S-exp-ii Math Cour De Log

  • Uploaded by: Ihsan Mokhlisse
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View S-exp-ii Math Cour De Log as PDF for free.

More details

  • Words: 4,498
  • Pages: 12
‫א‪ ‬‬

‫א‪‬א‪‬א‪ ‬‬

‫‪ -I‬اﻟﺪوال اﻷﺻﻠﻴﺔ ‪:‬‬ ‫‪ -1‬ﻣﺜﺎل ‪ :‬ﻟﺘﻜﻦ ‪ F‬اﻟﺪاﻟﺔ اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ \ ﺑﻤﺎ ﻳﻠﻲ ‪:‬‬

‫)‬

‫أ‪ -‬أﺣﺴﺐ‬

‫(‬

‫‪. F (x ) = Arc tan x + 1‬‬ ‫‪2‬‬

‫‪2x‬‬ ‫‪x + 2x 2 + 2‬‬

‫وﻟﺘﻜﻦ ‪ f‬اﻟﺪاﻟﺔ اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ \ ﺑﻤﺎ ﻳﻠﻲ ‪:‬‬

‫)‬

‫א‪W‬א‪ ‬‬

‫‪4‬‬

‫‪ F ′ ( x‬ﻟﻜﻞ ‪ x‬ﻣﻦ \ ‪.‬‬

‫ب‪ -‬ﻟﺘﻜﻦ ‪ G‬داﻟﺔ ﻋﺪدﻳﺔ ﻣﻌﺮﻓﺔ ﻋﻠﻰ \ ﺑﻤﺎ ﻳﻠﻲ ‪:‬‬

‫)‬

‫= ) ‪f (x‬‬

‫(‬

‫‪ G (x ) = Arc tan x 2 + 1 + α‬ﺣﻴﺚ \∈ ‪. α‬‬

‫أﺣﺴﺐ ) ‪. G ′ ( x‬ﻣﺎذا ﺗﺴﺘﻨﺘﺞ؟‬

‫ﺟـ‪ -‬ﺣﺪد اﻟﺪاﻟﺔ اﻷﺻﻠﻴﺔ ‪ G‬ﻟﻠﺪاﻟﺔ ‪ f‬ﻋﻠﻰ \ اﻟﺘﻲ ﺗﺤﻘﻖ ‪. G ( 0 ) = π :‬‬

‫اﻟﺤﻞ ‪:‬‬

‫‪′‬‬ ‫)‪x + 1‬‬ ‫(‬ ‫‪2x‬‬ ‫= ) )‪. F ′(x ) = ( Arc tan ( x + 1‬‬ ‫=‬ ‫أ‪ -‬ﻟﻴﻜﻦ \ ∈ ‪ ، x‬ﻟﺪﻳﻨﺎ ‪= f ( x ) :‬‬ ‫‪+‬‬ ‫‪+‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫)‪1 + ( x + 1‬‬ ‫‪′‬‬ ‫‪′‬‬ ‫ب‪ -‬ﻟﻴﻜﻦ \ ∈ ‪ ، x‬ﻟﺪﻳﻨﺎ ‪. G ′(x ) = ( Arc tan ( x + 1) + α ) = ( F ( x ) + α ) = F ′ ( x ) = f ( x ) :‬‬ ‫‪2‬‬

‫‪4‬‬

‫‪2‬‬

‫‪2‬‬

‫‪′‬‬

‫‪2‬‬

‫‪2‬‬

‫‪2‬‬

‫ﺟـ‪ -‬ﻟﺪﻳﻨﺎ‬

‫)‬

‫‪ . ∀x ∈ \ : F ′(x ) = f ( x‬ﻧﻘﻮل إن ‪ F‬داﻟﺔ أﺻﻠﻴﺔ ﻟﻠﺪاﻟﺔ ‪ f‬ﻋﻠﻰ \ ‪.‬‬

‫ﻟﺘﻜﻦ ‪ G‬داﻟﺔ أﺻﻠﻴﺔ ﻟﻠﺪاﻟﺔ ‪ f‬ﻋﻠﻰ \ ‪ .‬إذن ‪:‬‬

‫‪∀x ∈ \ : (G − F )′ ( x ) =G ′ ( x ) − F ′ ( x ) = f ( x ) − f ( x ) = 0‬‬

‫وﻣﻨﻩ ﻓﺈن ‪:‬‬

‫‪. ∃α ∈ \ / ∀x ∈ \ : G ( x ) − F ( x ) = α‬‬

‫أي ‪:‬‬

‫‪. ∃α ∈ \ / ∀x ∈ \ : G ( x ) = F ( x ) + α‬‬

‫وﺑﻤﺎ أن ‪ ، G ( 0 ) = π :‬ﻓﺈن ‪ ، F ( 0 ) + α = π :‬وﺑﻨﺎءا ﻋﻠﻴﻩ ﻧﺠﺪ ‪:‬‬ ‫‪3π‬‬ ‫‪4‬‬

‫=‬

‫‪π‬‬

‫‪. Arc tan (1) + α = π ⇒ α = π −‬‬

‫‪4‬‬ ‫وﺑﺎﻟﺘﺎﻟﻲ ﻓﺈن اﻟﺪاﻟﺔ اﻷﺻﻠﻴﺔ ‪ G‬ﻟﻠﺪاﻟﺔ ‪ f‬ﻋﻠﻰ \ اﻟﺘﻲ ﺗﺤﻘﻖ ‪ G ( 0 ) = π :‬هﻲ اﻟﺪاﻟﺔ اﻟﻤﻌﺮﻓﺔ آﻤﺎ‬ ‫ﻳﻠﻲ ‪:‬‬

