
2
D
D*
D*
7/7
6XSSOHPHQWà|ààn¥ FRQYH\LQJDGHVLUHRUZKDWRXJKWWREHGRQH 33IRUPV ([DPSOHRI33
JP(J&') LYL[LO #NYFQ6LQJXODU
LgYFQ'XDO
EKXYFQ3OXUDO
jZP
J&'HW
J&'HWDP
J&'H\X!
P;\P
J&'H!
J&'HWP
J&'HW
bP
J&'H\P
J&'HY
J&'HP
#NYFQ6LQJXODU
LgYFQ'XDO
EKXYFQ3OXUDO
jZP
}àÚà¥
}àÚààà¥
}àÚË
P;\P
}àÚ
}àÚàà¥
}àÚà
bP
}àÚàà¥
}àÚà
}àÚà
SXrD3HUVRQ
([DPSOHRI33
}àà¥à|ààn¥ SXrD3HUVRQ
sanskrit supplement 22 www.chitrapurmath.net
1/2
([DPSOHRI33
Ë¥à|ààn¥ #NYFQ6LQJXODU
LgYFQ'XDO
EKXYFQ3OXUDO
jZP
舴
Ëààà¥
ËË
P;\P
Ë
Ëàà¥
Ëà
bP
Ëàà¥
Ëà
Ëà
#NYFQ6LQJXODU
LgYFQ'XDO
EKXYFQ3OXUDO
jZP
oàÚ
Úà¥
oàÚ
Úààà¥
oàÚ
ÚË
P;\P
oàÚ
Ú
oàÚ
򈈴
oàÚ
Úà
bP
oàÚ
򈈴
oàÚ
Úà
oàÚ
Úà
SXrD3HUVRQ
([DPSOHRI33
oË
¥oàÚ
¥ à|ààn¥ SXrD3HUVRQ
sanskrit supplement 22 www.chitrapurmath.net
2/2
6XSSOHPHQWà|ààn¥ FRQYH\LQJDGHVLUHRUZKDWRXJKWWREHGRQH $3IRUPV ([DPSOHRI$3
Úàà|ààn¥ #NYFQ6LQJXODU
LgYFQ'XDO
EKXYFQ3OXUDO
jZP
ÚÚà
ÚÚààààà¥
ÚÚ
}à¥
P;\P
ÚÚzàà
ÚÚààzààà¥
ÚÚ|àà¥
bP
ÚÚà
ÚÚà
ÚÚà
#NYFQ6LQJXODU
LgYFQ'XDO
EKXYFQ3OXUDO
jZP
qààÚà
qààÚààààà¥
qààÚ
}à¥
P;\P
qààÚzàà
qààÚààzààà¥
qààÚ|àà¥
bP
qààÚà
qààÚà
qààÚà
SXrD3HUVRQ
([DPSOHRI$3
qà}à¥qàà à|ààn¥ SXrD3HUVRQ
sanskrit supplement 23 www.chitrapurmath.net
1/2
([DPSOHRI$3
Ëoà¥Ëºoॠà|ààn¥ #NYFQ6LQJXODU
LgYFQ'XDO
EKXYFQ3OXUDO
jZP
˺oÚà
˺oÚààààà¥
˺oÚ
}à¥
P;\P
˺oÚzàà
˺oÚààzààà¥
˺oÚ|àà¥
bP
˺oÚà
˺oÚà
˺oÚà
#NYFQ6LQJXODU
LgYFQ'XDO
EKXYFQ3OXUDO
jZP
oàÚ
Úà
oàÚ
Úààààà¥
oàÚ
Ú
}à¥
P;\P
oàÚ
Úzàà
oàÚ
Úààzààà¥
oàÚ
Ú|àà¥
bP
oàÚ
Úà
oàÚ
Úà
oàÚ
Úà
SXrD3HUVRQ
([DPSOHRI$3
oË
¥oàÚ
¥ à|ààn¥ SXrD3HUVRQ
sanskrit supplement 23 www.chitrapurmath.net
2/2
6XSSOHPHQWà|ààn¥j§|ààË_ FRQYH\LQJDGHVLUHRUZKDWRXJKWWREHGRQH 33DQG$3IRUPV
j§à|ààn¥33IRUP SXrD3HUVRQ
#NYFQ
LgYFQ'XDO
EKXYFQ3OXUDO
6LQJXODU
jZP
j§àà¦à¥
j§àà¦ààà¥
j§à¦
P;\P
j§àà¦
j§àà¦àà¥
j§àà¦à
bP
j§àà¦à¥
j§àà¦à
j§àà¦à
LgYFQ'XDO
EKXYFQ3OXUDO
j§à|ààn¥$3IRUP SXrD3HUVRQ
#NYFQ 6LQJXODU
jZP
j§àܦà
j§àܦààààà¥
j§àܦ
}à¥
P;\P
j§àܦzàà
j§àܦààzààà¥
j§àܦ|àà¥
bP
j§àܦà
j§àܦà
j§àܦà
sanskrit supplement 24. www.chitrapurmath.net
1/1
6XSSOHPHQWà|ààn¥dà¥|ààË_ FRQYH\LQJDGHVLUHRUZKDWRXJKWWREHGRQH 33IRUP
dà¥à|ààn¥33IRUP SXrD3HUVRQ
#NYFQ
LgYFQ'XDO
EKXYFQ3OXUDO
6LQJXODU
jZP
ààà¥
ààààà¥
Ë
P;\P
àà
àààà¥
ààà
bP
ààà¥
ààà
ààà
sanskrit supplement 24 www.chitrapurmath.net
1
6XSSOHPHQW5HODWLYHV
A-WTU@BJY!C@ 0RWKHU
IMM(, ,A@
)DWKHU
IMJ,S@S ~ààà~àà
ààààààà 3DUHQWV
HOSQ@$
6RQ
'DXJKWHU
J-X@,SMX@ Ëàà +XVEDQG
OT`,RTS,SMX OHS
ààà :LIH
O3M(,>@@X@1,I@X@, %HORYHG
U¢>@,HeXJQ
JK`LÆ )DWKHU·VEURWKHU
HOS5X
%URWKHU·VVRQ
@S5X
0RWKHU·VEURWKHU
L@STK
)DWKHU·VVLVWHU
HOS2UR@
)DWKHU·V EURWKHU·VZLIH %URWKHU·V GDXJKWHU 0RWKHU·V EURWKHU·VZLIH 0RWKHU·VVLVWHU
~àààà %URWKHU
@S@è±àà
HOS5X@ @S5X@ L@STK@M( L@S2UR@ ààààà
6LVWHU
2UR@àà , >@HFM(
(OGHUEURWKHU
I
MTI
(OGHUVLVWHU
I@
MTI@
0RWKHULQODZ
9Ur4
)DWKHULQODZ
9UYTQ
6RQLQODZ
qààààààqààààà
'DXJKWHULQODZ
2MT@
+XVEDQG·V EURWKHU
CDU@à
+XVEDQG·V EURWKHU·VZLIH
8@@S@ààà
sanskrit supplement 26 www.chitrapurmath.net
1/2
%URWKHU·VZLIH
@SI@X@
+XVEDQG·VVLVWHU
MM@-C@}à}àà}
6LVWHU·VVRQ
>@@HFMDX
6LVWHU·VGDXJKWHU
>@@HFMDX@
:LIH·VEURWKHU
9X@K
6LVWHU·VKXVEDQG
)DWKHU·VIDWKHU
HOS@LG
)DWKHU·VPRWKHU
HOS@LG(
0RWKHU·VIDWKHU
L@S@LG
0RWKHU·VPRWKHU
L@S@LG(
6RQ·VVRQ
O@$`,M/S@}à~à
6RQ·VGDXJKWHU
O@$`(
'DXJKWHU·VVRQ
C@$HG`
C@$HG`@
6LEOLQJV
RG@DCQ@
'DXJKWHU·V GDXJKWHU +HLU
sanskrit supplement 26 www.chitrapurmath.net
@UT^, >@@UTJ
C@X@C
2/2
()
3HUVRQ
6LQJXODU
'XDO
3OXUDO
L@S
!
"
!
#
$
!
$"
!
!
!
( ) " 6LQJXODU
'XDO
3OXUDO
!
"
!
#
$
!
$"
!
!
!
3HUVRQ
sanskrit supplement 27. www.chitrapurmath.net
1/1
% (! &) " 6LQJXODU
'XDO
3OXUDO
%
%
%
%
%
%
%
%
%
%
%
"
%
%
%#
$
%
%
$"
! %
! %
3HUVRQ
! (eye) neuter gender 6LQJXODU
'XDO
3OXUDO
!
!#
!#
!
!#
!#
!
!
!
!!
!
!
"
!
!
!
!
!!
!#
$
!
!!
!
$"
! !
! !#
! !#
3HUVRQ
sanskrit supplement 27. www.chitrapurmath.net
2/2
$QG WKHVH DUH MXVW WKH IUHTXHQWO\ XVHG RQHV +DYH QRW LQFOXGHG WKH DQG WKH $QG L GHOHWHG DOPRVW D EHFDXVH WKH OLVW ZDV WRR
ELJ 7KH FXULRXV PD\ ZULWH WR PH WR JHW WKH FRPSOHWH OLVWLI ZKDW L KDYH LV FRPSOHWH WKDW LV
6U 1R
$Y\D\D
0HDQLQJ
6XGGHQO\
$KHDG 1H[W
,Q IURQW RI
7KHUHIRUH
9HU\ PXFK
+HUH
$W WKDW LQVWDQW
+RPH PDGH VWXII
, // ,
!" # $ % & ' () *+ $ ! , - . /0 , 0
2U
'RZQ
7RGD\
1RZ
0!
7KHQ
# *+ 0 *+ / ., % . 1
?
/0 )
?
0! 00 0
0DQ\ WLPHV
(OVHZKHUH
!
2WKHUZLVH
sanskrit supplement 28 www.chitrapurmath.net
2 *+ ! /0 , $
1/1
$OVR
" #$
2K
MXVW NLGGLQ
%&' '(
(QRXJK QR PRUH
FDSDEOH
.
'HILQLWHO\
IUHTXHQWO\
"
([FHOOHQW ILQH +RZ LV WKDW"
9, :# 9
(WFHWHUD
3 4 5600 7
) *+
4, # . *+
, - ,
8!9' :!;, ! < 4 = :# 9 >4 0 ? 9
.
,Q WKH EHJLQQLQJ
. * / *
1
)URP KHUH
1
%HIRUH WKLV
1
KHUH DQG WKHUH
1
7KHUHIRUH ,QGLFDWLQJ WKH
" 0 #$
: 9@ *+ 1 ) ,2
: ,4 *+ : 9
HQG ,Q WKH RSLQLRQ RI &RPSOHWLQJ WKH TXRWDWLRQ
1
7KXV
1
-XVW QRZ
3 :9 0 /
0
,Q WKLV PDWWHU
3 14 ) - 1 5 6
1
VLPLODU
1"
KHUH
7##.
+LJK XS 6HUHQH
sanskrit supplement 28 www.chitrapurmath.net
1
:
?
%A8 9 , # %A8 9
2/2
7
$ERYH
7,
,Q ERWK SODFHV
7, 0
8 %' '(
:LWKRXW ([FHSW
9 8 / : ;
%
IRU
)
7RJHWKHU
$ ) 70
)
2QFH
) " #$
) 0
2QH E\ RQH
B/B8 ' -
) < 0
)
7KLV PXFK VR PXFK
)
2QO\
)
7KXV
) & ,;
+RZ PDQ\
* $ ;
+RZ
6RPHKRZ
:KHQ
#
$W VRPH WLPH
$Q\WLPH
:K\" :KR ZKLFK ZKDW 2I ZKDW XVH ZLWK
)
9 , # B
C -D 0
?
" : 7=-* ,
# 9
0 E
?
# >
# ? 9
?
;
LQVWUXPHQWDO
?#
$ OLWWOH
%XW
*
IRU ZKDW UHDVRQ
RU HOVH
,QGHHG 6R LW LV VDLG
/
:KHQFH :KHUH
sanskrit supplement 28 www.chitrapurmath.net
?# > ;
! # 0 E 1 ' F 0
?
# G $ G
"5 , @ 0A ;
*+
? 3/3
/
:KHUH
& % >' '(
IRU WKH VDNH RI
& " ,
B 0
LQ VHULDO RUGHU
B 0 #$ *
A
:KHUH VKRZLQJ H[WUHPHV
A#
6RPHWLPHV DW VRPH SODFH
5
#
# #
,QGHHG DQG DOVR ,I VR ,I QRW
$
"
H H , $ H , % 0 ?4 /
, ! " 9 , , 9 # " #$ #
CD
,PPHGLDWHO\
)URP WKHUH
#$
$IWHU WKDW
7KHUH
*
)RU WKDW
, E 1#$; * F
I -
* &"
$W WKDW WLPH
9 %# 9 0 ' 0 *+!
90!
