S-exp-ii Math Devoir S1 8

  • Uploaded by: Ihsan Mokhlisse
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View S-exp-ii Math Devoir S1 8 as PDF for free.

More details

  • Words: 519
  • Pages: 1
‫ﻓﺮض آﺘﺎﺑﻲ ﻓﻲ اﻟﺮﻳﺎﺿﻴﺎت ‪1‬‬

‫ﺛﺎﻧﻮﻳﺔ اﻻﻣﻴﺮ ﻣﻮﻻي اﻟﺮﺷﻴﺪ‪ -‬ﻣﻴﺪﻟﺖ‬ ‫اﻟﺘﻤﺮﻳﻦ اﻻول‪:‬‬ ‫ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ ‪ f‬اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ‬

‫[∞‪I = [1, +‬‬

‫‪2‬ﺑﺎك ‪4+3‬‬

‫اﻟﻤﺪة‪ 2:‬س‬

‫ﺑﻤﺎ ﻳﻠﻲ‪f ( x) = x − 2 x :‬‬

‫‪ (1‬ﺑﻴﻦ ان ‪ f‬داﻟﺔ ﺕﻘﺎﺑﻠﻴﺔ ﻣﻦ ‪ I‬ﻧﺤﻮ ﻣﺠﺎل ‪ J‬ﻳﺘﻢ ﺕﺤﺪﻳﺪﻩ‬

‫‪ (2‬ﺡﺪد )‪f −1 (0‬‬ ‫‪ (3‬اﺡﺴﺐ ﻟﻜﻞ ‪f −1 ( x) : x ∈ J‬‬ ‫اﻟﺘﻤﺮﻳﻦ اﻟﺜﺎﻧﻲ‪:‬‬

‫‪1‬‬ ‫= ‪u0 = 0, un +1‬‬ ‫ﻟﻜﻞ ﻋﺪد ﻃﺒﻴﻌﻲ ‪n‬‬ ‫ﻟﺘﻜﻦ اﻟﻤﺘﺘﺎﻟﻴﺔ اﻟﻤﻌﺮﻓﺔ ب‪:‬‬ ‫‪2 − un‬‬ ‫واآﺘﺒﻬﺎ ﻋﻠﻰ ﺷﻜﻞ آﺴﻮر ﻣﺨﺘﺰﻟﺔ‬ ‫‪ (1‬اﺡﺴﺐ اﻻﻋﺪاد ‪u1 , u2 , u3‬‬ ‫‪n‬‬ ‫‪ (2‬ﻗﺎرن ﺕﺒﺎﻋﺎ اﻟﺤﺪود اﻻرﺑﻌﺔ اﻻوﻟﻰ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ) ‪ (un‬ﻣﻊ اﻟﺤﺪود اﻻرﺑﻌﺔ اﻻوﻟﻰ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ) ‪ ( wn‬اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ ` ب‪:‬‬ ‫‪n +1‬‬ ‫‪ (3 (3‬ﺑﺎﺱﺘﻌﻤﺎل اﺱﺘﺪﻻل ﺑﺎﻟﺘﺮﺝﻊ اﺛﺒﺖ ان‪∀n ∈ `, wn = un :‬‬

‫= ‪wn‬‬

‫اﻟﺘﻤﺮﻳﻦ اﻟﺘﺎﻟﺖ‪:‬‬

‫ﻧﻌﺘﺒﺮ اﻟﻤﺘﺘﺎﻟﻴﺔ ) ‪ (un‬اﻟﻤﻌﺮﻓﺔ آﻤﺎ ﻳﻠﻲ‪u0 = 1, un +1 = un + 2n + 3 :‬‬ ‫‪ (1‬ادرس رﺕﺎﺑﺔ اﻟﻤﺘﺘﺎﻟﻴﺔ ) ‪(un‬‬ ‫‪ (2‬ﺑﺮهﻦ ان‪ ’ ∀n ∈ `, un 〉 n :‬ﻣﺎ هﻲ ﻧﻬﺎﻳﺔ اﻟﻤﺘﺘﺎﻟﻴﺔ ) ‪ (un‬؟‬ ‫‪2‬‬

‫‪ (3‬اﺡﺴﺐ اﻟﻤﺠﻤﻮع ‪:‬‬

‫)‪ s = 3 + 5 + 7 + ........ + (2n + 3‬ﺛﻢ اﺡﺴﺐ ‪ un‬ﺑﺪﻻﻟﺔ ‪n‬‬

‫اﻟﺘﻤﺮﻳﻦ اﻟﺮاﺑﻊ‪:‬‬

‫ﻟﺘﻜﻦ اﻟﺪاﻟﺔ ‪f‬‬

‫اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ اﻟﻤﺠﺎل‬

‫‪ (1‬ادرس ﺕﻐﻴﺮات اﻟﺪاﻟﺔ ‪ f‬ﻋﻠﻰ‬

‫‪(2‬‬

‫) ‪ (un‬و‬

‫) ‪(vn‬‬

‫]‪[0, 2‬‬ ‫]‪[0, 2‬‬

‫‪2x +1‬‬ ‫ب‪:‬‬ ‫‪x +1‬‬

‫= )‪f ( x‬‬

‫ﺛﻢ ﺑﻴﻦ ان ]‪f ([ 0, 2]) ⊂ [ 0, 2‬‬

‫ﻣﺘﺘﺎﻟﻴﺘﻴﻦ ﻋﺪدﻳﺘﻴﻦ ﻣﻌﺮﻓﺘﻴﻦ ﻋﻠﻰ ` ` ب‪ u0 = 1, un +1 = f (un ) :‬و ) ‪v0 = 2, vn +1 = f (vn‬‬