‫‪-2‬‬

‫→ \ ‪:‬‬

‫\‬ ‫‪3π‬‬ ‫‪4‬‬

‫أ‪ -‬ﺗﻌﺮﻳﻒ ‪:‬‬

‫)‬

‫(‬

‫‪6 Arc tan x 2 + 1 +‬‬

‫‪G‬‬

‫‪x‬‬

‫ﻟﺘﻜﻦ ‪ f‬داﻟﺔ ﻋﺪدﻳﺔ ﻣﻌﺮﻓﺔ ﻋﻠﻰ ﻣﺠﺎل ‪ . I‬ﻧﻘﻮل إن ‪ F‬داﻟﺔ أﺻﻠﻴﺔ ﻟﻠﺪاﻟﺔ ‪ f‬ﻋﻠﻰ ‪ I‬؛‬ ‫إذا آﺎﻧﺖ ‪ F‬ﻗﺎﺑﻠﺔ ﻟﻺﺷﺘﻘﺎق ﻋﻠﻰ ‪ I‬وآﺎن ﻟﻜﻞ ‪ x‬ﻣﻦ ‪F ′ ( x ) = x : I‬‬ ‫ﻣﻻﺣﻈﺔ ‪ :‬إذا آﺎﻧﺖ ‪ F‬داﻟﺔ أﺻﻠﻴﺔ ﻟﺪاﻟﺔ ‪ f‬ﻋﻠﻰ ﻣﺠﺎل ‪ ، I‬ﻓﺈن ‪ f‬داﻟﺔ داﻟﺔ ﻣﺘﺼﻠﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ‪. I‬‬

‫ب‪ -‬ﻣﺜﺎل ‪:‬‬

‫‪ -1‬ﺣﺪد داﻟﺔ أﺻﻠﻴﺔ ﻟﻠﺪاﻟﺔ ‪ f‬ﻋﻠﻰ \ ‪:‬‬

‫‪(a‬‬

‫‪f (x ) = x‬‬

‫; ‪(b‬‬

‫‪f (x ) = x + 1‬‬ ‫‪2‬‬

‫‪f (x ) = −5x 3 + 8x + 2 (d ; f (x ) = 7x 4 (c‬‬ ‫‪1‬‬ ‫‪. f (x ) = 2‬‬ ‫‪ -2‬ﺣﺪد داﻟﺔ أﺻﻠﻴﺔ ﻟﻠﺪاﻟﺔ ‪ f‬ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡ ∞‪ ⎤⎦ 0, +‬ﻣﻊ ‪:‬‬ ‫‪x‬‬ ‫ﻣﺤﻤﺪ اﻟﺤﻴﺎن‬

‫‪-1-‬‬

‫اﻟﺜﺎﻧﻴﺔ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬

‫‪12‬‬

‫‪ -3‬أ‪ -‬ﺧﺎﺻﻴﺔ ﻣﻘﺒﻮﻟﺔ ‪:‬‬ ‫آﻞ داﻟﺔ ﻣﺘﺼﻠﺔ ﻋﻠﻰ ﻣﺠﺎل ‪ I‬؛ ﺗﻘﺒﻞ داﻟﺔ أﺻﻠﻴﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ‪. I‬‬

‫ب‪ -‬ﻣﻼﺣﻈﺔ ‪:‬‬

‫ﻟﺘﻜﻦ ‪ f‬داﻟﺔ ﻣﺘﺼﻠﺔ ﻋﻠﻰ ﻣﺠﺎل ‪ I‬وﻟﺘﻜﻦ ‪ F‬داﻟﺔ أﺻﻠﻴﺔ ﻟﻬﺎ ﻋﻠﻰ ‪ . I‬اﻟﺪوال‬ ‫اﻷﺻﻠﻴﺔ ﻟﻠﺪاﻟﺔ ‪ f‬ﻋﻠﻰ ‪ I‬هﻲ اﻟﺪوال ‪ G‬اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ ‪ I‬ﺑﻤﺎ ﻳﻠﻲ ‪:‬‬ ‫‪ ∀x ∈ I : G (x ) = F (x ) + α‬ﺣﻴﺚ ‪. α ∈ \ :‬‬ ‫ﺟـ‪ -‬ﺧﺎﺻﻴﺔ ‪:‬‬

‫ﻟﺘﻜﻦ ‪ f‬داﻟﺔ ﻣﺘﺼﻠﺔ ﻋﻠﻰ ﻣﺠﺎل ‪ I‬وﻟﺘﻜﻦ ‪ F‬داﻟﺔ أﺻﻠﻴﺔ ﻟﻬﺎ ﻋﻠﻰ ‪ I‬؛ وﻟﻴﻜﻦ ‪ x 0 ∈ I‬و \∈ ‪. y 0‬‬

‫) (‬

‫ﺗﻮﺟﺪ داﻟﺔ أﺻﻠﻴﺔ وﺣﻴﺪة ‪ G‬ﻟﻠﺪاﻟﺔ ‪ f‬ﻋﻠﻰ اﻟﻤﺠﺎل ‪ I‬ﺑﺤﻴﺚ ‪. G x 0 = y 0 :‬‬ ‫د‪ -‬ﻣﺜﺎل‪ : 1‬ﻟﺘﻜﻦ ‪ f‬اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ \ ﺑﻤﺎ ﻳﻠﻲ ‪. f (x ) = 3x 2 − 4x − 5 :‬‬ ‫‪ -1‬ﺣﺪد اﻟﺪوال اﻷﺻﻠﻴﺔ ‪ G‬ﻟﻠﺪاﻟﺔ ‪ f‬ﻋﻠﻰ \ ‪.‬‬ ‫‪ -2‬ﺣﺪد اﻟﺪاﻟﺔ اﻷﺻﻠﻴﺔ ‪ G‬ﻟﻠﺪاﻟﺔ ‪ f‬ﻋﻠﻰ \ اﻟﺘﻲ ﺗﺤﻘﻖ ‪. G (1) = 9 :‬‬ ‫ﻣﺜﺎل ‪ : 2‬ﺣﺪد داﻟﺔ أﺻﻠﻴﺔ ﻟﻠﺪاﻟﺔ‬

‫‪2x‬‬

‫‪2‬‬

‫) ‪(1+ x‬‬ ‫‪2‬‬

‫= ) ‪. f : x 6 f (x‬‬

‫ﻣﺜﺎل ‪ : 3‬ﻟﺘﻜﻦ ‪ f‬اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ⎦⎤‪ I = ⎡⎣ −1,8‬ﺑﻤﺎ ﻳﻠﻲ ‪:‬‬ ‫‪2x 3 + 8x 2 + 8x − 3‬‬ ‫= ) ‪. f (x‬‬ ‫‪x 2 + 4x + 4‬‬ ‫‪ -1‬ﺑﻴﻦ أن ‪:‬‬