$IWHU 7KDW
90! , ' 0 G
"*
LI VR WKHQ
#$ "* " #$
7KDW PXFK
0A )
,Q WKH ILUVW LQVWDQFH 7LOO WKHQ
# " - >
"
$V DQ H[DPSOH
# " #
G
6LPLODUO\
+ ! G / H
-
$FFRUGLQJ
H - +
sanskrit supplement 28 www.chitrapurmath.net
4/4
@") I
6LOHQW
@") F
)DU
1 I J
I #$ " 0
I
I
)URP D GLVWDQFH
K/
,PPHGLDWHO\
)LH
! "!
1R
!
7UXO\
6
!
6DOXWDWLRQV
, L.*
%\ QDPH
; ,4 / @?' 0 9
,QGHHG
9 0
3UREDEO\ :LOOLQJO\
&RPSOHWHO\
#.
%HORZ
# 0 02 0,8 9 , # %A8 9
6RIWO\
2
&HUWDLQO\
#
,I QRW
0 0@0 " & , # " ,
%XW
%G' '(
DOO DURXQG
M
$IWHUZDUGV
! # 0 E
/DWHU RQ
L
7KH GD\ DIWHU
&:
- *+ # J *+ L &" #$
WRPRUURZ
N
7KH GD\ EHIRUH \HVWHUGD\
L
WKH GD\ DIWHU WKH GD\ DIWHU WRPRUURZ
N
sanskrit supplement 28 www.chitrapurmath.net
7KH GD\ EHIRUH WKH G
I
2
?
"
?
N &"
5/5
GD\ EHIRUH \HVWHUGD\
-
%HIRUH 0RUQLQJ $JDLQ %XW
0 - 8 - 4 ' 0 - () *+! 0 9
2IWHQ
$JDLQ DQG DJDLQ
2QFH DJDLQ
,Q IURQW
0 0 '
?
@
//
% >' '(
,Q IURQW
//
ILUVW IRUHPRVW ,Q IURQW RI
&" ) *
,Q DQFLHQW WLPHV
2*
/LNH EHIRUH
%G' '(
7RZDUGV
'DLO\
"
% ' '(
%HIRUH
/ H
0RUQLQJ
2+
0RVWO\
>J #$
-
0RVWO\
-
"
2XWVLGH
"/
2IWHQ
,2
2IWHQ DJDLQ PRUH
sanskrit supplement 28 www.chitrapurmath.net
9 0 2* )
09 ; - *+
>
K < *+
6/6
,2 ,2
$JDLQ DQG DJDLQ
,2,2 " H
, ! ,
+H\ 0DVFXOLQH
, #$
6ORZO\
#$ #
'R QRW
"/
L'L
"I*
IUHTXHQWO\ DJDLQ $ VPDOO SRLQW LQ WLPH $ OLWWOH ZKLOH
# 9 4 L'L @ M' "G ) *+
1DPHO\ ZKHQ LQWURGXFLQJ D
9 *+
FODXVH 6LQFH
%HFDXVH
" $ >*
)URP ZKHQ )URP ZKHUH
ZKHUH
, ?
OOOOO
DVOLNH
ZKHQ
P * 2 &
#
:KHQHYHU
# &" #$
OOOOO "*
,I WKHQ (YHQ LI WKHQ DOVR
9 # G", ' 0 " ! E
OOOOO
ZKLOHWLOO WKDW WLPH
"
0 "
$W RQH WLPH VLPXOWDQHRXVO\
sanskrit supplement 28 www.chitrapurmath.net
0 $ * $ 7= 1#$
7/7
%HWWHU WKDQ
2U
$JDLQ DQG DJDLQ
&
8QQHFHVVDU\ LQ YDLQ
%G'! &'!
:LWKRXW
) -
# ") N
" ;E ) 0 / )0 0 / ) 0
'(
0" ' 0
0>
(VSHFLDOO\
0> * ) 7 A ,
,Q JUHDW GHWDLO
0.
6ORZO\ JUDGXDOO\
0P
)DVW
L
7RPRUURZ
&
2QFH
$OZD\V
4XLFNO\
> @
O
4 08 08 ,4 P ,4, 08 ,4 "
?
" & #$
9 / '9 / -#0 Q>D $ + 0
5HDOO\
$OZD\V
<
$OZD\V
9 / '9 / /Q à à -#0
1RZ RQO\
" 0A
"
9 / '9 / -#0
,PPHGLDWHO\
1HDU
R
,Q VKRUW
:
:
sanskrit supplement 28 www.chitrapurmath.net
8/8
:HOO ULJKW
#
*
)URP DOO VLGHV
* * 0
*
(YHU\ZKHUH
*
$OZD\V
" % &' '(
:LWK
"
6XGGHQO\ :LWKRXW WKRXJKW
# '$ 9 / '9 / -#0 $) ?4 K *+
:
$FWXDOO\
:
*HQHUDOO\
>*
(YHQLQJ
+LPVHOIKHUVHOI
"
%HFDXVH LQGHHG
*+ $ $ ) F 1*L " :
RQO\
N
\HVWHUGD\
:
4XLFNO\
sanskrit supplement 28 www.chitrapurmath.net
2
?
# '4 - *+
9/9
(N) VY5 (VE)VY5QDP SX #NYFQ 6LQJXODU
LgYFQ 'XDO
EKXYFQ 3OXUDO
j
VY5
VYD5(
VY5H
Lg
VY5P
VYD5(
VYD5Q
W
VY5H^D
VYD5B\DP
VY5(!
F
VY56P(
VYD5B\DP
VY5HB\!
S
VY56PDW
VYD5B\DP
VY5HB\!
D
VY56\
VY5\DH!
VY5HDDP
V
VY5\DH!
VY5HDX
SXrD 3HUVRQ
(R)
SXrD 3HUVRQ
VY5 (VE) QSX
#NYFQ 6LQJXODU
LgYFQ 'XDO
EKXYFQ 3OXUDO
j
VY5P
VY5H
Lg
VY5P
VY5H
W
VY5H>
VYD5B\DP
VY5(!
F
VY56P(
VYD5B\DP
VY5HB\!
S
VY56PDW
VYD5B\DP
VY5HB\!
D
VY56\
VY5\DH!
VY5HDP
V
VY5\DH!
VY5HDX
sanskrit supplement 29. www.chitrapurmath.net
1/2
(J)
VY5 (VE) 6d,LOJ #NYFQ 6LQJXODU
LgYFQ 'XDO
EKXYFQ 3OXUDO
j
VYD5
VYH5
VYD5!
Lg
VYD5P
VY5H
VYD5!
W
VY5\D
VYD5B\DP
F
VY56\(
VYD5B\DP
VYD5B\!
S
VY56\D!
VYD5B\DP
VYD5B\!
D
VY56\D!
VY5\DH!
VYD5VDP
V
VY5\DH!
VYD5VX
SXrD 3HUVRQ
sanskrit supplement 29. www.chitrapurmath.net
2/2
( )
3HUVRQ
6LQJXODU
'XDO
3OXUDO
!"#
!$
!
!"#
!"
!"#
!"
!
#
!
%
!
!
!
# (#)
3HUVRQ
6LQJXODU
'XDO
3OXUDO
#
#
#
#
#
#
#
#!"#
#!$
#!
#!"#
#!"
#
#!"#
#!"
#
#!
##
#
#!
# #%
! #
! #
! #
sanskrit supplement 30 www.chitrapurmath.net
1/3
3HUVRQ
6LQJXODU
'XDO
3OXUDO
3HUVRQ
sanskrit supplement 30 www.chitrapurmath.net
6LQJXODU
'XDO
3OXUDO
2/3
( )
3HUVRQ
6LQJXODU
'XDO
3OXUDO
&
#
&
"#
$
!
"#
"
"#
"
!
#
!
'
!
! &
!
! "#$%&'()%*
3HUVRQ
sanskrit supplement 30 www.chitrapurmath.net
6LQJXODU
!
!
! ! ! ! ! !
'XDO
! ! !
!
!
! ! !
3OXUDO
! ! ! ! ! !
! ! ! 3/3
6XSSOHPHQW)XWXUH7HQVH)RUPV 33
JP(J&') O TONDU SXrD(Person)
#NYFQ
LgYFQ(Dual)
EKXYFQ(Plural)
(Singular) jZP
JLP\LW
JLP\W!
JLP\L1W
P;\P
JLP\LV
JLP\Z!
JLP\Z
bP
JLP\DLP
JLP\DY!
JLP\DP!
S4O TONDU SXrD(Person)
#NYFQ
LgYFQ(Dual)
EKXYFQ(Plural)
(Singular) jZP
SL4\LW
SL4\W!
SL4\L1W
P;\P
SL4\LV
SL4\W!
SL4\W
bP
SL4\DLP
SL4\DY!
SL4\DP!
YGO TONDU SXrD(Person)
#NYFQ
LgYFQ(Dual)
EKXYFQ(Plural)
(Singular) jZP
YLG\LW
YLG\W!
YLG\L1W
P;\P
YLG\LV
YLG\Z!
YLG\Z
bP
YLG\DLP
YLG\DY!
YLG\DP!
sanskrit supplement 31. www.chitrapurmath.net
1/3
RDGO TONDU SXrD(Person)
#NYFQ
LgYFQ(Dual)
EKXYFQ(Plural)
(Singular) jZP
RDLG\LW
RDLG\W!
RDLG\L1W
P;\P
RDLG\LV
RDLG\Z!
RDLG6\Z
bP
RDLG\DLP
RDLG\DY!
RDLG\DP!
LOR O TONDU SXrD(Person)
#NYFQ
LgYFQ(Dual)
EKXYFQ(Plural)
(Singular) jZP
LOLR\LW
LOLR\W!
LOLR\L1W
P;\P
LOLR\LV
LOLR\Z!
LOLR\Z
bP
LOLR\DLP
LOLR\DY!
LOLR\DP!
