ﻤﺩﺓ ﺍﻻﻨﺠﺎﺯ :ﺴﺎﻋﺘﺎﻥ ﺍﻝﺴﻨﺔ 05-06ﺍﻝﺩﻭﺭﺓ 2
ﺜﺎﻨﻭﻴﺔ ﻤﻴﺩﺍﻥ ﺍﻝﻔﺭﻭﺴﻴﺔ ﻓﺎﺱ ﺍﻝﺜﺎﻨﻴﺔ ﺒﺎﻙ ﻋﻠﻭﻡ ﺘﺞ 3 .2 .1 ﺍﻷﺴﺘﺎﺫ ﻤﺤﻤﺩ ﺸﺎﺸﻴل ----------------------------------------------------------------------------------)(10-03-2006 ﻓﺭﺽ ﻤﺤﺭﻭﺱ 1
ﺍﻝﺘﻤﺭﻴﻥ ﺍﻷﻭل 3,5 ):ﻨﻘﻁﺔ( ﺤل ﻓﻲ IRﺍﻝﻤﻌﺎﺩﻝﺘﻴﻥ ﺍﻝﺘﺎﻝﻴﺘﻴﻥ (1 1+1 ﺃ ln x + ln( x − 3) = ln(2 x − 4) - (2
1.5
أ ات ا :
e2 x − e x x→0 x
lim
ب - ,
3e x − 2e − x + 1 = 0
lim x − ln 2 x
,
∞x →+
x +1 lim x ln ∞x →− x
-------------------------------------------------------------------- ا ا 6 ):ﻨﻘﻁ( ا ء ) (Eا'-ب إ !#)0 ( O, i, j , k ) !"#$ %&'$ ($)$ %*)$ +ا./ ) A(1,4,3و ) B(0,2,2و ) C(1,-1,1وا'-ى) (Pا6ي )$دx-3y-2z+3=0 3 (1ﺍﻋﻁ ﺘﻤﺜﻴﻼ ﺒﺎﺭﻤﺘﺭﻴﺎ ﻝﻠﻤﺴﺘﻘﻴﻡ )(AB 0.5 ا-ى )((=> ? @/0 (Pه 89 (2أن ا'!; (AB) %/ق 1 (3أ -أ ا'? AB ∧ ACو ا(C DAم ا $/Aا A ./و Bو C 0.5 ب ( -د )$د دFر> *'-ى )(ABC 0.5 89 (4أن ا' (ABC) 8-و ))H/ (Pن و 3*I'> ((=> ? %/$ Jا#ر!$ي. 1.5 2 2 2 8F (4ا * (S) Fذات ا')د x + y + z − 2 x + 2 y − 2 z − 1 = 0 أ – (د !$آ Nو ")ع ا *.(S) F 0.5 ب – 89ان ا'-ى ) P@/ (Pا * (S) Fو Jدا!Rة (د !$آNه و ")C 1.5 -------------------------------------------------------------------ا ا 10,5 ) :ﻨﻘﻁﺔ( * اء اول: 9ـ g ( x) = 1 − x + ln x : g 8Fا(ا ا')! IR+ +*C )lim g ( x , )lim g ( x (1أ ا8 1 ∞x →+ x → 0+
1
(2أدرس >!Uات IR+* +*C g
0.5
(3ا DAأن g ( x) ≤ 0
∀x ∈ IR
* +
---------------------------------------------------------------- !#)0ا(ا ا)(د fا')! . اءا:
(1 (2 (3
0.5 1 1
89أن ا(ا 0 *X$ f أ – أ ) f ( x xlimو 89أن ∞lim f ( x) = + ∞→− ∞x →+
) (C f
ج 89 -أن ) '?*" C! [#/ ( C fا>? Zا'( ∆ ) %/ ﺩ – ﺍﺩﺭﺱ ﺍﻝﻭﻀﻊ ﺍﻝﻨﺴﺒﻲ ﻝﻠﻤﻨﺤﻨﻰ ) ( C fو ا' +*C ( ∆ ) %/ا'?ل [∞]0, +
0.5
(4 (5
1
0,75+ 0.25
-?9ار ∞−
ا6ي )$د-?9 y = x 3ار ∞+
0.5
1.5
f
ب 89 -أن ا' %/ا*6ي )$د/$ y = −2 x − 1 3رب ـ
0.5
0.5
f ( x) = x − x .ln x x>0 9ـ: x x≤0 f ( x) = e − 2 x − 1 ﺤﺩﺩ W!)> C-'?$ D fا(ا f
و
) (C
%&'$ ($)$ %*)$ f +=$
) ( O, i , j
.
أدرس ] *9ا" /ق fا ! Xوا_> .Cو^ ه(A f ' 8Fا(ا ا'`(* /ا IR* +*C f أ -أ )f '( x
x [Fﻤﻥ []−∞, 0
−1 9ـ 89 -أن ) g ( x x
= )f '( x
[∞∀x ∈ ]0, +
ﺝ -ﻀﻊ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ . f (6أ`0ء )9ا'=( C f ) + -------------------------------------------------------------ﺤﻅ ﺴﻌﻴﺩﺴﻴﺅﺨﺫ ﺒﻌﻴﻥ ﺍﻹﻋﺘﺒﺎﺭ ﺍﻝﺩﻗﺔ ﻭ ﺍﻝﻌﻨﺎﻴﺔ ﺃﺜﻨﺎﺀ ﺍﻝﺘﺤﺭﻴﺭ . http://arabmaths.ift.fr