‫‪3‬‬ ‫‪2‬‬ ‫)‪( x + 2‬‬

‫‪: f ( x ) = 2x −‬‬

‫‪. ∀x ∈ I‬‬

‫‪ -2‬أ‪ -‬اﺱﺘﻨﺘﺞ داﻟﺔ أﺻﻠﻴﺔ ‪ F‬ﻟﻠﺪاﻟﺔ ‪ f‬ﻋﻠﻰ اﻟﻤﺠﺎل ‪. I‬‬ ‫ب‪ -‬ﺣﺪد اﻟﺪاﻟﺔ اﻷﺻﻠﻴﺔ ‪ G‬ﻟﻠﺪاﻟﺔ ‪ f‬ﻋﻠﻰ اﻟﻤﺠﺎل ‪ I‬اﻟﺘﻲ ﺗﺤﻘﻖ ‪. G ( 0 ) = 2‬‬

‫‪ .4‬ﺟﺪول ﻟﻠﺪوال اﻷﺻﻠﻴﺔ ﻟﻠﺪوال اﻻﻋﺘﻴﺎدﻳﺔ ‪:‬‬

‫) أﻧﻈﺮ اﻟﻤﻄﺒﻮع اﻟﻤﺮﻓﻖ (‬

‫‪Logarithme Népérien :‬‬

‫‪ -II‬داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ اﻟﻨﺒﻴﺮي ‪:‬‬ ‫‪ -1‬ﺗﻌﺮﻳﻒ ‪:‬‬

‫‪1‬‬

‫اﻟﺪاﻟﺔ اﻷﺻﻠﻴﺔ ﻟﻠﺪاﻟﺔ ‪ x 6‬ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡ ∞‪ ⎤⎦ 0, +‬واﻟﺘﻲ ﺗﻨﻌﺪم ﻓﻲ ‪ 1‬ﺗﺴﻤﻰ داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ اﻟﻨﺒﻴﺮي‬ ‫‪x‬‬ ‫وﻳﺮﻣﺰ ﻟﻬﺎ ﺑﺎﻟﺮﻣﺰ ‪ ln‬أو ‪. Log‬‬ ‫ﻣﻼﺣﻈﺘﻴﻦ ‪:‬‬

‫أ‪ -‬ﻳﻜﻮن ‪ ln x‬ﻣﻌﺮﻓﺎ إذا وﻓﻘﻁ إذا آﺎن ‪. x > 0‬‬

‫ب‪. ln1 = 0 -‬‬

‫‪ -2‬ﺧﺎﺻﻴﺎت ‪:‬‬ ‫أ‪ -‬ﺧﺎﺻﻴﺔ أﺳﺎﺳﻴﺔ ‪:‬‬

‫) ‪∀a ∈ ⎤⎦ 0, +∞ ⎡⎣ , ∀b ∈ ⎤⎦ 0, +∞ ⎡⎣ : ln (ab ) = ln (a ) + ln (b‬‬

‫ﺑﺮهﺎن ‪ :‬ﻟﻴﻜﻦ ‪ a > 0‬و ‪ . b > 0‬ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ‪ F‬اﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ ‪:‬‬ ‫) ‪∀x ∈ ⎤⎦ 0, +∞ ⎡⎣ : F ( x ) = ln (ax‬‬ ‫ﻟﺪﻳﻨﺎ ‪ x 6 ax :‬داﻟﺔ ﺣﺪودﻳﺔ ‪ ،‬ﻓﻬﻲ ﻗﺎﺑﻠﺔ ﻟﻻﺷﺘﻘﺎق ﻋﻠﻰ \ وﺑﺎﻷﺧﺺ ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡ ∞‪. ⎤⎦ 0, +‬‬ ‫وﻟﺪﻳﻨﺎ ‪ ∀x ∈ ⎤⎦ 0, +∞ ⎡⎣ : ax > 0 :‬و ‪ ln‬ﻗﺎﺑﻠﺔ ﻟﻻﺷﺘﻘﺎق ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡ ∞‪. ⎤⎦ 0, +‬‬ ‫إذن ‪ F‬ﻗﺎﺑﻠﺔ ﻟﻻﺷﺘﻘﺎق ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡ ∞‪ ⎤⎦ 0, +‬وﻟﺪﻳﻨﺎ ‪:‬‬ ‫ﻣﺤﻤﺪ اﻟﺤﻴﺎن‬

‫‪-2-‬‬

‫اﻟﺜﺎﻧﻴﺔ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬

‫‪12‬‬

‫‪∀x ∈ ⎤⎦ 0, +∞ ⎡⎣ : F ′ ( x ) = ( ln (ax ) )′ = (ax )′ × ln ′ (ax ) = a × 1 = 1‬‬ ‫‪x‬‬

‫‪ax‬‬

‫‪∈ ⎤⎥0, +∞ ⎡⎢ : ( F − ln )′ ( x ) = F ′ ( x ) − ln ′ ( x ) = 1 − 1 = 0‬‬

‫وﻣﻨﻩ ﻓﺈن ‪:‬‬

‫‪x‬‬

‫‪α‬‬

‫ﺑﺤﻴﺚ ‪:‬‬

‫) ‪F (1) = ln (a‬‬

‫‪ ،‬ﻓﺈن ‪:‬‬

‫إذن ﻳﻮﺟﺪ ﻋﺪد ﺣﻘﻴﻘﻲ‬ ‫وﺑﻤﺎ أن ‪:‬‬

‫⎣‬

‫‪x‬‬

‫‪∀x ∈ ⎤⎥0, +∞ ⎡⎢ : F ( x ) − ln ( x ) = α‬‬ ‫⎣‬

‫) ‪α = ln (a ) − ln (1) = ln (a‬‬

‫) ‪F ( x ) − ln ( x ) = ln (a‬‬

‫وﺑﻬﺬا ﻧﺠﺪ ‪:‬‬

‫⎦‬

‫⎦‬

‫‪:‬‬

‫‪.‬‬

‫أي ‪: ln (ax ) − ln ( x ) = ln (a ) :‬‬ ‫وﺑﺎﻟﺘﺎﻟﻲ ﻓﺈن ‪ . ∀x ∈ ⎤ 0, +∞ ⎡ : ln (ax ) = ln (a ) + ln ( x ) :‬ﻧﻀﻊ‬ ‫⎦‬ ‫⎣‬ ‫) ‪ln (ab ) = ln (a ) + ln (b‬‬ ‫‪.‬‬