$3
P©¯-©GO TONDU SXrD(Person)
#NYFQ
LgYFQ(Dual)
EKXYFQ(Plural)
jZP
(Singular) P©¯©-©u©O©¯
P©¯©-©u©¯O©¯
P©¯©-©u©YO©¯
P;\P
P©¯©-©u©P©¯
P©¯©-©u©¯/©¯
P©¯©-©u©2-©¯
bP
P©¯©-©u©¯
P©¯©-©u©©-©Q¯
P©¯©-©u©©F©Q¯
sanskrit supplement 31. www.chitrapurmath.net
2/3
X©<©GO TONDU SXrD(Person)
#NYFQ
LgYFQ(Dual)
EKXYFQ(Plural)
jZP
(Singular) X©+Pu©O©¯
X©+Pu©¯O©¯
X©+Pu©YO©¯
P;\P
X©+Pu©P©¯
X©+Pu©¯/©¯
X©+Pu©2-©¯
bP
X©+Pu©¯
X©+Pu©©-©Q¯
X©+Pu©©F©Q¯
-©2© GO TONDU SXrD(Person)
#NYFQ
LgYFQ(Dual)
EKXYFQ(Plural)
jZP
(Singular) -©©2© u©O©¯
-©©2© u©¯O©¯
-©©2© u©YO©¯
P;\P
-©©2© u©P©¯
-©©2© u©¯/©¯
-©©2© u©2-©¯
bP
-©©2© u©¯
-©©2© u©©-©Q¯
-©©2© u©©F©Q¯
Y©©WRWDNHDZD\83 O TONDU $ORRNDWWKH$3IRUPV
SXrD(Person)
#NYFQ
LgYFQ(Dual)
EKXYFQ(Plural)
jZP
(Singular) Y©¯u©O©¯
Y©¯u©¯O©¯
Y©¯u©YO©¯
P;\P
Y©¯u©P©¯
Y©¯u©¯/©¯
Y©¯u©2-©¯
bP
Y©¯u©¯
Y©¯u©©-©Q¯
Y©¯u©©F©Q¯
sanskrit supplement 31. www.chitrapurmath.net
3/3
6XSSOHPHQW9HUEVDQGGHULYDWLYHV |ààË
6HULDOQR URRW
dàlàà¥làoç¥ FRPH dà}àÜ}àॠEULQJ dàÀFDOO dà¥EH eà¥ZDQW f¥zàà༥ ZDNHXS f~ààà¥VLW j§zà¥WHOO j§~à¥DQJU\ j§GR ©§}¥FU\ ©§ÜEX\ ©§Ü½¥SOD\ kàà¥HDW làà¥làoç¥ JR
sanskrit .supplement 32. www.chitrapurmath.net
໥
àÚ»¥
àn¥
à|ààn¥
໥
SUHVHQWWHQVH LPSHUDWLYHPRRG
SDVWWHQVH
SRWHQWLDOPRRG
IXWXUH WHQVH
dàlàoçà
dàlàoçË
dàlàoçà¥
dàlàoçà¥
dàlàààà
dà}ààà dàÀàà dà eoçà fÐà¼à
dà}ààË dàÀàË dË eoçË fÐà¼Ë
dà}ààॠdàÀàॠdààÜॠioçॠfà¼à¥
dà}àÚॠdàÀàॠààॠeoçॠfÐà¼à¥
dà}Úàà dàÀààà èàààà iààà fzàààà
f~àààà j§zààà j§~àà j§
Úà ©§}à ©§Üààà ©§Ü½à kààà làoçà
f~àààË j§zààË j§~àË j§
ÚË ©§}Ë ©§ÜààË ©§Ü½Ë kààË làoçË
f~ààààॠdj§zààॠdj§~àॠdj§
Úॠd©§}ॠd©§Üààॠd©§Ü½à¥ dkààॠdlàoçà¥
f~ààÚॠj§zàÚॠj§~Úॠj§àà¦à¥ ©§}ॠ©§ÜàÜààॠ©§Ü½à¥ kààॠlàoçà¥
f~àÚÄàà j§zàààà j§Ú~ààà j§
àà ©§}àà ©§àà ©§Ü½àà kàààà làààà 1/4
lÛlààॠVLQJ l±¥DFFHSW m±àWRVPHOO oàà¥ZDON oà}à¥WKLQN oË
¥VWHDO ààqàà NQRZ ཥEHDW àqà¥OHWJR ààoç¥ JLYH
à¥~àॠVHH |ààà¥UXQ |à|à
¥ KROG |àZHDU |ÛPHGLWDWH }àà¥QDPDVNDU }àÜ}àॠWDNHDZD\ ~àoà¥FRRN ~༥UHDGVWXG\ ~àà¥IDOO ~àà~àॠWRGULQN
sanskrit .supplement 32. www.chitrapurmath.net
làààà làÏààà qàm±à oààà oà}ààà oàÚ
àà qàà}ààà àà½àà àqàà àoçà àà ~ààà |àààà |à
à |àà
àà |àààà }ààà }ààà ~àoàà ~à¼à ~ààà ~ààà
làààË làÏààË qàm±Ë oààË oà}ààË oàÚ
àË qàà}ààË àà½àË àqàË àoçË àË ~ààË |àààË |à
Ë |àà
àË |àààË }ààË }ààË ~àoàË ~à¼Ë ~ààË ~ààË
dlàààॠdlàÏààॠdqàm±à¥ doààॠdoà}ààॠdoàÚ
àॠdqàà}ààॠdàà½àॠdàqàॠdàoçॠdàॠd~ààॠd|àààॠd|à
ॠd|àà
àॠd|àààॠd}ààॠd}ààॠd~àoàॠd~à¼à¥ d~ààॠd~ààà¥
lààÚॠlàÏàÜààॠqàm±à¥ oàÚॠoà}àÚॠoàÚ
Úॠqàà}àÜààॠàà½ÚॠàqÚॠàoçॠ¶ààॠ~ààॠ|ààÚॠ|à
ॠ|àà
Úॠ|ààÚॠ}àÚॠ}àÚॠ~àoÚॠ~à¼à¥ ~àÚॠ~àÚà¥
làààà l±Üàà m±ààà oàààà oà}àààà oàÚ
ààà àààà àà½ààà àÄàà ààà ààà ¯Äàà |ààààà |à
àà |àà
ààà |àààà }à¡àà }Úàà ~àÄàà ~à¼àà ~àààà ~àààà 2/4
~Ìqà¥ZRUVKLS ~±oç¥DVN ~±à¥VHQG ~±dà~à¥UHFHLYHJHW ~±Äààà¥FOHDQ èÌèàॠEH àà¥PHHW
Äà¥SURWHFW
oà¥PDNH àkà¥ZULWH à¥VSHDN àà¥OLYH àj¥§SRVVLEOH ßOLVWHQ Ìoà¥LQIRUP zààNHHS zàà༥ ZDLW VWDQG àUHPHPEHU àÜj§DFFHSW à¥ODXJK Äà~à¥WKURZ
sanskrit .supplement 32. www.chitrapurmath.net
~Ìqààà ~àoçà ~±ààà ~±à~}àÚà ~±Äààààà èààà ààà
Äàà
oààà àkàà àà ààà à¨}àÚà ààÚà Ìoààà zàà~ààà à¼à
~ÌqààË ~àoçË ~±ààË ~±à~}àÚË ~±ÄààààË èààË ààË
ÄàË
oààË àkàË àË ààË à¨}àÚË ààÚË ÌoààË zàà~ààË à¼Ë
d~Ìqààॠd~àoçॠd~±ààॠ~±à~}àÚॠ~±àÄààààॠdèààॠdààॠd
Äàॠd
oààॠdàkàॠdàॠdààॠdà¨}àÚॠdààÚॠdÌoààॠdzàà~ààॠdà¼à¥
~ÌqàÚॠ~àoçॠ~±ààॠ~±à~}Ëààॠ~±ÄààààॠèàÚॠàÚà¥
ÄÚà¥
oàÚॠàkÚॠàॠàÚॠà¨}ËààॠàËààॠÌoàÚॠzàà~àÚॠà¼à¥
~Ìqàààà ~±Äàà ~±ààà ~±à~àà ~±Äàààààà èàààà Úààà
Äààà
oàààà Úkààà ààà ààà àÄàà ßÚàà Ìoàààà zàà~àààà zàààà
à
à àÜj§
Úà àà Äà~àà
à
Ë àÜj§
ÚË àË Äà~àË
dà
ॠàÜj§
ÚॠdàॠdÄà~àà¥
à
ॠàÜj§àà¦à¥ ÚॠÄà~Úà¥
à
àà àÜj§
àà ààà ÄÚ~àà 3/4
qà}à¥qàà WREHERUQ èàqà¥WRZRUVKLS à}à¥WRKDYHDQRSLQLRQ Ë¥àÚ¥ WREH KDSS\ ààoà¥WREHJ oà¥WROLNH àèà¥REWDLQ à}¥WRGRQDPDVNDDU à|থJURZ Ëèà¥àÚèॠEHILW à¥WRWROHUDWH Úà¥WRVHUYH Äàà¥WRIRUJLYH
sanskrit .supplement 32. www.chitrapurmath.net
qàààÚ èàqàÚ à}àÚ àÚÚ
qàààààॠèàqàààॠà}àààॠàÚààà¥
dqàààà dèàqàà dà}àà dàÚà
qààÚà èàqÚà à}Úà àÚà
qà}ààÚ èàÄàÚ à¡àÚ àÚàÚ
ààoàÚ
ÚoàÚ àèàÚ à}Ú à|à¦Ú àÚèàÚ àÚ ÚàÚ ÄààÚ
ààoàààà¥
Úoàààॠàèàààॠà}ààॠà|à¦ààॠàÚèàààॠàààॠÚàààॠÄààààà¥
dààoàà d
Úoàà dàèàà dà}à dà|à¦à dàÚèàà dàà dÚàà dÄààà
ààoÚà
ÚoÚà àèÚà à}à à|Ú¦à àÚèÚà àà ÚÚà ÄàÚà
ààoààÚ
ÚoààÚ à~àÚ à}àÚ à|à¦àÚ àÚèààÚ ààÚ ÚààÚ ÄàààÚ
4/4
6XSSOHPHQW3DVVLYH)RUPV
d0©GX©®G ONDU SXrD(Person)
#NYFQ
LgYFQ(Dual)
EKXYFQ(Plural)
jZP
(Singular) d0u©O©¯
d0u©¯O©¯
d0u©YO©¯
P;\P
d0u©P©¯
d0u©¯/©¯
d0u©2-©¯
bP
d0u©¯
d0u©©-©Q¯
d0u©©F©Q¯
d0©GX©©¯®GONDU SXrD(Person)
#NYFQ
LgYFQ(Dual)
EKXYFQ(Plural)
jZP
(Singular) d0u©O©©F©G
d0u©¯O©©F©G
d0u©YO©©F©G
P;\P
d0u©P-©
d0u©¯/©©F©G
d0u©2-©F©G
bP
d0u©
d0u©©-©Q
d0u©©F©Q
d0©GX© GONDU SXrD(Person)
#NYFQ
LgYFQ(Dual)
EKXYFQ(Plural)
jZP
(Singular) '©d0u©O©
'©d0u©¯O©©F©G
'©d0u©YO©
P;\P
'©d0u©/©©
'©d0u©¯/©©F©G
'©d0u©2-©F©G
bP
'©d0u©¯
'©d0u©©-©©Q
'©d0u©©F©©Q
sanskrit supplement 33. www.chitrapurmath.net
1/2
d0©G©-©©2©©X© G SXrD(Person)
#NYFQ
LgYFQ(Dual)
EKXYFQ(Plural)
jZP
(Singular) d0u©¯O©
d0u©¯u©©O©©F©G
d0u©¯MY©G
P;\P
d0u©¯/©©
d0u©¯u©©/©©F©G
d0u©¯2-©F©G
bP
d0u©¯u©
d0u©¯-©©Q
d0u©¯F©©Q
d0©G O TONDU SXrD(Person)
#NYFQ
LgYFQ(Dual)
EKXYFQ(Plural)
jZP
(Singular) du©O©¯
du©¯O©¯
du©YO©¯
P;\P
du©P©¯
du©¯/©¯
du©2-©¯
bP
du©¯
du©©-©Q¯
du©©F©Q¯
sanskrit supplement 33. www.chitrapurmath.net
2/2
,
,,
,9
9
9,
9,,
!
" #$
!"
!"
!"
$
$%
$
$%
$
$%
#&$%
)(
'(
)(
'(
) (
'(
# (
*,
*,
*,
* ,
*,
*,
*.
* .
*.
* (
*( /
* .
,
,
,
,
,
,
#&,
/
/
/
/
1
2
1
0
/
0
*0
2+
23
2+
2 +
2 +
2 +
23
%
# '(
!
*+ #, (- !&'
* .
/ %$ 0 2+ $ ,
sanskrit supplement 34. www.chitrapurmath.net
1/5
$ 24 $ 6+
2
2
2
2
2
2
2
24
245
24
2 4
2 4
2 4
245
6+
63
6+
6 +
6 +
6 +
7 %
!
!
08
!
0!
!
0!
#&08
9
9
9
9
9
9
9
#&
1
1
1
1
1
#&
:
:
:
:
:
:
:
4
45
4
4
4
4
#&45
;
;
;
1
+
+
+
+<
+
+<
2
%
9 !&
& 1 : &! 4 % + ( %
=. .
+.
=.
+.
=(
>( /
=(
#&=.
0 1
1
1
0
/
0
0
0
1
1
1
1
1
#&
! 7 &
sanskrit supplement 34. www.chitrapurmath.net
2/5
&
!$ & - ) $
?
& % ! & (
) % @ $% $
1@ 1 &
6 ! + & # .
sanskrit supplement 34. www.chitrapurmath.net
;
;
;
#&
-
-5
-
-
-
-
#&-5
%
%
%
%
%
%
#&%
0
0(
( /
0(
#&0
(
(
(
(
(
(
@
@
@
@
@
@
$
$%
$
$
$
$%
#&$%
#&
1@
1@
1@
1 @
1 @
1 @
#&1@
1
1
1
1
1
1
1
6
6
6
6
6
6
6
+
*3
+
* +
;
* +
%3
#
*(
#
* (
#
* (
*(
.
.;
.
.;
.;
.;
#&.;
3/5
A/
#, & #%
#, (-
!* #0 #0 !# %
@ ! $ ! + + ( $ % B & $ + & %! .$ .$
sanskrit supplement 34. www.chitrapurmath.net
A
A"
A
A/
A
#%
#%
#%
#%
#%
#%
#,
#,
#,
#,
#,
#,
#,
#,
#,
#,
#,
#,
#,
#,
#1
#
#1
#0
# /
#0
#0
#1
# 2
#1
#0
# /
!#
!#
!#
! #
! #
! #
!#
@
@
@
@
@
@
@
#&
$
$
$
$;
$;
$;
+
3
+
+
+
+
1
B
1
B
1
B
#&B
$
$
$
?
?
?
* $
+
3
+
+
+
+
$3
0
#&0
.$
.$
.$
. $
. $
. $
#&A/
#0
4/5
#! # @ %
sanskrit supplement 34. www.chitrapurmath.net
#!
#8
#!
