S-exp-ii Math Devoir S2 3

  • Uploaded by: Ihsan Mokhlisse
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View S-exp-ii Math Devoir S2 3 as PDF for free.

More details

  • Words: 446
  • Pages: 1
‫اﻟﻤﺴﺘﻮى‪ :‬اﻟـﺜﺎﻧﻴﺔ ﺛﺎﻧﻮي‬ ‫اﻟﺸﻌﺒﺔ‪ :‬اﻟﻌﻠﻮم اﻟﺘﺠﺮﻳﺒﻴﺔ‬ ‫اﻷﺳﺘﺎذ‪ :‬ﻣــــــــﻮﻣــــــﺎد‬ ‫ﺳﻠﻢ اﻟﺘﻨﻘﻴﻂ‪:‬‬

‫اﻟﻤﺆﺳـــﺴــــﺔ‪ :‬ﻣـــﻮﺳﻰ ﺑـﻦ ﻧـﺼـﻴـﺮ‬ ‫اﻟﻨﻴﺎﺑﺔ‪:‬ﻣﺮاآﺶ ﺳﻴﺪي ﻳﻮﺳﻒ ﺑﻦ ﻋﻠﻲ‬ ‫اﻟــﺴــﻨــﺔ اﻟــﺪراﺳـﻴـﺔ‪2006/2005:‬‬

‫اﻟﻔﺮض اﻟﻤﺤﺮوس اﻷول‬ ‫اﻟﺪورة اﻟـﺜـﺎﻧـﻴـــــــﺔ‬ ‫ﻣﺪة اﻹﻧﺠﺎز‪ :‬ﺳﺎﻋﺘـــــﺎن‬ ‫ﻣﻼﺣﻈﺔ‪ :‬ﻳﺮاﻋﻰ ﻓﻲ اﻟﺘﺼﺤﻴﺢ ﺳﻼﻣﺔ اﻟﺘﻌﺒﻴﺮ و ﺣﺴﻦ اﻟﺘﻘﺪﻳﻢ‬

‫اﻟﺘﻤﺮﻳﻦ اﻷول‪ 8) :‬ن(‬

‫⎞‪⎛0‬‬ ‫⎞ ‪⎛ −1‬‬ ‫⎞‪⎛1‬‬ ‫⎞‪⎛0‬‬ ‫‪JG JJG JG‬‬ ‫⎟ ⎜‬ ‫⎟ ⎜‬ ‫⎟ ⎜‬ ‫⎟ ⎜‬ ‫ﻓﻲ اﻟﻔﻀﺎء ‪ ξ‬اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ﻣﺒﺎﺷﺮ ‪ ، ℜ = O , i , j , k‬ﻧﻌﺘﺒﺮ اﻟﻨﻘﻂ ⎟ ‪ C ⎜1⎟ ، B ⎜ 0 ⎟ ، A ⎜ 1‬و ⎟ ‪Ω ⎜ 1‬‬ ‫⎟‪⎜1‬‬ ‫⎟‪⎜0‬‬ ‫⎟‪⎜1‬‬ ‫⎟‪⎜0‬‬ ‫⎠ ⎝‬ ‫⎠ ⎝‬ ‫⎠ ⎝‬ ‫⎠ ⎝‬

‫)‬

‫‪1‬‬ ‫‪0,5‬‬ ‫‪1‬‬

‫(‬

‫‪JJJG JJJJG‬‬ ‫‪ (1‬أﺣﺴﺐ ‪ A B ∧ AC‬واﺳﺘﻨﺘﺞ أن ‪ B ، A‬و ‪ C‬ﺗﺤﺪد ﻣﺴﺘﻮى ﻣﻌﺎدﻟﺘﻪ هﻲ‪− x + y + z − 1 = 0 :‬‬ ‫‪3‬‬ ‫‪ (2‬ﻧﻌﺘﺒﺮ اﻟﻔﻠﻜﺔ ) ‪ (S‬اﻟﺘﻲ ﻣﺮآﺰهﺎ ‪ Ω‬وﺷﻌﺎﻋﻬﺎ‬ ‫‪3‬‬ ‫‪ (a‬أﻋﻂ اﻟﻤﻌﺎدﻟﺔ اﻟﺪﻳﻜﺎرﺗﻴﺔ ﻟﻠﻔﻠﻜﺔ ) ‪(S‬‬ ‫‪ (b‬أﺣﺴﺐ ﻣﺴﺎﻓﺔ اﻟﻨﻘﻄﺔ ‪ Ω‬ﻋﻦ اﻟﻤﺴﺘﻮى ) ‪ . ( A BC‬ﻣﺎذا ﺗﺴﺘﻨﺘﺞ؟‬ ‫‪ (3‬ﻟﻴﻜﻦ ) ‪ (Q‬اﻟﻤﺴﺘﻮى اﻟﺬي ﻣﻌﺎدﻟﺘﻪ ‪x − y + 2z − 2 = 0‬‬