‫ﻟﻴﻜﻦ ‪ a‬و ‪ b‬ﻣﻦ ⎣⎡ ∞‪ . ⎤⎦ 0, +‬ﺑﻴﻦ أن ‪:‬‬ ‫ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ ‪:‬‬ ‫⎞‪⎛1‬‬ ‫⎞ ‪⎛a‬‬ ‫‪ln ⎜ ⎟ = ln a − ln b (ii ; ln ⎜ ⎟ = − ln a (i‬‬ ‫⎠ ‪⎝b‬‬ ‫⎠ ‪⎝a‬‬ ‫ب‪ -‬ﻧﺘﺎﺋﺞ ‪:‬‬

‫‪ .1‬ﻟﻜﻞ ‪ a‬و ‪ b‬ﻣﻦ ⎣⎡ ∞‪ ⎤⎦ 0, +‬وﻟﻜﻞ ` ∈ ‪ n‬؛ ﻟﺪﻳﻨﺎ ‪:‬‬

‫‪.‬‬

‫‪.‬‬

‫⎣⎡ ∞‪∀x ∈ ⎤⎦ 0, +‬‬

‫⎣⎡ ∞‪∀x ∈ ⎤⎦ 0, +‬‬

‫‪ ، x = b‬ﻓﻨﺠﺪ ‪:‬‬

‫) (‬

‫‪ln a 2 = 2 ln a (iii‬‬

‫;‬

‫‪ln(ab ) = ln a + ln b‬‬

‫⎞‪⎛1‬‬ ‫‪ln ⎜ ⎟ = − ln a‬‬ ‫⎠ ‪⎝a‬‬

‫⎞ ‪⎛a‬‬ ‫‪ln ⎜ ⎟ = ln a − ln b‬‬ ‫⎠ ‪⎝b‬‬

‫‪ln (a n ) = n ln a‬‬

‫) (‬

‫‪ .2‬ﻟﻜﻞ _∈ ‪ r‬وﻟﻜﻞ ⎣⎡ ∞‪ a ∈ ⎤⎦ 0, +‬؛ ﻟﺪﻳﻨﺎ ‪:‬‬ ‫ﻣﺜﺎل ‪:‬‬

‫‪. ∀x‬‬

‫‪. ln a r = r ln a‬‬

‫ﻧﻀﻊ ‪ a = ln 2 :‬و ‪. b = ln 5‬‬ ‫‪ .1‬ﺣﺪد ﺑﺪﻻﻟﺔ ‪ a‬و ‪ b‬ﻣﺎ ﻳﻠﻲ ‪:‬‬

‫‪(i‬‬ ‫‪(iii‬‬ ‫‪ .2‬ﺣﺪد ﺑﺪﻻﻟﺔ ‪a‬‬

‫‪ -3‬دراﺱﺔ اﻟﺪاﻟﺔ ‪ln‬‬

‫;‬

‫‪ln10‬‬

‫⎠⎟⎞ ‪( 5 ) − ln ⎛⎜⎝ 12‬‬ ‫و ‪ b‬ﻣﺎ ﻳﻠﻲ ‪ln ( 2 ) :‬‬

‫⎞ ‪⎛ 4‬‬ ‫⎟‬ ‫⎠ ‪⎝ 125‬‬

‫⎜ ‪ln‬‬

‫‪(ii‬‬

‫‪ln ⎛⎜ 2 + 2 ⎞⎟ + ln ⎛⎜ 2 − 2 ⎞⎟ (iv ; ln‬‬ ‫‪3‬‬

‫⎠‬

‫و‬

‫⎝‬

‫⎟⎞ ‪ln ⎛⎜ 3 100‬‬ ‫⎠‬

‫⎝‬

‫⎠‬

‫⎝‬

‫‪.‬‬

‫‪:‬‬

‫ﻣﺠﻤﻮﻋﺔ ﺗﻌﺮﻳﻒ اﻟﺪاﻟﺔ ‪ ln‬هﻲ ‪. D ln = ⎤⎦ 0, +∞ ⎡⎣ :‬‬ ‫أ‪ -‬اﻟﻨﻬﺎﻳﺎت ‪:‬‬ ‫ﻟﻨﺒﻴﻦ أن اﻟﺪاﻟﺔ ‪ ln‬ﻻ ﺗﻘﺒﻞ ﻧﻬﺎﻳﺔ ﻣﻨﺘﻬﻴﺔ ﻋﻨﺪ اﻻﻧﻬﺎﻳﺔ ‪ :‬ﺑﺎﻟﺨﻠﻒ ‪ ،‬ﻧﻔﺘﺮض أن ‪lim ln ( x ) = l :‬‬

‫∞‪x →+‬‬

‫ﺣﻴﺚ \ ∈ ‪ . l‬ﻧﻌﻠﻢ أن ‪ ، ln ( 2x ) = ln ( 2 ) + ln ( x ) :‬ﻋﻨﺪﻣﺎ ﻳﺆول ‪ ، x‬ﻧﺠﺪ ‪l = ln ( 2 ) + l :‬‬

‫إذن ‪ ln ( 2 ) = 0 :‬وهﺬا ﺗﻨﺎﻗﺾ ‪ .‬إذن‪ lim ln ( x ) :‬ﻏﻴﺮ ﻣﻨﺘﻬﻴﺔ ‪...‬‬ ‫∞‪x →+‬‬

‫ﺧﺎﺻﻴﺔ ﻣﻘﺒﻮﻟﺔ ‪:‬‬

‫ﻣﺤﻤﺪ اﻟﺤﻴﺎن‬

‫∞‪lim ln x = +‬‬

‫∞‪x →+‬‬

‫‪-3-‬‬

‫اﻟﺜﺎﻧﻴﺔ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬

‫‪12‬‬

‫∞‪lim ln x = −‬‬

‫اﺳﺘﻨﺘﺎج ‪:‬‬

‫‪x →0+‬‬

‫‪1‬‬ ‫ﻧﻀﻊ‬ ‫‪x‬‬

‫ب‪ -‬رﺗﺎﺑﺔ اﻟﺪاﻟﺔ ‪ln‬‬

‫⎞‪⎛1‬‬ ‫∞‪− ln t = −‬‬ ‫‪lim+ ln x = t lim‬‬ ‫‪ln‬‬ ‫‪⎜ ⎟ = t lim‬‬ ‫∞‪→+‬‬ ‫‪x →0‬‬ ‫∞‪⎝ t ⎠ →+‬‬