# !
#C/
# !
#8
# ! #
#
#
#
#
#
(
@
@
@
@
@
@
#&@
5/5
Forms of
RÆ W@ST OQ2L$OC
X©®G
OTk eVL L7XL ^L
JUBM H2S HR H2L X©©¯®G
OTk eVL L7XL ^L
JUBM 2ST HW R@HM X© G
OTk eVL L7XL ^L
sanskrit supplement 35. www.chitrapurmath.net
JUBM @R(SÆ @R( @RLÆ
US1L@MJ@K HbUBM 2S 2V 2U
A¤UBM RH-S 2V 2L
@\@V1 HbUBM 2S@LÆ 2SLÆ R@U
A¤UBM R-ST 2S R@L
>@4SJ@K
HbUBM @2S@LÆ @2SLÆ @2U
A¤UBM @RMÆ @2S @2L
1/1
HUHWHKØ OTk eVL L7XL ^L
JUBM 2X@SÆ 2X@ 2X@LÆ X©®G
OTk eVL L7XL ^L
JUBM >@HUXHS >@HUXHR >@HUX@HL Forms of C@
X©®G
OTk eVL L7XL ^L
sanskrit supplement 35. www.chitrapurmath.net
JUBM CC@HS CC@HR CC@HL
HbUBM 2X@S@LÆ 2X@SLÆ 2X@U
A¤UBM 2XT 2X@S 2X@L
>@HUXJ@K HbUBM >@HUXS >@HUXV >@HUX@U
A¤UBM >@HUXH-S >@HUXV >@HUX@L
W@ST OQ2L$OC US1L@MJ@K HbUBM C^ C3V Cb
A¤UBM CCHS C3V C¹
2/2
@\@V1 HbUBM C^@LÆ C^LÆ CC@U
A¤UBM CCST C^ CC@L
>@4SJ@K HbUBM C^@LÆ C^LÆ Cb
A¤UBM CCT C^ C¹
X©©¯®G
OTk eVL L7XL ^L
JUBM CC@ST CDHG CC@HM X© G
OTk eVL L7XL ^L
JUBM CC@SÆ CC@ CC@LÆ
HUHWHKØ OTk eVL L7XL ^L
JUBM C @SÆ C @ C @LÆ X©®G
OTk eVL L7XL ^L sanskrit supplement 35. www.chitrapurmath.net
JUBM C@2XHS C@2XHR C@2X@HL
HbUBM C @S@LÆ C @SLÆ C @U
A¤UBM C T C @S C @L
>@HUXJ@K HbUBM C@2XS C@2XV C@2X@U
A¤UBM C@2XH-S C@2XV C@2X@L 3/3
OTk eVL L7XL ^L
Forms of C@
W@ST @3LMDOC
X©®G
US1L@MJ@K HbUBM CC@SD CC@VD CbGD
A¤UBM CCSD CCÆ7UD C¹GD
@\@V1 HbUBM CC@S@LÆ CC@V@LÆ CC@UG$
A¤UBM CCS@LÆ CCÆ7ULÆ CC@LG$
>@4SJ@K HbUBM CC@S@LÆ CC@V@LÆ CbHG
A¤UBM CCS CCÆ7ULÆ C¹HG
JUBM C^D C3RD CCD
X©©¯®G
OTk eVL L7XL ^L
JUBM C^@LÆ C32U CC$ X© G
OTk eVL L7XL ^L
sanskrit supplement 35. www.chitrapurmath.net
JUBM C^ C3V@ CHC
4/4
HUHWHKØ OTk eVL L7XL ^L
JUBM CC(S CC(V@ CC(X X©®G
OTk eVL L7XL ^L
JUBM C@2XSD C@2XRD C@2XD Forms of Y
X©®G
OTk eVL L7XL ^L
sanskrit supplement 35. www.chitrapurmath.net
JUBM Y:@DHS Y:@DH Y:@DHL
HbUBM CC(X@S@LÆ CC(X@V@LÆ CC(U
A¤UBM CC(QMÆ CC(7ULÆ CC(L
>@HUXJ@K HbUBM C@2XDSD C@2XDVD C@2X@UGD
A¤UBM C@2X-SD C@2X7UD C@2X@LGD
W@ST OQ2L$OC US1L@MJ@K HbUBM Y:TS Y:TV Y:TU, YZU
A¤UBM YZUH-S Y:TV Y:TL, YZL
5/5
X©©¯®G
OTk eVL L7XL ^L
JUBM Y:@DST Y:T Y:U@HM X© G
OTk eVL L7XL ^L
@\@V1 HbUBM Y:TS@LÆ Y:TSLÆ Y:U@U
A¤UBM YZU-ST Y:TS Y:U@L
>@4SJ@K
JUBM Y:@DSÆ Y:@D YZ@ULÆ
HbUBM Y:TS@LÆ Y:TSLÆ Y:TU, YZU
A¤UBM YZUMÆ Y:TS Y:TL, YZL
HbUBM Y:TX@S@LÆ Y:TX@SLÆ Y:TX@U
A¤UBM Y:TXT Y:TX@S Y:TX@L
HUHWHKØ OTk eVL L7XL ^L
sanskrit supplement 35. www.chitrapurmath.net
JUBM Y:TX@SÆ Y:TX@ Y:TX@LÆ
6/6
X©®G
OTk eVL L7XL ^L
JUBM r@DXHS r@DXHR r@DX@HL Forms of J
X©®G
OTk eVL L7XL ^L
JUBM JQ@DHS JQ@DH JQ@DDHL
>@HUXJ@K HbUBM r@DXS r@DXV r@DX@U W@ST OQ2L$OC US1L@MJ@K HbUBM JTkS JTkV JTU1
A¤UBM JTU1H-S JTkV JTL1
@\@V1 HbUBM JTkS@LÆ JTkSLÆ JQU@U
A¤UBM JTU1-ST JTkS JQU@L
X©©¯®G
OTk eVL L7XL ^L
sanskrit supplement 35. www.chitrapurmath.net
JUBM JQ@DST JTk JQU@H:
A¤UBM r@DXH-S r@DXV r@DX@L
7/7
X© G
OTk eVL L7XL ^L
JUBM JQ@DSÆ JQ@D JQULÆ
>@4SJ@K HbUBM JTkS@LÆ JTkSLÆ JTU1
A¤UBM JTU1MÆ JTkS JTL1
HUHWHKØ OTk eVL L7XL ^L
JUBM JTX@1SÆ JTX@1 JTX@1LÆ X©®G
OTk eVL L7XL ^L
sanskrit supplement 35. www.chitrapurmath.net
JUBM JHQXHS JHQXHR JHQX@HL
HbUBM JTX@1S@LÆ JTX@1SLÆ JTX@1U
A¤UBM JTX1T JTX@1S JTX@1L
>@HUXJ@K HbUBM JHQXS JHQXV JHQX@U
A¤UBM JHQXH-S JHQXV JHQX@L
8/8
OTk eVL L7XL ^L
Forms of J
W@ST @3LMDOC
X©®G
US1L@MJ@K HbUBM JTU@1SD JTU@1VD JTU1GD
A¤UBM JTU1SD JTk7UD JTL1GD
@\@V1 HbUBM JTU@1S@LÆ JTU@1V@LÆ JQU@UG$
A¤UBM JTU1S@LÆ JTk7ULÆ JQU@LG$
>@4SJ@K HbUBM JTU@1S@LÆ JTU@1V@LÆ JTU1HG
A¤UBM JTU1S JTk7ULÆ JTL1HG
JUBM JTkSD JTkD JTU1D
X©©¯®G
OTk eVL L7XL ^L
JUBM JTkS@LÆ JTkU JQU$ X© G
OTk eVL L7XL ^L
sanskrit supplement 35. www.chitrapurmath.net
JUBM JTkS JTkV@ JTHU1
9/9
HUHWHKØ OTk eVL L7XL ^L
JUBM JTU(1S JTU(1V@ JTU(1X X©®G
OTk eVL L7XL ^L
JUBM JHQXSD JHQXRD JHQXD Forms of Ö(
X©®G
OTk eVL L7XL ^L
sanskrit supplement 35. www.chitrapurmath.net
JUBM Ö(:@HS Ö(:@HR Ö(:@HL
HbUBM JTU(1X@S@LÆ JTU(1X@V@LÆ JTU(1UHG
A¤UBM JTU(1QMÆ JTU(17ULÆ JTU(1LHG
>@HUXJ@K HbUBM JHQXDSD JHQXDVD JHQX@UGD
A¤UBM JHQX-SD JHQX7UD JHQXLGD
W@ST OQ2L$OC US1L@MJ@K HbUBM Ö(:(S Ö(:(V Ö(:(U
!¤UBM Ö(:H-S Ö(:(V Ö(:(L
10/10
@\@V1 HbUBM Ö(:(S@LÆ Ö(:(SLÆ Ö(:@U
A¤UBM Ö(:-ST Ö(:(S Ö(:@L
>@4SJ@K HbUBM Ö(:(S@LÆ Ö(:(SLÆ Ö(:(U
A¤UBM Ö(:MÆ Ö(:(S Ö(:(L
X©©¯®G
OTk eVL L7XL ^L
JUBM Ö(:@ST Ö(:(HG Ö(:@HM X© G
OTk eVL L7XL ^L
JUBM Ö(:@SÆ Ö(:@ Ö(:@LÆ
HUHWHKØ OTk eVL L7XL ^L
sanskrit supplement 35. www.chitrapurmath.net
JUBM Ö(:(X@SÆ Ö(:(X@ Ö(:(X@LÆ
HbUBM Ö(:(X@S@LÆ Ö(:(X@SLÆ Ö(:(X@U
A¤UBM Ö(:(XT Ö(:(X@S Ö(:(X@L
11/11
JUBM ÖDXHS ÖDXHR ÖDX@HL
>@HUXJ@K HbUBM ÖDXS ÖDXV ÖDX@U
Forms of Ö(
W@ST @3LMDOC
X©®G
US1L@MJ@K HbUBM Ö(:@SD Ö(:@VD Ö(:(UGD
A¤UBM Ö(:SD Ö(:(7UD Ö(:(LGD
@\@V1 HbUBM Ö(:@S@LÆ Ö(:@V@LÆ Ö(:@UG$
A¤UBM Ö(:S@LÆ Ö(:(7ULÆ Ö(:@LG$
X©®G
OTk eVL L7XL ^L
OTk eVL L7XL ^L
JUBM Ö(:(SD Ö(:(D Ö(:D
X©©¯®G
OTk eVL L7XL ^L
sanskrit supplement 35. www.chitrapurmath.net
JUBM Ö(:(S@LÆ Ö(:(U Ö(:$
A¤UBM ÖDXH-S ÖDXV ÖDX@L
12/12
X© G
OTk eVL L7XL ^L
JUBM Ö(:(S Ö(:(V@ Ö(H:
>@4SJ@K HbUBM Ö(:@S@LÆ Ö(:@V@LÆ Ö(:(UHG
A¤UBM Ö(:S Ö(:(7ULÆ Ö(:(LHG
HUHWHKØ OTk eVL L7XL ^L
JUBM Ö(:(S Ö(:(V@ Ö(:(X X©®G
OTk eVL L7XL ^L
sanskrit supplement 35. www.chitrapurmath.net
JUBM ÖDXSD ÖDXRD ÖDXD
HbUBM Ö(:(X@S@LÆ Ö(:(X@V@LÆ Ö(:(UHG >@HUXJ@K HbUBM ÖDXDSD ÖDXDVD ÖDX@UGD
A¤UBM Ö(:(QMÆ Ö(:(7ULÆ Ö(:(LHG
A¤UBM ÖDX-SD ÖDX7UD ÖDX@LGD
13/13
Forms of
\@ Â I@ W@ST OQ2L$OC
X©®G
OTk eVL L7XL ^L
JUBM I@M@HS )@@M@HR )@@M@HL
US1L@MJ@K HbUBM I@M(S I@M(V I@M(U
A¤UBM I@MH-S I@M(V I@M(L
@\@V1 HbUBM I@M(S@LÆ I@M(SLÆ I@M@U
A¤UBM I@M-ST I@M(S )@M@L
>@4SJ@K HbUBM I@M(S@LÆ I@M(SLÆ I@M(U
A¤UBM I@MMÆ I@M(S I@M(L
X©©¯®G
OTk eVL L7XL ^L
JUBM I@M@ST I@M(HG I@M@HM X© G
OTk eVL L7XL ^L
sanskrit supplement 35. www.chitrapurmath.net
JUBM I@M@SÆ I@M@ I@M@LÆ
14/14
HUHWHKØ OTk eVL L7XL ^L
JUBM I@M(X@SÆ I@M(X@ I@M(X@LÆ
HbUBM I@M(X@S@LÆ I@M(X@SLÆ I@M(X@U
X©®G
OTk eVL L7XL ^L
JUBM \@2XHS \@2XHR \@2X@HL Forms of
sanskrit supplement 35. www.chitrapurmath.net
JUBM I@M(SD I@M(D I@MD
A¤UBM \@2XH-S \@2XV \@2X@L
\@ Â I@ W@ST @3LMDOC
X©®G
OTk eVL L7XL ^L
>@HUXJ@K HbUBM \@2XS \@2XV \@2X@U
A¤UBM I@M(XT I@M(X@S I@M(X@L
US1L@MJ@K HbUBM I@M@SD I@M@VD I@M(UGD
A¤UBM I@MSD I@M(7UD I@M(LGD
15/15
X©©¯®G
OTk eVL L7XL ^L
JUBM I@M(S@LÆ I@M(U I@M$ X© G
OTk eVL L7XL ^L
@\@V1 HbUBM I@M@S@LÆ I@M@V@LÆ I@M@UG$
A¤UBM I@MS@LÆ I@M(7ULÆ I@M@LG$
>@4SJ@K
JUBM I@M(S I@M(V@ I@HM
HbUBM I@M@S@LÆ I@M@V@LÆ I@M(UHG
A¤UBM I@MS I@M(7ULÆ I@M(LHG
HbUBM I@M(X@S@LÆ I@M(X@V@LÆ I@M(UHG
A¤UBM I@M(QMÆ I@M(7ULÆ I@M(LHG
HUHWHKØ OTk eVL L7XL ^L
sanskrit supplement 35. www.chitrapurmath.net
JUBM I@M(S I@M(V@ I@M(X
16/16
X©®G
OTk eVL L7XL ^L
JUBM \@2XSD \@2XRD \@2XD
>@HUXJ@K HbUBM \@2XDSD \@2XDVD \@2X@UGD
A¤UBM \@2X-SD \@2X7UD \@2X@LGD
0©N©G 0©N©G X©®G N©G Y©G
(Person)
(Dual)
(Plural)
(Singular) 0©©©¯©O©
0©©£O©
0©©£-©©TYO©
0©©©¯©©
0©©£/©
0©©£/©
0©©©¯©F©
0©©£-©
0©©£F©
0©N©G X©©¯®G
(Person)
(Dual)
(Plural)
(Singular) 0©©©¯O©£
0©©£O©©F©G
0©©£-©YO©£
0©©£©Q
0©©£O©F©G
0©©£O©
0©©-©©©Y©
0©©-©©-©
0©©-©©F©
sanskrit supplement 35. www.chitrapurmath.net
17/17
0©N©G X© G
(Person)
(Dual)
(Plural)
(Singular) '©0©©©¯O©G
'©0©©£O©©F©G
'©0©©£-©Y©G
'©0©©©¯
'©0©©£O©F©G
'©0©©£O©
'©0©©-©F©G
'©0©©£-©
'©0©©£F©
0©N©G ©-©©2©©X© G
(Person)
(Dual)
(Plural)
(Singular) 0©©£u©©O©G
0©©£u©©O©©F©G
0©©£u©£
0©©£u©©
0©©£u©©O©F©G
0©©£u©©O©
0©©£u©©F©G
0©©£u©©-©
0©©£u©©F©
0©N©G
(Person)
(Dual)
(Plural)
(Singular) 0©u©©O©
0©u©O©
0©u©©TYO©
0©u©©P©
0©u©/©
0©u©/©
0©u©©©F©
0©u©©-©
0©u©©F©
sanskrit supplement 35. www.chitrapurmath.net
18/18
½©QG ½©QG X©®G
(Person)
(Dual)
(Plural)
(Singular) L©&©©©O©
L©&©©O©
L©&©©TYO©
L©&©©©P©
L©&©©/©
L©&©©/©
L©&©©©F©
L©&©©-©
L©&©©F©
½©QG X©©¯®G
(Person)
(Dual)
(Plural)
(Singular) L©&©©O©£
L©&©©O©©F©G
L©&©YO©£
L©Q©&©
L©&©©O©F©G
L©&©©O©
L©&©©©Y©
L©&©©-©
L©&©©F©
½©QG X© G
(Person)
(Dual)
(Plural)
(Singular) '©L©&©©O©G
'©L©&©©O©©F©G
'©L©&©Y©G
'©L©&©©
'©L©&©©O©F©G
'©L©&©©O©
'©L©&©©F©G
'©L©&©©-©
'©L©&©©F©
sanskrit supplement 35. www.chitrapurmath.net
19/19
½©QG ©-©©2©©X© G
(Person)
(Dual)
(Plural)
(Singular) L©&©©u©©O©G
L©&©©u©©O©©F©G
L©&©©u©£
L©&©©u©©
L©&©©u©©O©F©G
L©&©©u©©O©
L©&©©u©©F©G
L©&©©u©©-©
L©&©©u©©F©
½©QG
(Person)
(Dual)
(Plural)
(Singular) ½©Q©u©©O©
½©Q©u©O©
½©Q©u©©TYO©
½©Q©u©©P©
½©Q©u©/©
½©Q©u©/©
½©Q©u©©©F©
½©Q©u©©-©
½©Q©u©©F©
sanskrit supplement 35. www.chitrapurmath.net
20/20
() (Singular)
(Dual)
(Plural)
!
