ﻓﺮض آﺘﺎﺑﻲ ﻓﻲ اﻟﺮﻳﺎﺿﻴﺎت 1
ﺛﺎﻧﻮﻳﺔ اﻻﻣﻴﺮ ﻣﻮﻻي اﻟﺮﺷﻴﺪ -ﻣﻴﺪﻟﺖ اﻟﺘﻤﺮﻳﻦ اﻻول: ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ fاﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ
[∞I = [1, +
2ﺑﺎك 4+3
اﻟﻤﺪة 2:س
ﺑﻤﺎ ﻳﻠﻲf ( x) = x − 2 x :
(1ﺑﻴﻦ ان fداﻟﺔ ﺕﻘﺎﺑﻠﻴﺔ ﻣﻦ Iﻧﺤﻮ ﻣﺠﺎل Jﻳﺘﻢ ﺕﺤﺪﻳﺪﻩ
(2ﺡﺪد )f −1 (0 (3اﺡﺴﺐ ﻟﻜﻞ f −1 ( x) : x ∈ J اﻟﺘﻤﺮﻳﻦ اﻟﺜﺎﻧﻲ:
1 = u0 = 0, un +1 ﻟﻜﻞ ﻋﺪد ﻃﺒﻴﻌﻲ n ﻟﺘﻜﻦ اﻟﻤﺘﺘﺎﻟﻴﺔ اﻟﻤﻌﺮﻓﺔ ب: 2 − un واآﺘﺒﻬﺎ ﻋﻠﻰ ﺷﻜﻞ آﺴﻮر ﻣﺨﺘﺰﻟﺔ (1اﺡﺴﺐ اﻻﻋﺪاد u1 , u2 , u3 n (2ﻗﺎرن ﺕﺒﺎﻋﺎ اﻟﺤﺪود اﻻرﺑﻌﺔ اﻻوﻟﻰ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ) (unﻣﻊ اﻟﺤﺪود اﻻرﺑﻌﺔ اﻻوﻟﻰ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ) ( wnاﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ ` ب: n +1 (3 (3ﺑﺎﺱﺘﻌﻤﺎل اﺱﺘﺪﻻل ﺑﺎﻟﺘﺮﺝﻊ اﺛﺒﺖ ان∀n ∈ `, wn = un :
= wn
اﻟﺘﻤﺮﻳﻦ اﻟﺘﺎﻟﺖ:
ﻧﻌﺘﺒﺮ اﻟﻤﺘﺘﺎﻟﻴﺔ ) (unاﻟﻤﻌﺮﻓﺔ آﻤﺎ ﻳﻠﻲu0 = 1, un +1 = un + 2n + 3 : (1ادرس رﺕﺎﺑﺔ اﻟﻤﺘﺘﺎﻟﻴﺔ ) (un (2ﺑﺮهﻦ ان ’ ∀n ∈ `, un 〉 n :ﻣﺎ هﻲ ﻧﻬﺎﻳﺔ اﻟﻤﺘﺘﺎﻟﻴﺔ ) (un؟ 2
(3اﺡﺴﺐ اﻟﻤﺠﻤﻮع :
) s = 3 + 5 + 7 + ........ + (2n + 3ﺛﻢ اﺡﺴﺐ unﺑﺪﻻﻟﺔ n
اﻟﺘﻤﺮﻳﻦ اﻟﺮاﺑﻊ:
ﻟﺘﻜﻦ اﻟﺪاﻟﺔ f
اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ اﻟﻤﺠﺎل
(1ادرس ﺕﻐﻴﺮات اﻟﺪاﻟﺔ fﻋﻠﻰ
(2
) (unو
) (vn
][0, 2 ][0, 2
2x +1 ب: x +1
= )f ( x
ﺛﻢ ﺑﻴﻦ ان ]f ([ 0, 2]) ⊂ [ 0, 2
ﻣﺘﺘﺎﻟﻴﺘﻴﻦ ﻋﺪدﻳﺘﻴﻦ ﻣﻌﺮﻓﺘﻴﻦ ﻋﻠﻰ ` ` ب u0 = 1, un +1 = f (un ) :و ) v0 = 2, vn +1 = f (vn
ﺑﻴﻦ ان ﻟﻜﻞ ` ∈ 1 ≤ vn ≤ 2 : nو vn +1 ≤ vn ﺑﻴﻦ ان ﻟﻜﻞ ` ∈ 1 ≤ un ≤ 2 : nو un ≤ un +1 vn − un (3اﺛﺒﺚ ان ﻟﻜﻞ ` ∈ : n = vn +1 − un +1 )(vn + 1)(un + 1 واﺱﺘﻨﺘﺞ ان ﻟﻜﻞ ` ∈ : n
vn − un ≥ 0
و
1 ) vn +1 − un +1 ≤ (vn − un 4
n
1 , vn − un ≤ ﻟﻜﻞ ` ∈ n (4اﺱﺘﻨﺘﺞ ان: 4 ﺑﻴﻦ ان اﻟﻤﺘﺘﺎﻟﻴﺘﻴﻦ ) (unو ) (vnﻣﺘﻘﺎرﺑﺘﻴﻦ وﻟﻬﻤﺎ ﻧﻔﺲ اﻟﻨﻬﺎﻳﺔ αﺛﻢ ﺡﺪد α اﻟﺘﻤﺮﻳﻦ اﻟﺨﺎﻣﺲ:
u +v v0 = 3, vn +1 = n +1 n 2
u + vn u0 = 3, un +1 = nو ) (unو ) (vnﻣﺘﺘﺎﻟﻴﺘﻴﻦ ﻣﻌﺮﻓﺘﻴﻦ ب: 2 (1اﺡﺴﺐ u1 , v1 , u2 , v2 1 ﺛﻢ اﺡﺴﺐ ) ( wnﺑﺪﻻﻟﺔ nﺛﻢ اﺱﺘﻨﺘﺞ ان vn ≥ un :ﺛﻢ ﺡﺪد lim wn ﺑﻴﻦ ان اﻟﻤﺘﺘﺎﻟﻴﺔ ) ( wnهﻨﺪﺱﻴﺔ اﺱﺎﺱﻬﺎ (2ﻧﻀﻊ wn = vn − un ∞→ n 4 (3ﺑﻴﻦ ان ) (unﺕﺰاﻳﺪﻳﺔ وان ) (vnﺕﻨﺎﻗﺼﻴﺔ ﺛﻢ اﺱﺘﻨﺘﺞ ان اﻟﻤﺘﺘﺎﻟﻴﺘﻴﻦ ﻣﺘﻘﺎرﺑﺘﻴﻦ وﻟﻬﻤﺎ ﻧﻔﺲ اﻟﻨﻬﺎﻳﺔ u + 2vn اﻋﺪاد:ﺑﻮﻏﺎﺑﻲ ﺥﻠﻴﻞ tn = nﺑﻴﻦ ان اﻟﻤﺘﺘﺎﻟﻴﺔ ) (tnﺛﺎﺑﺘﺔ واﺱﺘﻨﺘﺞ ﻧﻬﺎﻳﺔ ) (unو ) (vn ﻧﻀﻊ 3 اﷲ وﻟﻲ اﻟﺘﻮﻓﻴﻖ ﺱﻴﺎﺥﺪ ﺑﻌﻴﻦ اﻻﻋﺘﺒﺎر اﻟﻜﺘﺎﺑﺔ اﻟﻮاﺿﺤﺔ و اﻟﺘﻨﻈﻴﻢ اﻟﺠﻴﺪ ﻟﻠﻮرﻗﺔ
http://arabmaths.ift.fr