‫∞‪ t → +‬وﻣﻨﻩ ﻓﺈن ‪:‬‬ ‫= ‪ . t‬إذن‬ ‫‪+‬‬ ‫‪x →0‬‬

‫‪:‬‬

‫‪1‬‬ ‫ﻧﻌﻠﻢ أن اﻟﺪاﻟﺔ ‪ ln‬ﻗﺎﺑﻠﺔ ﻟﻺﺷﺘﻘﺎق ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡ ∞‪ ⎤⎦ 0, +‬وﻟﺪﻳﻨﺎ ‪. ∀x ∈ ⎤⎦ 0, +∞ ⎡⎣ : ln ′(x ) = > 0 :‬‬ ‫‪x‬‬ ‫إذن ‪ ln‬ﺗﺰاﻳﺪﻳﺔ ﻗﻄﻌﺎ ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡ ∞‪ ⎤⎦ 0, +‬؛ وﺑﻤﺎ أن ‪ ln‬ﻣﺘﺼﻠﺔ ﻋﻠﻰ [∞‪ ]0, +‬ﻓﺈﻧﻬﺎ ﺗﻘﺎﺑﻞ ﻣﻦ اﻟﻤﺠﺎل‬ ‫⎣⎡ ∞‪ ⎤⎦ 0, +‬ﻧﺤﻮ اﻟﻤﺠﺎل ‪. \ :‬‬

‫وﻣﻨﻩ ﻓﺈن ‪ :‬ﻣﻼﺣﻈﺔ ‪: 1‬‬

‫ﻣﻼﺣﻈﺔ ‪: 2‬‬

‫⎞\ = ⎡‬ ‫⎟‬ ‫⎣⎢‬ ‫⎠‬

‫(‬

‫)‬

‫‪. ⎜⎛ ln ⎤⎦ 0, +∞ ⎡⎣ = ⎤ lim+ ln x , lim ln x‬‬ ‫‪⎥⎦ x →0‬‬ ‫∞‪x →+‬‬ ‫⎝‬

‫‪∀x ∈ ⎤⎦ 0, +∞ ⎡⎣ , ∀y ∈ ⎤⎦ 0, +∞ ⎡⎣ :‬‬ ‫‪ln x < ln y ⇔ x < y‬‬

‫‪ln x = ln y ⇔ x = y‬‬

‫;‬

‫‪∀x ∈ ⎤⎦ 0, +∞ ⎡⎣ , ∀y ∈ ⎤⎦ 0, +∞ ⎡⎣ :‬‬ ‫‪ln x > 0 ⇔ x > 1 ; ln x < 0 ⇔ 0 < x < 1 ; ln x = 0 ⇔ x = 1‬‬

‫ﻣﻼﺣﻈﺔ ‪: 3‬‬ ‫اﻟﻤﻌﺎدﻟﺔ ‪ ln x = 1‬ﺗﻘﺒﻞ ﺣﻻ وﺣﻴﺪا ﻓﻲ اﻟﻤﺠﺎل ⎣⎡ ∞‪ ⎤⎦ 0, +‬ﻳﺮﻣﺰ ﻟﻩ‬

‫ﺑﺎﻟﺮﻣﺰ ‪e . ( ln e = 1) . e‬‬

‫ﻋﺪد ﺣﻘﻴﻘﻲ ﻻ ﺟﺬري ﺑﺤﻴﺚ ‪:‬‬

‫⎞ ‪⎛π‬‬

‫ﻣﺜﺎل ‪ .1 : 1‬ﺣﺪد إﺷﺎرة اﻷﻋﺪاد اﻟﺘﺎﻟﻴﺔ ‪; ln ⎜ ⎟ ; ln(0,99) :‬‬ ‫⎠‪⎝5‬‬ ‫‪ .2‬ﻧﻌﺘﺒﺮ اﻟﻤﻌﺎدﻟﺔ ‪. ( E ) : ln(x − 2) + ln(x − 3) = 0‬‬