èààॠdà~à àà¦}ààà ~Ë¡
(Singular)
(Dual)
(Plural)
èààà}à¥
èàà}àÛ
èàà}à
èàà}àà¥
èàà}àÛ
èààà
èàààà
èàà·ààà¥
èàà·
èààÚ
èàà·ààà¥
èàà·à
èààà
èàà·ààà¥
èàà·à
èààà
èàààÚ
èààààà¥
èààà
èàààÚ
èààË
èàà}à¥
èàà}àÛ
èàà}à
sanskrit supplement 36. www.chitrapurmath.net
1/3
" ( # $ %) (Singular)
(Dual)
(Plural)
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"!
"
"
"
# ( ) (Singular)
(Dual)
(Plural)
#
#&
#
#
#&
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#!
#
#&
#
sanskrit supplement 36. www.chitrapurmath.net
2/3
(&) '(& (Singular)
(Dual)
(Plural)
!
sanskrit supplement 36. www.chitrapurmath.net
3/3
6XSSOHPHQW O©-u©O©G'©Y©©u©MGu©O©GN©Zu©+©G&u©O©G 2XJKWVKRXOG 1RWH
làॠdà }àÜ dà
èॠdà ¥ dà À fॠ½Ü f¥ zàà f~à àà¥
O©-u©O©G'©Y©©u©MG u©O©GN©Zu©+©G&u©O©G
RXJKWWREH ZRUVKLSSHG RXJKWWREH
'©©p© O©-u©
'©p© Y©©u©
'©pu©
<©©-©O©-u©
<©-©Y©©u©
<©-u©
RXJKWWREH REWDLQHG RXJKWWRFRPH
'©©+O©-u©
'©©+©Y©©u©
'©©+u©
'©©L©YO©-u©
'©©L©F©Y©©u©
'©©L©Fu©
RXJKWWREH EURXJKW
'©©Y©¯O©-u©
'©©Y©u©Y©©u©
'©©Y©¯u©
RXJKWWREH VWDUWHG
'©©M\2©-u©
'©©M<©&©©u©
'©©M
RXJKWWREH FOLPEHG
'©©M©¯^-u©
'©©M©¯Q&©©u©
'©©k©
RXJKWWREH FDOOHG
'©©}©O©-u©
'©©}Y©©u©
'©©}Gu©
RXJKWWREH IORZQ
*y©u©O©-u©
*yu©Y©©u©
*y¯u©
RXJKWWREH ZRNHQXS
*O/©©O©-u©
*O/©©Y©©u©
*O/©¯u©
RXJKWWREHVDW
*+©-©¯¦-u©
*+©-©¯0©Y©©u©
*+©-©¯0u©
sanskrit supplement 38. www.chitrapurmath.net
1/1
eà¥
6O©-u©
6©&©©u©
6u©
e¦Äà¥
RXJKWWREH GHVLUHGZDQWHG RXJKWWREHVHHQ
6©©O©-u©
) ©&©©u©
) u©
j§zà¥
RXJKWWREHWROG
N©/©©u©O©-u©
N©/©Y©©u©
N©/u©
j§~ॠRXJKWWREH WUHPEOHG j§~ॠRXJKWWREHFRPH DQJU\ j§¦¥ RXJKWWRMXPSHG
N©©TF+©O©-u©
N©F+©Y©©u©
N©F+u©
N©©¯©+©O©-u©
N©©¯+©Y©©u©
N©£+u©
N©©R O©-u©
N©R Y©©u©
N©©
j§
RXJKWWREHGRQH
N©O© -u©
N©M&©©u©
N©©u©
©§}¥
RXJKWWREHFULHG
n©©TYRO©-u©
n©YRY©©u©
n©Y©
©§Ü
RXJKWWREH ERXJKW RXJKWWREH SOD\HG RXJKWWREH DQJU\ RXJKWWREH FOHDQHG RXJKWWREH WKURZQ RXJKWWREHGXJ
n©¯O©-u©
n©u©&©©u©
n©¯u©
n©©©>O©-u©
n©©>Y©©u©
n©©>°©
n©©¯-u©
n©©¯2©Y©©u©
n©£Gu©
©©©X©O©-u©
©©X©Y©©u©
©Xu©
©¯+O©-u©
©¯+©&©©u©
©©+u©
.©©Y©O©-u©
.©Y©Y©©u©
.©Yu©
.©©©RO©-u©
.©©RY©©u©
.©©©
L©&©©u©O©-u©
L©&©Y©©u©
L©&u©
L©YO©-u©
L©F©Y©©u©
L©Fu©
RXJKWWREH WKXQGHUHG RXJKWWREHVXQJ
L©©S© O©-u©
L©S© Y©©u©
L©Su©
L©©O©-u©
L©©Y©©u©
L©¯u©
RXJKWWREH VZDOORZHG RXJKWWREH DFFHSWHG
½©©P©O©-u©
½©P©Y©©u©
½©Pu©
½©Q©O©-u©
½©Q&©©u©
½©©
©§Ü½¥ ©§|ॠÄàॠÄà~ॠkà}ॠkàॠlàॠlàॠlàqথ lÛ l±à¥ l±¥ sanskrit supplement 38. www.chitrapurmath.net
RXJKWWREH HDWHQ RXJKWWREH FRXQWHG RXJKWWREHJRQH
2/2
m±à oà
¥ oàॠoà}ॠoË
¥ qà}à¥
qà~ॠqà
RXJKWWREH VPHOW RXJKWWREH JUD]HGZDONHG RXJKWWREH ZDONHG RXJKWWREH WKRXJKW RXJKWWREH VWROHQ RXJKWWREH HPHUJHG EHHQERUQ PDQWUDMDSD RXJKWWREHGRQH RXJKWWREHZRQ
qàÜॠRXJKWWREHOLYHG àà
,©v©O©-u©
,©v©&©©u©
,©v¯u©
p©©MO©-u©
p©M&©©u©
p©u©
p©©X©O©-u©
p©X©Y©©u©
p©Xu©
©p©YO©©u©O©-u©
©p©YO©Y©©u©
©p©YOu©
p©©¯M©u©O©-u©
p©©¯M&©©u©
p©£u©
S©©Y©O©-u©
S©Y©Y©©u©
S©Yu©
S©©+©O©-u©
S©+©Y©©u©
S©+u©
S©¯O©-u©
S©u©Y©©u©
S©¯u©
S©©©-©O©-u©
S©©-©Y©©u©
S©©-u©
RXJKWWREH NQRZQ qàॠRXJKWWREHOLW
©©O©-u©
©©Y©©u©
©¯u©
S-©©X©O©-u©
S-©X©Y©©u©
S-©Xu©
ཥ
O©©>©u©O©-u©
O©©>Y©©u©
O©©>°©
O©+O©-u©
O©+©Y©©u©
O©+u©
O©©+© O©-u©
O©+© &©©u©
O©+u©
O©©MO©-u©
O©M&©©u©
O©©u©
Ou©N©ZO©-u©
Ou©S©Y©©u©
Ou©Su©
RE¦-u©
RE0©Y©©u©
RE0u©
RL2©-u©
RQY©©u©
R©
R©O©-u©
R©Y©©u©
R¯u©
RXJKWWREH EHDWHQ à~ॠRXJKWWREH KHDWHG RXJKWWREH à~ॠVDWLVILHG RXJKWWREH W VZXP àqॠRXJKWWREHOHW JR ¡à¥ RXJKWWREH ELWWHQ ¥ RXJKWWREH EXUQW RXJKWWREHJLYHQ à
sanskrit supplement 38. www.chitrapurmath.net
3/3
ÜÄà¥
RXJKWWREHJLYHQ GHHNVKD RXJKWWREH PLONHG RXJKWWREHVHHQ
R©©©O©-u©
R©©&©©u©
R©u©
R©¯L2©-u©
R©¯QY©©u©
R£©
¬¦-u©
R0© Y©©u©
d0u©
©©¯©O©O©-u©
©©¯O©Y©©u©
©£Ou©
|ààà¥
RXJKWWREH VKRQH RXJKWWREHUXQ
2©©©-©O©-u©
2©©-©Y©©u©
2©©-u©
|à
RXJKWWREHZRUQ
2©©M©u©O©-u©
2©©M&©©u©
2©©u©
|à
RXJKWWREHKHOG
2©O© -u©
2©M&©©u©
2©©u©
|Û
2u©©O©-u©
2u©©Y©©u©
2u©¯u©
Y©YO©-u©
Y©F©Y©©u©
Y©Fu©
Y©¦-u©
Y©0©Y©©u©
Y©0u©
©Y©©TYRO©-u©
©Y©YRY©©u©
©Y©Y©
Y©¯O©-u©
Y©u©Y©©u©
Y©¯u©
Y©©O© O©-u©
Y©O© Y©©u©
Y©Ou©
+©N©ZO©-u©
+©p©Y©©u©
+©pu©
+©©ÀO©-u©
+©ÀY©©u©
+©À°©
+©©O©O©-u©
+©O©Y©©u©
+©Ou©
+©X©©©u©O©-u©
+©X©©u©Y©©u©
+©X©©uu©
+©©M-©¯©©u©O©-u©
+©©M-©¯©&©©u©
+©©M-©¯u©
+©©O©-u©
+©©Y©©u©
+©¯u©
¥ ॠ¶Ëà¥
RXJKWWREH PHGLWDWHG }àॠRXJKWWREHGRQH QDPDVNDU }àॠRXJKWWREH EHHQGHVWUR\HG }à}¥ RXJKWWREH FRQGHPQHG RXJKWWREH }àÜ WDNHQDZD\ }àॠRXJKWWREH GDQFHG RXJKWWREH ~àoॠFRRNHG ~༥ RXJKWWREH UHDGVWXGLHG RXJKWWREH ~àॠIDOOHQ ~àààॠRXJKWWREHUXQ DZD\DVDWKLHI ZRXOG ~à
WRVHUYHDWWKH àॠWDEOH
~àà sanskrit supplement 38. www.chitrapurmath.net
RXJKWWREH GUXQN
4/4
~ààॠRXJKWWREH ORRNHGDIWHU ~àܽ¥ RXJKWWREH WURXEOHG ~ËॠRXJKWWREH QRXULVKHG ~ÌqॠRXJKWWREH ZRUVKLSHG +© RXJKWWREH FRPSOHWHGILOOHG ~±oç¥ RXJKWWREH DVNHG ~±
¥ RXJKWWREH LQVSLUHG à}|ॠRXJKWWREH ERXQG àà|ॠRXJKWWREH WURXEOHG Ë|ॠRXJKWWREH NQRZQ ± RXJKWWREH VSRNHQ èàÄॠRXJKWWREH HDWHQ èàqॠRXJKWWREH VHUYHG èààॠRXJKWWREH VSRNHQ èÌ RXJKWWREH <©© è±à¥ àॠF©£RG sanskrit supplement 38. www.chitrapurmath.net
RXJKWWREH DIUDLG RXJKWWREH ZDQGHUHG RXJKWWREHPHW RXJKWWREHPDGH KDSS\
+©©X©©u©O©-u©
+©©X©Y©©u©
+©©Xu©
+©©©>O©-u©
+©©>Y©©u©
+©©>°©
+©©¯©©O©-u©
+©©¯©&©©u©
+©£u©
+©S©©u©O©-u©
+©S©Y©©u©
+©Su©
+©M©u©O©-u©
+©M&©©u©
+©u©
©¦-u©
©pVY©©u©
©pVGu©
©¯M©u©O©-u©
©¯M&©©u©
©¯u©
\©Y2©-u©