‫ﺑﻴﻦ ان ﻟﻜﻞ ` ∈ ‪ 1 ≤ vn ≤ 2 : n‬و ‪vn +1 ≤ vn‬‬ ‫ﺑﻴﻦ ان ﻟﻜﻞ ` ∈ ‪ 1 ≤ un ≤ 2 : n‬و ‪un ≤ un +1‬‬ ‫‪vn − un‬‬ ‫‪ (3‬اﺛﺒﺚ ان ﻟﻜﻞ ` ∈ ‪: n‬‬ ‫= ‪vn +1 − un +1‬‬ ‫)‪(vn + 1)(un + 1‬‬ ‫واﺱﺘﻨﺘﺞ ان ﻟﻜﻞ ` ∈ ‪: n‬‬

‫‪vn − un ≥ 0‬‬

‫و‬

‫‪1‬‬ ‫) ‪vn +1 − un +1 ≤ (vn − un‬‬ ‫‪4‬‬

‫‪n‬‬

‫‪1‬‬ ‫‪ , vn − un ≤  ‬ﻟﻜﻞ ` ∈ ‪n‬‬ ‫‪ (4‬اﺱﺘﻨﺘﺞ ان‪:‬‬ ‫‪4‬‬ ‫ﺑﻴﻦ ان اﻟﻤﺘﺘﺎﻟﻴﺘﻴﻦ ) ‪ (un‬و ) ‪ (vn‬ﻣﺘﻘﺎرﺑﺘﻴﻦ وﻟﻬﻤﺎ ﻧﻔﺲ اﻟﻨﻬﺎﻳﺔ ‪ α‬ﺛﻢ ﺡﺪد ‪α‬‬ ‫اﻟﺘﻤﺮﻳﻦ اﻟﺨﺎﻣﺲ‪:‬‬

‫‪u +v‬‬ ‫‪v0 = 3, vn +1 = n +1 n‬‬ ‫‪2‬‬

‫‪u + vn‬‬ ‫‪ u0 = 3, un +1 = n‬و‬ ‫) ‪ (un‬و ) ‪ (vn‬ﻣﺘﺘﺎﻟﻴﺘﻴﻦ ﻣﻌﺮﻓﺘﻴﻦ ب‪:‬‬ ‫‪2‬‬ ‫‪ (1‬اﺡﺴﺐ ‪u1 , v1 , u2 , v2‬‬ ‫‪1‬‬ ‫ﺛﻢ اﺡﺴﺐ ) ‪ ( wn‬ﺑﺪﻻﻟﺔ ‪ n‬ﺛﻢ اﺱﺘﻨﺘﺞ ان‪ vn ≥ un :‬ﺛﻢ ﺡﺪد ‪lim wn‬‬ ‫ﺑﻴﻦ ان اﻟﻤﺘﺘﺎﻟﻴﺔ ) ‪ ( wn‬هﻨﺪﺱﻴﺔ اﺱﺎﺱﻬﺎ‬ ‫‪ (2‬ﻧﻀﻊ ‪wn = vn − un‬‬ ‫∞→ ‪n‬‬ ‫‪4‬‬ ‫‪ (3‬ﺑﻴﻦ ان ) ‪ (un‬ﺕﺰاﻳﺪﻳﺔ وان ) ‪ (vn‬ﺕﻨﺎﻗﺼﻴﺔ ﺛﻢ اﺱﺘﻨﺘﺞ ان اﻟﻤﺘﺘﺎﻟﻴﺘﻴﻦ ﻣﺘﻘﺎرﺑﺘﻴﻦ وﻟﻬﻤﺎ ﻧﻔﺲ اﻟﻨﻬﺎﻳﺔ‬ ‫‪u + 2vn‬‬ ‫اﻋﺪاد‪:‬ﺑﻮﻏﺎﺑﻲ ﺥﻠﻴﻞ‬ ‫‪ tn = n‬ﺑﻴﻦ ان اﻟﻤﺘﺘﺎﻟﻴﺔ ) ‪ (tn‬ﺛﺎﺑﺘﺔ واﺱﺘﻨﺘﺞ ﻧﻬﺎﻳﺔ ) ‪ (un‬و ) ‪(vn‬‬ ‫ﻧﻀﻊ‬ ‫‪3‬‬ ‫اﷲ وﻟﻲ اﻟﺘﻮﻓﻴﻖ‬ ‫ﺱﻴﺎﺥﺪ ﺑﻌﻴﻦ اﻻﻋﺘﺒﺎر اﻟﻜﺘﺎﺑﺔ اﻟﻮاﺿﺤﺔ و اﻟﺘﻨﻈﻴﻢ اﻟﺠﻴﺪ ﻟﻠﻮرﻗﺔ‬

‫‪http://arabmaths.ift.fr‬‬

Related Documents

S-exp-ii Math Devoir S1 8
October 2019 7
Math Devoir 8
April 2020 14
S-exp-ii Math Devoir S1 6
October 2019 9
S-exp-i Math Devoir S1 1
October 2019 14
S-exp-ii Math Devoir S1 5
October 2019 15
S-exp-ii Math Devoir S1 11
October 2019 15

More Documents from "Ihsan Mokhlisse"

Tajribi Math Sx (39)
April 2020 6
Solutions 1
November 2019 4
I04pm1e
November 2019 3
Tdmeca2
November 2019 2
Tdmeca4
November 2019 2
M026m1e_2
November 2019 5