‫)‪( 2‬‬

‫‪e  2,718‬‬ ‫‪. ln‬‬

‫أ‪ -‬ﺣﺪد ‪ D‬ﻣﺠﻤﻮﻋﺔ ﺗﻌﺮﻳﻒ اﻟﻤﻌﺎدﻟﺔ ) ‪. ( E‬‬

‫ب‪ -‬ﺣﻞ ﻓﻲ \ اﻟﻤﻌﺎدﻟﺔ ) ‪. ( E‬‬

‫ﺟـ‪ -‬اﺱﺘﻨﺘﺞ ‪ ،‬ﻓﻲ \ ‪ ،‬ﻣﺠﻤﻮﻋﺔ ﺣﻠﻮل اﻟﻤﺘﺮاﺟﺤﺔ‪. ln(x − 2) + ln(x − 3) > 0 :‬‬

‫ﻣﺜﺎل ‪: 2‬‬

‫ﻣﺤﻤﺪ اﻟﺤﻴﺎن‬

‫ﺣﺪد إﺷﺎرة اﻟﻌﺪد اﻟﺤﻘﻴﻘﻲ )‪ ( x − 2 ) ln ( x − 1‬ﺣﻴﺚ ⎣⎡ ∞‪. x ∈ ⎤⎦1, +‬‬

‫‪-4-‬‬

‫اﻟﺜﺎﻧﻴﺔ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬

‫‪12‬‬

‫ﺟـ‪ -‬اﻟﻔﺮوع اﻟﻼﻧﻬﺎﺋﻴﺔ ‪:‬‬ ‫‪ (i‬ﻧﻌﻠﻢ أن ∞‪ . lim+ ln x = −‬إذن‬ ‫‪x →0‬‬

‫) ‪ ( Cln‬ﻳﻘﺒﻞ ﻣﻘﺎرﺑﺎ ﻋﻤﻮدﻳﺎ ﻣﻌﺎدﻟﺘﻩ ‪. x = 0‬‬

‫‪ln x‬‬ ‫‪ (ii‬ﺧﺎﺻﻴﺔ‪= 0 :‬‬ ‫‪x‬‬ ‫ﺑﺮهﺎن ‪ :‬ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ‪ f‬اﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ ‪f : x 6 x − ln x :‬‬ ‫‪1 x −1‬‬ ‫= ‪. ∀x ∈ ⎤⎦ 0, +∞ ⎡⎣ : f ′ ( x ) = 1 −‬‬ ‫ﻟﺪﻳﻨﺎ ‪ Df = ⎤⎦ 0, +∞ ⎡⎣ :‬و‬ ‫‪x‬‬ ‫‪x‬‬ ‫إﺷﺎرة ) ‪ f ′ ( x‬ﻋﻠﻰ اﻟﻤﺠﺎل [∞‪ ]0, +‬هﻲ إﺷﺎرة اﻟﺒﺴﻁ ‪ . x − 1‬وﻣﻨﻩ ﻧﺠﺪ ‪:‬‬ ‫‪lim‬‬ ‫∞‪x →+‬‬

‫إذن ‪ 1‬ﻗﻴﻤﺔ دﻧﻴﺎ ﻣﻄﻠﻘﺔ ﻟﻠﺪاﻟﺔ ‪ f‬ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡ ∞‪. ⎤⎦ 0, +‬‬ ‫وﻣﻨﻩ ﻓﺈن ‪ . ∀t ∈ ⎤⎦ 0, +∞ ⎡⎣ : f (t ) ≥ 1 :‬أي ‪. ∀t ∈ ⎤⎦ 0, +∞ ⎡⎣ : ln (t ) − t ≥ 1 > 0 :‬‬ ‫وﺑﺎﻟﺘﺎﻟﻲ ﻓﺈن ‪ . ∀t ∈ ⎤ 0, +∞ ⎡ : ln t ≥ t :‬و ﻣﻦ أﺟﻞ ‪ ، t = x‬ﻧﺠﺪ ‪:‬‬ ‫⎦‬ ‫⎣‬

‫)(‬

‫‪ln x‬‬ ‫‪2‬‬ ‫≥‬ ‫‪x‬‬ ‫‪x‬‬

‫⇒ ‪≥ x‬‬

‫وﻣﻨﻩ ﻧﺴﺘﻨﺘﺞ أن ‪:‬‬

‫‪⇒ 1 ln x‬‬ ‫‪2‬‬

‫‪2‬‬ ‫‪x‬‬

‫≤‬

‫‪x‬‬

‫≥) ‪( x‬‬

‫‪∀x ∈ ⎤⎦ 0, +∞ ⎡⎣ : ln‬‬

‫‪.‬‬

‫‪ln x‬‬

‫≤ ‪. ∀ x ∈ ⎤⎦1, +∞ ⎡⎣ : 0‬‬ ‫‪x‬‬

‫‪2‬‬ ‫‪ln x‬‬ ‫=‬ ‫‪ lim‬و ‪ ، lim 0 = 0‬ﻓﺈن ‪:‬‬ ‫وﺑﻤﺎ أن ‪= 0 :‬‬ ‫‪0‬‬ ‫‪x →+∞ x‬‬ ‫‪x →+∞ x‬‬ ‫∞‪x →+‬‬

‫‪. lim‬‬

‫وﻣﻨﻩ ﻧﺴﺘﻨﺘﺞ أن اﻟﻤﻨﺤﻨﻰ ) ‪ ( Cln‬ﻳﻘﺒﻞ ﻓﺮﻋﺎ ﺷﻠﺠﻤﻴﺎ ﺑﺠﻮار ∞‪ +‬؛ اﺗﺠﺎهﻩ ﻣﺤﻮر اﻷﻓﺎﺻﻴﻞ ‪.‬‬ ‫د‪ -‬ﺗﻘﻌﺮ اﻟﻤﻨﺤﻨﻰ ) ‪: ( Cln‬‬

‫‪⎛ 1 ⎞′‬‬ ‫‪1‬‬ ‫⎤‬ ‫⎡‬ ‫ﻟﺪﻳﻨﺎ ‪. ∀x ∈ ⎦ 0, +∞ ⎣ : ln n ′′ ( x ) = ⎜ ⎟ = − 2 < 0 :‬‬ ‫‪x‬‬ ‫⎠ ‪⎝x‬‬ ‫إذن ﺗﻘﻌﺮ ) ‪ ( Cln‬ﻣﻮﺟﻩ ﻧﺤﻮ اﻷراﺗﻴﺐ اﻟﺴﺎﻟﺒﺔ ‪.‬‬

‫هـ‪ -‬إﻧﺸﺎء اﻟﻤﻨﺤﻨﻰ ) ‪: ( Cln‬‬ ‫ﻟﺪﻳﻨﺎ ﻣﻌﺎدﻟﺔ اﻟﻤﻤﺎس ) ‪ (T‬ﻟﻠﻤﻨﺤﻨﻰ ) ‪ ( Cln‬ﻓﻲ اﻟﻨﻘﻄﺔ اﻟﺘﻲ أﻓﺼﻮﻟﻬﺎ ‪ 1‬هﻲ‪:‬‬

‫‪y = ln ′(1) ( x − 1) + ln1‬‬

‫أي ‪:‬‬

‫‪ . y = x − 1‬ﻷن ‪ln ′ (1) = 1 :‬‬

‫ﻣﺤﻤﺪ اﻟﺤﻴﺎن‬

‫و‬

‫‪. ln (1) = 0‬‬

‫‪-5-‬‬

‫اﻟﺜﺎﻧﻴﺔ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬

‫‪12‬‬

‫ﻣﻼﺣﻈﺔ ‪ :‬ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡ ∞‪ ⎤⎦ 0, +‬؛ ﻟﺪﻳﻨﺎ ) ‪ ( Cln‬ﻳﻮﺟﺪ ﺗﺤﺖ اﻟﻤﻤﺎس ) ‪ . (T‬إذن ‪:‬‬