\©Y2©Y©©u©
\©Y2u©
\©©©2©O©-u©
\©©2©Y©©u©
\©©2u©
\©©¯-u©
\©©¯2©Y©©u©
\©£Gu©
-©N©ZO©-u©
-©p©Y©©u©
*pu©
<©©©u©O©-u©
<©©&©©u©
<©u©
<©N©ZO©-u©
<©S©Y©©u©
<©Su©
<©©©©O©-u©
<©©©&©©u©
<©©u©
<©©-©O©-u©
<©-©Y©©u©
<©-u©
<©¯O©-u©
<©u©Y©©u©
<©¯u©
<©v©F©O©-u©
<©vF©&©©u©
<©vFu©
F©¯©X©O©-u©
F©¯X©Y©©u©
F©¯Xu©
F©©¯©RO©-u©
F©©¯RY©©u©
F©©¯© 5/5
F©£p©G
F©©¯N©ZO©-u©
F©©¯p©Y©©u©
F©©¯pu©
F©©S© ©u©O©-u©
F©©S© Y©©u©
F©©Su©
u©¦-u©
u©S©Y©©u©
u©Su©
u©©O©O©-u©
u©O©Y©©u©
u©Ou©
àà¥
RXJKWWREH IUHHG RXJKWWREH ZLSHG RXJKWWREHGRQH D\DMQD RXJKWWREHWULHG
àà
RXJKWWREHJRQH
u©©O©-u©
u©©Y©©u©
u©¯u©
ààoà¥
RXJKWWREH EHJJHG RXJKWWREH IRXJKW RXJKWWREH SURWHFWHG RXJKWWREH PDGHFUHDWHG RXJKWWREHFULHG
u©©©p©O©-u©
u©©p©Y©©u©
u©©pu©
u©©¯-u©
u©©¯2©Y©©u©
u©£Gu©
M©©O©-u©
M©&©©u©
Mu©
Mp©©u©O©-u©
Mp©Y©©u©
Mpu©
M©¯©RO©-u©
M©¯RY©©u©
k©
M©¯-u©
M©¯2©Y©©u©
k2u©
X©\2©-u©
X©<©Y©©u©
X©
X©¯©.©O©-u©
X©¯.©Y©©u©
X©¯.u©
-©N©ZO©-u©
-©p©Y©©u©
*pu©
-©©RO©-u©
-©RY©©u©
*©
-©©TYRO©-u©
-©YRY©©u©
-©Y©
-©+O©-u©
-©+©Y©©u©
-©+u©
-©PO©-u©
-©P©Y©©u©
*u©
-©©¯^-u©
-©QY©©u©
*©
àqॠàqà¥
Ë|à¥
Äà¥
oॠ¥ |à¥
RXJKWWREH VWRSSHG àèॠRXJKWWREH REWDLQHG àkॠRXJKWWREH ZULWWHQ àoॠRXJKWWREH VSRNHQ ॠRXJKWWREH VSRNHQ à}¥ RXJKWWREHGRQH QDPDVNDU à~ॠRXJKWWREH VRZHG àॠRXJKWWREH VWD\HG ॠRXJKWWREH IORZHG sanskrit supplement 38. www.chitrapurmath.net
6/6
©-©N©©P©O©-u©
©-©N©P©Y©©u©
©-©N©Pu©
-©¯¦-u©
-©¯0©Y©©u©
-©¯0u©
©-©PF©O© -u©
©-©PF©M&©©u©
©-©PF©©u©
-©©O© O©-u©
-©O© Y©©u©
-©Ou©
à|à¥
-©©2© O©-u©
-©2© Y©©u©
-©2u©
0©©{O©-u©
0©{Y©©u©
0©{Gu©
0©N©ZO©-u©
0©N©Y©©u©
0©N©Zu©
0©+O©-u©
0©+©Y©©u©
0©+u©
©0©©©O©-u©
©0©©&©©u©
©0©u©
0©©u©O©-u©
0©u©Y©©u©
0©¯u©
0©©¯©p©O©-u©
0©©¯p©Y©©u©
0©£pu©
©©u©O©-u©
©u©&©©u©
©¯u©
©©¯O©-u©
©-©&©©u©
©-u©
P©©¯^-u©
P©QY©©u©
P©©
P©¯N©ZO©-u©
P©¯p©Y©©u©
©P©pu©
P©¯©-©O©-u©
P©¯-©Y©©u©
©P©-u©
³©¦-u©
P©S© Y©©u©
P©Su©
P©¯©-©O©-u©
P©¯-©Y©©u©
P©¯-u©
©-©
N©P©G
RXJKWWREH EORRPHG
àॠRXJKWWREH HQWHUHG à RXJKWWREH IRUJRWWHQ à àà¥
RXJKWWREH
RXJKWWREH JURZQ 0©{ RXJKWWREH GRXEWHG 0©N© RXJKWWREHPDGH SRVVLEOH à~ॠRXJKWWREH FXUVHG àÄॠRXJKWWREH WDXJKW RXJKWWREHVOHSW àÜ
ËoॠRXJKWWREH PRXUQHG ß RXJKWWREH WDNHQVKHOWHU ß RXJKWWREH OLVWHQHG ॠRXJKWWREH ERUQHWROHUDWHG àoॠRXJKWWREH VSULQNOHG àॠRXJKWWREH VWLWFKHG àqॠRXJKWWREH FUHDWHG ÚॠRXJKWWREH VHUYHG sanskrit supplement 38. www.chitrapurmath.net
7/7
Ë zàà zàà
RXJKWWREH SUDLVHG RXJKWWREHNHSW
RXJKWWREH VWRRGZDLWHG }àà RXJKWWREH EDWKHG ~àॠRXJKWWREH WRXFKHG à RXJKWWREH UHPHPEHUHG }ॠRXJKWWREH NLOOHG ॠRXJKWWREH ODXJKHG à RXJKWWREH WDNHQDZD\ ÃॠRXJKWWREHEHHQ KDSS\
sanskrit supplement 38. www.chitrapurmath.net
PO©©¯O©-u©
PO©-©Y©©u©
PO©£Ou©
P/©©+©©u©O©-u©
P/©©+©Y©©u©
P/©©+u©
P/©©O©-u©
P/©©Y©©u©
P/©¯u©
PY©©O©-u©
PY©©Y©©u©
PY©¯u©
P©¦-u©
P+©0© Y©©u©
P+©0u©
PF©O© -u©
PF©M&©©u©
PF©©u©
QYO©-u©
QY©Y©©u©
QYu©
Q©P©O©-u©
QP©Y©©u©
QPu©
QO© -u©
QM&©©u©
Q©u©
Q©© O©-u©
Q© &©©u©
u©
8/8
L©pVO©G
+©£E©X©t
(Singular)
(Plural)
L©pVY©G
L©pVYO©©
L©pVYO©
L©pVYO©F©G
L©pVYO©©
L©pVO©
L©pVO©©
L©pVW°©©F©G
L©pV©W
L©pVO©¯
L©pVW°©©F©G
L©pVW°©
L©pVO©
L©pVW°©©F©G
L©pVW°©
L©pVO©
L©pVO©©¯
L©pVO©©F©G
L©pV©O©
L©pVO©©¯
L©pVOP©£
Q¯ L©pVY©G
Q¯ L©pVYO©©
Q¯ L©pVYO©
sanskrit supplement 39. www.chitrapurmath.net
(Dual)
© Shri Chitrapur Math
1/1
S©L©O©G MJW (VVDU) WNDUD1W QSX LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
MJW
MJW,
MJL1W
Lg
MJW
MJW,
MJL1W
W
MJWD
MJGB\DP
MJGL!
F
MJWH
MJGB\DP
MJGB\!
S
MJW!
MJGB\DP
MJGB\!
D
MJW!
MJWDH!
MJWDP
V
MJLW
MJWDH!
MJ7VX
V
KH MJW
KH MJW,
KH MJL1W
sanskrit supplement 40. www.chitrapurmath.net
© Shri Chitrapur Math
KLU LY^DX NDUD1W SX LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
KLU!
KU,
KU\!
Lg
KLUP
KU,
KU,Q
W
KLU^DD
KLUB\DP
KLUL!
F
KU\H
KLUB\DP
KLUB\!
S
KUH!
KLUB\DP
KLUB\!
D
KUH!
K\DH¯!
KU,^DDP
V
KUD(
K\DH¯!
KLUDX
V
KH KUH
KH KU,
KH KU\!
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
1/28
NW ¯ (NUQH YDOD) NDUD1W SX #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
NWD¯
NWD¯UD(
NWD¯U! X
Lg
NWD¯UP
NWD¯UD(
W
NdD¯
NW ¯B\DP
NW ¯L!
F
NW ¯B\DP
NW ¯B\!
S
NW ¯B\DP
D
NW ¯B\! X
V
NW¯LU
NW ¯DX
V
KH NW¯!
KH NWD¯UD(
KH NWD¯U!
LYBDL.W
LSW (LSWD) NDUD1W SX LYBDL.W
#NYF (Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
LSWD
LSWUD(
LSWU! X
Lg
LSWUP
LSWUD(
W
LSdD
LSW B\DP
LSW L!
F
LSdH
LSW B\DP
LSW B\!
S
LSWX!
LSW B\DP
LSW B\! X
D
LSWX!
LSdDH!
V
LSWLU
LSdDH!
LSW DX
V
KH LSW!
KH LSWUD(
KH LSWU!
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
2/28
6d, (6d,) NDUD1W 6d, #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
6d,
L6d\D(
L6d\!
Lg
L6d\P
L6d\D(
L6d\!
Lg
6d,P
L6d\D(
6d,!
W
L6d\D
6d,B\DP
6d,L!
F
L6d\(
6d,B\DP
6d,B\!
S
L6d\D!
6d,B\DP
6d,B\!
D
L6d\D!
L6d\DH!
6d,^DDP
V
L6d\DP
L6d\DH!
6d,DX
V
à
KH L6d\D(
KH L6d\!
LYBDL.W
PDW (PDWD) NDUD1W 6d, j
PDWD
PDWUD(
Lg
PDWUP
PDWUD(
PDWU! X !
W
PDdD
PDW B\DP
PDW L!
F
PDdH
PDW B\DP
PDW B\!
S
PDWX!
PDW B\DP
D
PDWX!
PDdDH!
PDW B\! X PD ^DDP
V
PDWLU
PDdDH!
PDW DX
V
KH PDW!
KH PDWUD(
KH PDWU!
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
3/28
JDH (JD\) \D E(O $DHNDUD1W SX 6d, LYBDL.W
#NYFQ (Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
JD(!
JDYD(
JDY!
Lg
JDP
JDYD(
JD!
W
JYD
JDHB\DP
JDHL!