‫‪(a‬‬ ‫‪(b‬‬ ‫‪(c‬‬ ‫‪(d‬‬ ‫‪(e‬‬

‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1,5‬‬ ‫‪1‬‬

‫ﺑﻴﻦ أن اﻟﻤﺴﺘﻮﻳﻴﻦ ) ‪ ( A BC‬و ) ‪ (Q‬ﻣﺘﻌﺎﻣﺪان‬ ‫ﺑﻴﻦ أن اﻟﻤﺴﺘﻮى ) ‪ (Q‬و اﻟﻔﻠﻜﺔ ) ‪ (S‬ﻳﺘﻘﺎﻃﻌﺎن وﻓﻖ داﺋﺮة ) ‪( Γ‬‬ ‫أﻋﻂ ﺗﻤﺜﻴﻼ ﺑﺎرا ﻣﺘﺮﻳﺎ ﻟﻠﻤﺴﺘﻘﻴﻢ ) ‪ ( Δ‬اﻟﻤﺎر ﻣﻦ ‪ Ω‬و اﻟﻌﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻮى ) ‪(Q‬‬ ‫ﺣﺪد ﻣﺮآﺰ و ﺷﻌﺎع اﻟﺪاﺋﺮة ) ‪( Γ‬‬ ‫ﺣﺪد ﺗﻘﺎﻃﻊ اﻟﻤﺴﺘﻘﻴﻢ ) ‪ ( Δ‬ﻣﻊ اﻟﻔﻠﻜﺔ ) ‪. (S‬‬

‫اﻟﺘﻤﺮﻳﻦ اﻟﺜﺎﻧﻲ‪12 ) :‬ن(‬ ‫ﻟﺘﻜﻦ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ‪ f‬ﻟﻠﻤﺘﻐﻴﺮ اﻟﺤﻘﻴﻘﻲ ‪ x‬ﺑﺤﻴﺚ ‪:‬‬

‫وﻟﻴﻜﻦ‬

‫)‬

‫‪⎧f (x ) = x ln(x ) − x ; x > 0‬‬ ‫⎪‬ ‫⎨‬ ‫‪⎪f (x ) = xe − x ; x ≤ 0‬‬ ‫⎩‬

‫‪JG JG‬‬ ‫‪ (C f‬اﻟﻤﻨﺤﻨﻰ اﻟﻤﻤﺜﻞ ﻟﻠﺪاﻟﺔ ‪ f‬ﻓﻲ اﻟﻤﺴﺘﻮى ‪ P‬اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ‪. ℜ = O , i , j‬‬

‫)‬

‫‪2‬‬

‫‪ (1‬أﺛﺒﺖ أن ‪ f‬ﻣﺘﺼﻠﺔ ﻓﻲ ‪.0‬‬

‫‪2‬‬

‫‪ (2‬اﺣﺴﺐ ﻧﻬﺎﻳﺘﻲ اﻟﺪاﻟﺔ ‪ f‬ﻋﻨﺪ ∞‪ +‬و ﻋﻨﺪ ∞‪. −‬‬

‫‪1‬‬

‫) ‪f (x‬‬ ‫) ‪f (x‬‬ ‫‪ lim+‬و أن ‪= 1‬‬ ‫‪ –(a (3‬أﺛﺒﺖ أن ∞ ‪= −‬‬ ‫‪x‬‬ ‫→‬ ‫‪0‬‬ ‫‪x‬‬ ‫‪x‬‬

‫‪1‬‬

‫‪ -(b‬أﻋﻂ ﺗﺄوﻳﻼ ﻣﺒﻴﺎﻧﻴﺎ ﻟﻠﻨﻬﺎﻳﺘﻴﻦ اﻟﺴﺎﺑﻘﺘﻴﻦ‪).‬اﻟﺴﺆال ‪( a‬‬

‫‪1‬‬

‫‪ -(a (4‬اﺣﺴﺐ ) ‪ f ' (x‬ﻟﻜﻞ ‪ x‬ﻣﻦ ‪ \ −‬و أﺛﺒﺖ أﻧﻬﺎ ﻣﻮﺟﺒﺔ‪.‬‬

‫‪1‬‬

‫‪ -(b‬اﺣﺴﺐ ) ‪ f ' (x‬ﻟﻜﻞ ‪ x‬ﻣﻦ ‪ \ +‬و ﺣﺪد إﺷﺎرﺗﻬﺎ‪.‬‬

‫‪1‬‬

‫‪ -(c‬أﻋﻂ ﺟﺪول ﺗﻐﻴﺮات اﻟﺪاﻟﺔ ‪. f‬‬

‫‪1‬‬

‫)‬

‫‪2‬‬

‫‪ (5‬ادرس اﻟﻔﺮوع اﻟﻼﻧﻬﺎﺋﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ‬ ‫‪ (6‬ارﺳﻢ اﻟﻤﻨﺤﻨﻰ‬

‫‪lim‬‬

‫‪x → 0−‬‬

‫‪. (C f‬‬

‫) ‪(C f‬‬ ‫‪http://arabmaths.ift.fr‬‬

‫(‬

Related Documents

S-exp-ii Math Devoir S2 3
October 2019 10
Math Devoir 3
April 2020 4
S-exp-ii Math Devoir S2 8
October 2019 14
S-exp-ii Math Devoir S2 2
October 2019 16
S-exp-ii Math Devoir S2 1
October 2019 13
S-exp-ii Math Devoir S2 10
October 2019 15

More Documents from "Ihsan Mokhlisse"

Tajribi Math Sx (39)
April 2020 6
Solutions 1
November 2019 4
I04pm1e
November 2019 3
Tdmeca2
November 2019 2
Tdmeca4
November 2019 2
M026m1e_2
November 2019 5