‫‪∀x ∈ ⎤⎦ 0, +∞ ⎡⎣ ; ln x ≤ x −1‬‬ ‫‪ -4‬ﻧﻬﺎﻳﺎت هﺎﻣﺔ ‪:‬‬

‫) ‪ln(1 + x‬‬ ‫; ‪=1‬‬ ‫‪x‬‬

‫‪lim x ln x = 0‬‬

‫‪x → 0+‬‬

‫‪lim‬‬ ‫‪x →0‬‬

‫‪.‬‬

‫‪ln x‬‬ ‫; ‪=1‬‬ ‫‪x −1‬‬

‫‪lim‬‬ ‫‪x →1‬‬

‫ﺑﺮهﺎن ‪:‬‬

‫‪1‬‬ ‫ﻧﻀﻊ ‪:‬‬ ‫‪x‬‬

‫∞‪t → +‬‬ ‫= ‪ . t‬إذن ‪:‬‬ ‫‪+‬‬ ‫‪x →0‬‬

‫‪.‬‬

‫⎞‪1 ⎛1‬‬ ‫‪ln t‬‬ ‫‪−‬‬ ‫و ﻣﻨﻩ ﻓﺈن ‪= 0 :‬‬ ‫‪ln ⎜ ⎟ = t lim‬‬ ‫∞‪→+‬‬ ‫‪t‬‬ ‫⎠ ‪⎝t‬‬ ‫‪ln x‬‬ ‫‪ln x − ln1‬‬ ‫‪. lim‬‬ ‫‪= lim‬‬ ‫ﻟﺪﻳﻨﺎ ‪= ln′ (1) = 1 :‬‬ ‫‪x →1 x − 1 x →1‬‬ ‫‪x −1‬‬ ‫ﻧﻀﻊ ‪ . t = x −1 :‬إذن ‪t → 0 :‬‬

‫‪. lim+ x ln x = lim‬‬

‫‪t →+∞ t‬‬

‫‪x →0‬‬

‫‪x →1‬‬

‫) ‪ln (1 + x‬‬ ‫‪ln t‬‬ ‫=‬ ‫و ﻣﻨﻩ ﻓﺈن ‪= 1 :‬‬ ‫‪lim‬‬ ‫‪x →0‬‬ ‫‪t →1 t − 1‬‬ ‫‪x‬‬

‫‪. lim‬‬

‫ﻣﺤﻤﺪ اﻟﺤﻴﺎن‬

‫‪-6-‬‬

‫اﻟﺜﺎﻧﻴﺔ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬

‫‪12‬‬

‫أﺣﺴﺐ اﻟﻨﻬﺎﻳﺎت اﻟﺘﺎﻟﻴﺔ ‪:‬‬

‫ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ ‪:‬‬

‫‪lim 2x − 3ln x‬‬

‫‪(a‬‬

‫; ‪(b‬‬

‫∞‪x →+‬‬

‫‪(e‬‬

‫‪1‬‬ ‫‪+ ln x‬‬ ‫‪x‬‬

‫‪(i‬‬

‫) ‪lim+ x ( ln x‬‬

‫‪2‬‬

‫;‬

‫‪lim+‬‬

‫‪x →0‬‬

‫‪2‬‬

‫‪(m‬‬

‫‪x‬‬

‫) ‪ln ( ln x‬‬ ‫‪(q‬‬ ‫‪ln x‬‬

‫‪(f‬‬

‫; ‪(j‬‬

‫‪x →0‬‬

‫) ‪( ln x‬‬

‫‪lim ( ln x ) + ln x‬‬ ‫‪2‬‬

‫‪x →0+‬‬

‫)‬

‫(‬

‫‪lim x − ln 1 + x 2‬‬ ‫∞‪x →+‬‬ ‫) ‪lim+ x ( ln x‬‬

‫‪3‬‬

‫; ‪(n‬‬

‫‪lim‬‬

‫∞‪x →+‬‬

‫;‬

‫‪lim‬‬ ‫∞‪x →+‬‬

‫‪(r‬‬

‫‪ln x‬‬ ‫‪x‬‬

‫; ‪(g‬‬

‫‪lim+ x 2 ln x‬‬

‫; ‪(h‬‬

‫‪(k‬‬

‫‪x →0‬‬

‫‪ln x‬‬ ‫‪x2‬‬

‫;‬

‫‪lim‬‬ ‫∞‪x →+‬‬

‫‪lim+ x 3 ln x‬‬

‫‪x →0‬‬

‫‪ln x‬‬ ‫‪x3‬‬

‫‪(l‬‬

‫‪lim‬‬ ‫∞‪x →+‬‬

‫) ‪ln (1 + ln x‬‬ ‫) ‪ln (1 − sin x‬‬ ‫‪p‬‬ ‫(‬ ‫;‬ ‫‪lim‬‬ ‫; ‪(o‬‬ ‫‪lim‬‬ ‫‪x →1‬‬ ‫‪x →0 ln 1 + tan x‬‬ ‫‪x 2 −1‬‬ ‫(‬ ‫)‬

‫‪3‬‬

‫‪x‬‬

‫; ‪(d‬‬

‫;‬

‫‪x →0‬‬

‫) ‪( ln x‬‬

‫; ‪(c‬‬

‫‪1 − ln x‬‬ ‫‪lim+‬‬ ‫‪x →0‬‬ ‫‪ln x‬‬

‫‪ln x‬‬ ‫‪lim‬‬ ‫‪x →+∞ 1 + ln x‬‬

‫‪lim‬‬

‫∞‪x →+‬‬

‫; ‪(s‬‬

‫‪lim+‬‬

‫‪x →0‬‬

‫) (‬

‫‪. lim x + ln x 2‬‬ ‫∞‪x →−‬‬

‫‪ -III‬اﻟﻤﺸﺘﻘﺔ اﻟﻠﻮﻏﺎرﻳﺘﻤﻴﺔ ‪:‬‬ ‫‪ -1‬ﺧﺎﺻﻴﺔ ‪:‬‬ ‫ﻟﺘﻜﻦ ‪ u‬داﻟﺔ ﻗﺎﺑﻠﺔ ﻟﻻﺷﺘﻘﺎق وﻻ ﺗﻨﻌﺪم ﻋﻠﻰ ﻣﺠﺎل ‪. I‬‬ ‫) ‪′ u ′(x‬‬ ‫= ) ‪∀x ∈ I : ln u (x‬‬ ‫ﻟﺪﻳﻨﺎ ‪:‬‬ ‫) ‪u (x‬‬