F
JYH
JDHB\DP
JDHB\!
S
JDH!
JDHB\DP
JDHB\!
D
JDH!
JYDH!
JYDP
V
JLY
JYDHH!
JDHDX
V
KH JD(!
KH JDYD(
KH JDY!
GL;D (GK,) NDUD1W QSX #NYF (Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
GL;D
GL;DQ,
G;D,LQ
Lg
GL;D
GL;DQ,
G;D,LQ
W
G;QD
GL;DB\DP
GL;DL!
F
G;QH
GL;DB\DP
GL;DB\!
S
G;Q!
GL;DB\DP
GL;DB\!
D
G;Q!
G;QDH!
G;QDP!
V
GL;Q
G;DLQ
G;QDH!
GL;DDX
V
KH GL;D
;DH
KH GL;DQ,
KH G;D,LQ
LYBDL.W
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
4/28
QHW (eye) neuter gender #NYFQ(Singular)
LgYFQ (Dual)
j
QHW
QHW ^D,
Lg
QHW
QHW ^D,
EKXYFQ (Plural) X QHO© L^D X QH L^D
W
QHdD
QHW <\DP
QHW L!
F
QHdH
QHW <\DP
QHW B\!
S
QHWX!
QHW <\DP
D
QHWX!
QHdDH!
QHW B\! X QH ^DDP
V
QHWLU
QHdDH!
V
KH QHW
KH QHW ^D,
LYBDL.W
QHW DX X KH QH L^D
8 W (UDMD
SY5W) WNDUD1W SX #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
8 W
8 WD(
8 W!
Lg
8 WP
8 WD(
8 W!
W
8 WD
8 GB\DP
8 GL!
F
8 WH
8 GB\DP
8 GB\!
S
8 W!
8 GB\DP
8 GB\!
D
8 W!
8 WDH!
8 WDP
V
8L W
8 WDH!
8 7VX
V
KH 8 W
KH 8 WD(
KH 8 W!
LYBDL.W
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
5/28
NLUQ (KDZ,) s1W SX #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
NU,
NLU^DD(
NLU^D!
Lg
NLU^DP
NLU^DD(
NLU^D!
W
NLU^DD
NLUB\DP
NLUL!
F
NLU^DH
NLUB\DP
NLUB\!
S
NLU^D!
NLUB\DP
NLUB\!
D
NLU^D!
NLU^DDH!
NLU^DDP
V
NLUL^D
NLU^DDH!
NLUDX
V
KH NLUQ
KH NLU^DD(
KH NLU^D!
LYBDL.W
SLZQ (PDJ5) s1W SX #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
S1ZD!
S1ZDQD(
S1ZDQ!
Lg
S1ZDQP
S1ZDQD(
SZ!
W
SZD
SLZB\DP
SLZL!
F
SZH
SLZB\DP
SLZB\!
S
SZ!
SLZB\DP
SLZB\!
D
SZ!
SZDH!
SZDP
V
SLZ
SZDH!
SLZDX
V
KH S1ZD!
KH S1ZDQD(
KH S1ZDQ!
LYBDL.W
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
6/28
$D7PQ ($D7PD) $s1W SX #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
$D7PD
$D7PDQD(
$D7PDQ!
Lg
$D7PDQP
$D7PDQD(
$D7PQ!
W
$D7PQD
$D7PB\DP
$D7PL!
F
$D7PQH
$D7PB\DP
$D7PB\!
S
$D7PQ!
$D7PB\DP
$D7PB\!
D
$D7PQ!
$D7PQDH!
$D7PQDP
V
$D7PLQ
$D7PQDH!
$D7PVX
V
KH $D7PQ
KH $D7PDQD(
KH $D7PDQ!
LYBDL.W
UDMQ (UDMD) $s1W SX #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
UDMD
UDMDQD(
UDMDQ!
Lg
UDMDQP
UDMDQD(
UD`!
W
UD`D
UDMB\DP
UDML!
F
UD`H
UDMB\DP
UDMB\!
S
UD`!
UDMB\DP
UDMB\!
D
UD`!
UD`DH!
UD`DP
V
UDL`
UDMLQ
UD`DH!
UDMVX
V
KH UDMQ
KH UDMDQD(
KH UDMDQ!
LYBDL.W
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
7/28
LYgV (LYgDQ ) $V1W SX #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
LYgDQ
LYgDVD(
LYgDV!
Lg
LYgDVP
LYgDVD(
LYGXD!
W
LYGXDD
LYgGB\DP
LYgGL!
F
LYGXDH
LYgGB\DP
LYgGB\!
S
LYGXD!
LYgGB\DP
LYgGB\!
D
LYGXD!
LYGXDDH!
LYGXDDP!
V
LYGXLD
LYGXDDH!
LYg7VX
V
KH LYgQ
KH LYgDVD(
KH LYgDV!
LYBDL.W
YDF (YD^D,) FNDUD1W 6d, #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
YDN
J
YDFD(
YDF!
Lg
YDFP
YDFD(
YDF!
W
YDFD
YD*B\DP
YDL*!
F
YDFH
YD*B\DP
YD*B\!
S
YDF!
YD*B\DP
YD*B\!
D
YDF!
YDFDH!
YDFDP
V
YDLF
YDFDH!
YD~DX
V
KH YDN
J
KH YDFD(
KH YDF!
LYBDL.W
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
8/28
LG] (LG]D) ]NDUD1W 6d, #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
LGN
J
LG]D(
LG]!
Lg
LG]P
LG]D(
LG]!
W
LG]D
LG*B\DP
LGL*!
F
LG]H
LG*B\DP
LG*B\!
S
LG]!
LG*B\DP
LG*B\!
D
LG]!
LG]DH!
LG]DP!
V
LGL]
LG]DH!
LG~DX
V
KH LGN
J
KH LG]D(
KH LG]!
LYBDL.W
~DX[ (8R) [NDUD1W 6d, LYBDL.W
#NYFQ (Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
~DXW
~DX[D(
~DX[!
Lg
~DX[P
~DX[D(
~DX[!
W
~DX[D
~DXGB\DP
~DXGL!
F
~DX[H
~DXGB\DP
~DXGB\!
S
~DX[!
~DXGB\DP
~DXGB\!
D
~DX[!
~DX[DH!
~DX[DP
V
~DXL[
~DX[DH!
~DX7VX
V
KH ~DXW
KH ~DX[D(
KH ~DX[!
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
9/28
S\V (G8[
MO) $V1W QSX #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
S\!
S\V,
S\DLV
Lg
S\!
S\V,
S\DLV
W
S\VD
S\DHB\DP
S\DHL!
F
S\VH
S\DHB\DP
S\DHB\!
S
S\V!
S\DHB\DP
S\DHB\!
D
S\V!
S\VDH!
S\VDP
V
S\LV
S\VDH!
S\!VX
V
KH S\!
KH S\V,
KH S\DLV
LYBDL.W
MJW (VVDU) WNDUD1W QSX #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
MJW
MJW,
MJL1W
Lg
MJW
MJW,
MJL1W
W
MJWD
MJGB\DP
MJGL!
F
MJWH
MJGB\DP
MJGB\!
S
MJW!
MJGB\DP
MJGB\!
D
MJW!
MJWDH!
MJWDP
V
MJLW
MJWDH!
MJ7VX
V
KH MJW
KH MJW,
KH MJL1W
LYBDL.W
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
10/28
JYW (JYDQ) WNDUD1W SX #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
JYDQ
JY1WD(
JY1W!
Lg
JY1WP
JY1WD(
JYW!
W
JYWD
JYGB\DP
JYGL!
F
JYWH
JYGB\DP
JYGB\!
S
JYW!
JYGB\DP
JYGB\!
D
JYW!
JYWDH!
JYWDP
V
JYLW
JYWDH!
JY7VX
V
KH JYQ
KH JY1WD(
KH JY1W!
LYBDL.W
QDPQ QDP $Á1W QSX #NYFQ (Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
QDP
QDPQ,
QDPDLQ
Lg
QDP
QDPQ,
QDPDLQ
W
QD0QD
QDPB\DP
QDPL!
F
QD0QH
QDPB\DP
QDPB\!
S
QD0Q!
QDPB\DP
QDPB\!
D
QD0Q!
QD0QDH!
QD0QDP
V
QDL0Q
QDPLQ
QD0QDH!
QDPVX
V
KH QDP
QDPQ
KH QDPQ,
KH QDPDLQ
LYBDL.W
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
11/28
$KQ LGQ $Á1W QSX #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
$K!
$KQ,
$KDLQ
Lg
$K!
$KQ,
$KDLQ
W
$D
$KDHB\DP
$KDHL!
F
$H
$KDHB\DP
$KDHB\!
S
$!
$KDHB\DP
$KDHB\!
D
$!
$DH!
V
$L
$KLQ
$DH!
$DP!
V
KH $K!
KH $KQ,
LYBDL.W
KH $KDLQ
(N) VY5 (VE)VY5QDP SX
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
VY5!
VYD5(
VY5H
Lg
VY5P
VYD5(
VYD5Q
W
VY5H^D
VYD5B\DP
VY5(!
F
VY56P(
VYD5B\DP
VY5HB\!
S
VY56PDW
VYD5B\DP
VY5HB\!
D
VY56\
VY5\DH!
VY5HDDP
V
VY5L6PQ
VY5\DH!
VY5HDX
LYBDL.W
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
12/28
(R) VY5 (VE) QSX
LYBDL.W
#NYFQ (Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
VY5P
VY5H
VYD5L^D
Lg
VY5P
VY5H
VYD5L>
W
VY5H>
VYD5B\DP
VY5(!
F
VY56P(
VYD5B\DP
VY5HB\!
S
VY56PDW
VYD5B\DP
VY5B\!
D
VY56\
VY56\DH!
VY5HDP
V
VY5L6PQ
VY5\DH!
VY5X
(J) VY5 (VE) 6d,LOJ
LYBDL.W
#NYFQ (Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
VYD5
VYH5
VYD5!
Lg
VYD5P
VY5H
VYD5!
W
VY5\D
VYD5B\DP
VYD5L!
F
VY56\(
VYD5B\DP
VYD5B\!
S
VY56\D!
VYD5B\DP
VYD5B\!
D
VY56\D!
VY5\DH!
VYD5VDP
V
VY56\DP
VY5\DH!
VYD5VX
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
13/28
(N) GP (\K) SX
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
$\P
PD(
PH
Lg
PP
PD(
PDQ
W
$QHQ
$DB\DP
#L!
F
$6P(
$DB\DP
#B\!
S
$6PDW
$DB\DP
#B\!
D
$6\
$Q\DH!
#DP
V
$L6PQ
$Q\DH!
#X
LYBDL.W
(R) GP (\K) QSX
LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
GP
PH
PDLQ
Lg
GP
PH
PDLQ
W
$QHQ
$DB\DP
#L!
F
$6P(
$DB\DP
#B\!
S
$6PDW
$DB\DP
#B\!
D
$6\
$Q\DH!
#DP
V
$L6PQ
$Q\DH!
#X
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
14/28
(J) GP (\K) 6d,
LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
\P
PH
PD!
Lg
PDP
PH
PD!
W
$Q\D
$DB\DP
$DL!
F
$6\(
$DB\DP
$DB\!
S
$6\D!
$DB\DP
$DB\!
D
$6\D!
$Q\DH!
$DVDP
V
$6\DP
$Q\DH!
$DVX
VLR (LPd) NDUD1W SX #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
VRD
VRD\D(
VRD\!
Lg
VRD\P
VRD\D(
VR,Q
W
V2\D
VLRB\DP
VLRL!
F
V2\H
VLRB\DP
VLRB\!
S
V2\X!
VLRB\DP
VLRB\!
D
V2\X!
V2\DH!
VR,QDP
V
V2\D(
V2\DH!
VLRX
V
KH VRH
KH VRD\D(
KH VRD\!
LYBDL.W
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
15/28
]P5Q (VXR) $Á1W QSX #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
]P5
]P5>,
]P5DL>
Lg
]P5
]P5>,
]P5DL>
W
]P5>D
]P5B\DP
F
]P5>H
]P5B\DP
]P5B\!
S
]P5>!
]P5B\DP
]P5B\!
D
]P5>!
]P5>DH!
]P5>DP
V
]P5L>
]P5>DH!
]P5VX
V
KH ]P5
]P5Q
KH ]P5>,
KH ]P5DL>
LYBDL.W
VLUW (QG,) WNDUD1W 6d, #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
VLUW
VLUWD(
VLUW!
Lg
VLUWP
VLUWD(
VLUW!
W
VLUWD
VLUGB\DP
VLUGL!
F
VLUWH
VLUGB\DP
VLUGB\!
S
VLUW!
VLUGB\DP
VLUGB\!
D
VLUW!
VLUWDH!
VLUWDP!
V
VLULW
VLUWDH!
VLU7VX
V
KH VLUW
KH VLUWD(
KH VLUW!
LYBDL.W
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
16/28
PQV (PQ) $V1W QSX #NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
PQ!
PQV,
PQLV
Lg
PQ!
PQV,
PQLV
W
PQVD
PQDHB\DP
PQDHL!
F
PQVH
PQDHB\DP
PQDHB\!
S
PQV!
PQDHB\DP
PQDHB\!
D
PQV!
PQVDH!
PQVDP
V
PQLV
PQVDH!
PQ!VX
6VX
V
KH PQ!
KH PQV,
KH PQLV
LYBDL.W
àà àÄàÜ dj§à
à}à àÜ
LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
àà
Ú
àà
Lg
ààà¥
Ú
àà
W
ààà
ààèààà¥
ààèà
F
ààÛ
ààèààà¥
ààèà
S
àààà
ààèààà¥
ààèà
D
àààà
ààÚ
ààààà¥
V
ààààà¥
ààÚ
ààË
V
Ú
Ú
àà
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
17/28
làॠmà
dj§à
à}à }à~Ë¡
LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
làà¥
là
lààà
Lg
làà¥
là
lààà
W
làà
lààèààà¥
là
F
lààà
lààèààà¥
làèà
S
lààà¥
lààèààà¥
làèà
D
làà
lààÚ
lààààà¥
V
là
lààÚ
làË
V
là
là
lààà
àॠà eà}à }à~Ë¡
LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
à
ààÜ
àÎà
Lg
à
ààÜ
àÎà
W
ààà
àèàà¦à¥
àèà¦
F
àÚ
àèàà¦à¥
àèà¦
S
àà
àèàà¦à¥
àèà¦
D
àà
ààÚ
àààà¥
V
àà
ààÚ
àË
V
à
ààÜ
àÎà
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
18/28
S8Y5 (S8Y5 ~±zàà ) VY5QDP SX LYBDL.W
#NYFQ (Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
S8Y5!
S8YD5(
S8Y5H
Lg
S8Y5P
S8YD5(
S8YD5Q
W
S8Y5H^D
S8YD5B\DP
S8Y5(!
F
S8Y56P(
S8YD5B\DP
S8Y5HB\!
S
S8Y56PDW
S8YD5B\DP
S8Y5HB\!
D
S8Y56\
S8Y5\DH!
S8Y5HDDP
V
S8Y5L6PQ
S8Y5\DH!
S8Y5HDX
S8Y5 (S8Y5 ~±zàà ) QSX #NYFQ (Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
S8Y5P
S8Y5H
S8YD5L^D
Lg
S8Y5P
S8Y5H
S8YD5L^D
W
S8Y5H^D
S8YD5B\DP
S8Y5(!
F
S8Y56P(
S8YD5B\DP
S8Y5HB\!
S
S8Y56PDW
S8YD5B\DP
S8Y5HB\!
D
S8Y56\
S8Y5\DH!
S8Y5HDDP
V
S8Y5L6PQ
S8Y5\DH!
S8Y5HDX
LYBDL.W
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
19/28
S8Y5 (S8Y5 ~±zàà ) 6d, LYBDL.W
#NYFQ (Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
S8YD5
S8Y5H
S8YD5!
Lg
S8YD5P
S8Y5H
S8YD5!
W
S8Y5\D
S8YD5B\DP
S8YD5L!
F
S8Y56\(
S8YD5B\DP
S8YD5B\!
S
S8Y56\D!
S8YD5B\DP
S8YD5B\!
D
S8Y56\D!
S8Y5\DH!
S8YD5VDP
V
S8Y56\DP
S8Y5\DH!
S8YD5VX
~àà ~àà ej§à
à}à ~Ë¡
LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
~àà
~ààÜ
~ààà
Lg
~ààà¥
~ààÜ
~ààÜ}à¥
W
~ààà
~ààèààà¥
~ààèà
F
~àÚ
~ààèààà¥
~ààèà
S
~àË
~ààèààà¥
~ààèà
D
~àË
~ààÚ
~ààÜ}ààà¥
V
~ààÛ
~ààÚ
~ààË
V
~àÚ
~ààÜ
~ààà
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
20/28
à¹à¥ à¹à}ॠàj§à
à}à ~Ë¡
LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
à¹à}à¥
à¹à¡àÛ
à¹à¡à
Lg
à¹à¡àà¥
à¹à¡àÛ
àà
W
ààà
๥èààà¥
๥èà
F
àÚ
๥èààà¥
๥èà
S
àà
๥èààà¥
๥èà
D
àà
ààÚ
àààà¥
V
àà
ààÚ
à¹Ë
V
à¹}à¥
à¹à¡àÛ
à¹à¡à
oà}¯àॠoà}¯àà àj§à
à}à ~Ë¡
LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
oà}¯àà
oà}¯ààÛ
oà}¯àà
Lg
oà}¯ààà¥
oà}¯ààÛ
oà}¯àà
W
oà}¯ààà
oà}¯àÚèààà¥
oà}¯àÚèà
F
oà}¯àÚ
oà}¯àÚèààà¥
oà}¯àÚèà
S
oà}¯àà
oà}¯àÚèààà¥
oà}¯àÚèà
D
oà}¯àà
oà}¯ààÚ
oà}¯àààà¥
V
oà}¯àà
oà}¯ààÚ
oà}¯àË
V
oà}¯à
oà}¯ààÛ
oà}¯àà
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
21/28
Èà}ॠj§Ðàà }àj§à
à}à ~Ë¡
LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
Èàà
Èàà}àÛ
Èàà}à
Lg
Èàà}àà¥
Èàà}àÛ
Ë}à
W
Ë}àà
Èàèààà¥
Èàèà
F
Ë}Ú
Èàèààà¥
Èàèà
S
Ë}à
Èàèààà¥
Èàèà
D
Ë}à
Ë}àÚ
Ë}ààà¥
V
Ë}à
Ë}àÚ
ÈàË
V
Èà}à¥
Èàà}àÛ
Èàà}à
àÄàÜ e¦j§à
à}à àÜ
~± à ij§àoà}à LV
WUXO\
àÄàÜ
LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
àÄàÜ
àÄàÛ
àÄà
Lg
àÄàÜà¥
àÄàÛ
àÄàÜ
W
àÄàà
àÄàÜèààà¥
àÄàÜèà
F
àÄÛ
àÄàÜèààà¥
àÄàÜèà
S
àÄàà
àÄàÜèààà¥
àÄàÜèà
D
àÄàà
àÄàÚ
àÄàÜààà¥
V
àÄààà¥
àÄàÚ
àÄàÜË
V
àÄà
àÄàÛ
àÄà
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
22/28
àÜ àÜ e¦j§à
à}à àÜ
LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
àÜ
ààÛ
àà
Lg
ààॠàÜà¥
ààÛ
àà àÜ
W
ààà
àÜèààà¥
àÜèà
F
àÛ
àÜèààà¥
àÜèà
S
ààà
àÜèààà¥
àÜèà
D
ààà
ààÚ
àÜààà¥
V
àààà¥
ààÚ
àÜË
V
à
ààÛ
àà
èààॠdà~à àà¦}ààà ~Ë¡
LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
èààà}à¥
èàà}àÛ
èàà}à
Lg
èàà}àà¥
èàà}àÛ
èààà
W
èàààà
èàà·ààà¥
èàà·
F
èààÚ
èàà·ààà¥
èàà·à
S
èààà
èàà·ààà¥
èàà·à
D
èààà
èàààÚ
èààààà¥
V
èààà
èàààÚ
èààË
V
èàà}à¥
èàà}àÛ
èàà}à
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
23/28
ßÜ àÄàÜ e¦j§à
à}à àÜ
LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
ßÜ
ßàÛ
ßà
Lg
ßàà¥
ßàÛ
ßà
W
ßàà
ßÜèààà¥
ßÜèà
F
ßÛ ßÚ
ßÜèààà¥
ßÜèà
S
ßàà ßà
ßÜèààà¥
ßÜèà
D
ßàà ßà
ßàÚ
ßÜààॠßÜààà¥
V
ßààॠßà
ßàÚ
ßÜË
V
ßÜ
ßàÛ
ßà
|à}Ëॠ|à}Ëà àj§à
à}à }à~Ë¡
LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
|à}Ë
|à}ËàÜ
|à}ÌEà
Lg
|à}Ë
|à}ËàÜ
|à}ÌEà
W
|à}Ëàà
|à}Ëèàà¦à¥
|à}Ëèà¦
F
|à}ËÚ
|à}Ëèàà¦à¥
|à}Ëèà¦
S
|à}Ëà
|à}Ëèàà¦à¥
|à}Ëèà¦
D
|à}Ëà
|à}ËàÚ
|à}Ëààà¥
V
|à}Ëà
|à}ËàÚ
|à}ËË
V
|à}Ë
|à}ËàÜ
|à}Ì¡à
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
24/28
±à}ॠ±àà Ú }à~Ë¡
LYBDL.W
#NYFQ(Singular)
LgYFQ (Dual)
EKXYFQ (Plural)
j
±à
񅅚
񅅅
Lg
±à
񅅚
񅅅
W
񅅅
±àèààà¥
񅊅
F
±àÚ
±àèààà¥
񅊅
S
±àà
±àèààà¥
񅊅
D
±àà
±ààÚ
±àààà¥
V
±àà
±ààÚ
±àË
V
Q¯ \©v±©Y©G
񅅚
񅅅
HU>@H*S
OTHHKØ KØ
±à
J (JUBM)
v(HKØ
MOTRJHKØ
~±zààà
J
J@
JLÆ
HbS(X@
JLÆ
J@LÆ
JLÆ
SS(X@
JDM
JX@
JDM
BSTV(1
J2L$
J2X$
J2L$
O®L(
J2L@SÆ
J2X@
J2L@SÆ
0(
J2X
J2X@
J2X
R/SL(
JH2LMÆ
J2X@LÆ
JH2LMÆ
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
25/28
~±zààà
Hb (HbUBM)
b@$
bD
bD
HbS(X@
b@$
bD
bD
SS(X@
b@>X@LÆ
b@>X@LÆ
b@>X@LÆ
BSTV(1
b@>X@LÆ
b@>X@LÆ
b@>X@LÆ
O®L(
b@>X@LÆ
b@>X@LÆ
b@>X@LÆ
0(
bX@D
bX@D
bX@D
R/SL(
bX@D
bX@D
bX@D
H` (AGTUBM)
~±zààà
`X
HSw
`(H:
HbS(X@
`(MÆ
HSw
`(H:
SS(X@
H`H>@
HSRH>@
H`H>@
BSTV(1
H`>X
HSR>X
H`>X
O®L(
H`>X
HSR>X
H`>X
0(
`X@:@LÆ
HSR~:@LÆ
`X@:@LÆ
R/SL(
H`T
HSRT
H`T
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
26/28
BSTQÆ (AGTUBM)
~±zààà
B3U@Q
BSw
B3U@HQ
HbS(X@
BSTQ
BSw
B3U@HQ
SS(X@
BSTH>@1
BSRH>@
BSTH>@1
BSTV(1
BST>X1
BSR>X
BST>X1
O®L(
BST>X1
BSR>X
BST>X1
0(
BST:@1LÆ
BSR:@LÆ
BST:@1LÆ
R/SL(
BST1T
BSRT
BST1T
~àºoà}ॠ(AGTUBM)
໥ (AGTUBM)
~±zààà
~àºoà
໥
à~à
HbS(X@
~àºoà
໥
à~à
SS(X@
~àºoàèà
ཥèà
à~àèà
BSTV(1
~àºoàèà
ཥèà
à~àèà
O®L(
~àºoàèà
ཥèà
à~àèà
0(
~àºoàà}ààà¥
àààà¥
à~àà}ààà¥
R/SL(
~àºoàË
໥Ë
à~àË
HU>@H*S
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
à~à}à¥
(AGTUBM)
27/28
HU>@H*S
d»}ॠ(AGTUBM)
}àà}ॠ(AGTUBM)
à}à¥
(AGTUBM)
~±zààà
d»
d»Û
}àà
à
HbS(X@
d»
d»Û
}àà
à
SS(X@
d»èà d»àèà
}ààèà
àèà
BSTV(1
d»èà d»àèà
}ààèà
àèà
O®L(
d»èà d»àèà
}ààèà
àèà
0(
d»à}ààà¥
}ààà}ààà¥
àà}ààà¥
}ààË
àË
j§à j§à}Ú
fèà Ú}à¿
fèà Ú}à¿
(AGTUBM)
¹àoà}à ~Ë¡
¹àoà}à }à~Ë¡
R/SL(
d»Ë
d»àË
HU>@H*S
àÜ
~±zààà
j§à
fèàÛ
fèÚ
HbS(X@
j§à
fèàÛ
fèÚ
SS(X@
j§àèà
fèààèààà¥
fèààèààà¥
BSTV(1
j§àèà
fèààèààà¥
fèààèààà¥
O®L(
j§àèà
fèààèààà¥
fèààèààà¥
0(
j§àÜ}ààà¥
fèààÚ
fèààÚ
R/SL(
N©©O©©£
fèààÚ
fèààÚ
sanskrit supplement 41. www.chitrapurmath.net
© Shri Chitrapur Math
28/28