‫)‬

‫(‬

‫‪ -2‬ﺗﻌﺮﻳﻒ ‪:‬‬ ‫ﻟﺘﻜﻦ ‪ u‬داﻟﺔ ﻗﺎﺑﻠﺔ ﻟﻻﺷﺘﻘﺎق وﻻ ﺗﻨﻌﺪم ﻋﻠﻰ ﻣﺠﺎل ‪. I‬‬

‫‪u′‬‬ ‫اﻟﺪاﻟﺔ‬ ‫‪u‬‬

‫ﺗﺴﻤﻰ اﻟﻤﺸﺘﻘﺔ اﻟﻠﻮﻏﺎرﻳﺘﻤﻴﺔ ﻟﻠﺪاﻟﺔ ‪ u‬ﻋﻠﻰ اﻟﻤﺠﺎل ‪I‬‬

‫‪x −1‬‬ ‫ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ ‪ : 1‬ﻟﺘﻜﻦ ‪ f‬اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ اﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ ‪:‬‬ ‫‪x‬‬ ‫‪ -1‬ﺣﺪد ‪ Df‬ﺣﻴﺰ ﺗﻌﺮﻳﻒ اﻟﺪاﻟﺔ ‪. f‬‬ ‫‪ -2‬أﺣﺴﺐ ﻧﻬﺎﻳﺎت ‪ f‬ﻋﻨﺪ ﻣﺤﺪات ‪. Df‬‬ ‫‪ -3‬أﺣﺴﺐ ) ‪ f ′(x‬ﻟﻜﻞ ‪ x‬ﻣﻦ ‪ Df‬؛ ﺛﻢ ﺿﻊ ﺟﺪول ﺗﻐﻴﺮات اﻟﺪاﻟﺔ ‪ f‬ﻋﻠﻰ ‪. Df‬‬

‫‪. f (x ) = ln‬‬

‫‪JG JJG‬‬ ‫‪ -4‬أدرس اﻟﻔﺮوع اﻟﻻ ﻧﻬﺎﺋﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ ) ‪ ( Cf‬اﻟﻤﻤﺜﻞ ﻟﻠﺪاﻟﺔ ‪ f‬ﻓﻲ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ‪. O , i , j‬‬

‫)‬

‫(‬

‫‪ -5‬أدرس ﺗﻘﻌﺮ اﻟﻤﻨﺤﻨﻰ ) ‪ ( Cf‬ﺛﻢ ﺣﺪد ﻧﻘﻄﺔ اﻧﻌﻄﺎف اﻟﻤﻨﺤﻨﻰ ) ‪. ( Cf‬‬ ‫‪ -6‬أﻧﺸﺊ ) ‪. ( Cf‬‬

‫اﻟﺠﻮاب ‪:‬‬

‫‪x −1‬‬ ‫‪ .1‬ﻟﻴﻜﻦ \ ∈ ‪ . x‬ﻟﺪﻳﻨﺎ ‪:‬‬ ‫‪ x ≠0‬و ‪>0‬‬ ‫‪x‬‬ ‫‪x −1‬‬ ‫⇔‬ ‫‪ x ≠0‬و ‪≠0‬‬ ‫‪x‬‬ ‫‪ x ≠ 0‬و ‪⇔ x ≠1‬‬ ‫⎣⎡ ∞‪Df = \ − {0,1} = ⎤⎦ −∞,0 ⎡⎣ ∪ ⎤⎦ 0,1⎡⎣ ∪ ⎤⎦1, +‬‬ ‫إذن ‪:‬‬

‫⇔ ‪x ∈Df‬‬

‫‪ .2‬ﻟﺪﻳﻨﺎ ‪:‬‬

‫‪x −1‬‬ ‫‪1‬‬ ‫‪= lim ln 1 − = ln1 = 0‬‬ ‫∞‪x → ±‬‬ ‫‪x‬‬ ‫‪x‬‬

‫‪x −1‬‬ ‫و ﺑﻮﺿﻊ‬ ‫‪x‬‬ ‫ﻣﺤﻤﺪ اﻟﺤﻴﺎن‬

‫= ‪ ، t‬ﻧﺠﺪ ‪ t → 0+‬و‬ ‫‪x →1‬‬

‫‪. lim f (x ) = lim ln‬‬ ‫∞‪x → ±‬‬

‫∞‪x → ±‬‬

‫‪x −1‬‬ ‫∞‪= lim+ ln (t ) = −‬‬ ‫‪t →0‬‬ ‫‪x‬‬

‫‪-7-‬‬

‫‪. lim f (x ) = lim ln‬‬ ‫‪x →1‬‬

‫‪x →1‬‬

‫اﻟﺜﺎﻧﻴﺔ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬

‫‪12‬‬

‫‪x −1‬‬ ‫∞‪= lim ln (t ) = +‬‬ ‫∞‪t →+‬‬ ‫‪x‬‬

‫∞‪ t → +‬و‬ ‫وﻟﺪﻳﻨﺎ ‪:‬‬ ‫‪+‬‬ ‫‪x →0‬‬

‫‪. lim f (x ) = lim ln‬‬ ‫‪x →0‬‬

‫‪x →0‬‬

‫‪1 −1‬‬ ‫‪′‬‬ ‫⎞ ‪⎛ x −1‬‬ ‫‪1 0‬‬ ‫⎜‬ ‫⎟‬ ‫‪2‬‬ ‫⎠ ‪x‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫⎝ ‪f ′( x ) = − +‬‬ ‫‪=− + x =− +‬‬ ‫‪2 x −1‬‬ ‫‪2 x −1‬‬ ‫)‪2 x ( x −1‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫) ‪−x 2 + x + 2 − ( x + 1)( x − 2‬‬ ‫= ) ‪f ′(x‬‬ ‫=‬ ‫)‪x ( x − 1‬‬ ‫)‪x ( x −1‬‬

‫‪ .3‬ﻟﻴﻜﻦ ‪ x ∈Df‬؛ ﻟﺪﻳﻨﺎ ‪:‬‬

‫‪ .4‬ﺗﺤﺪﻳﺪ اﻟﻔﺮوع اﻟﻻﻧﻬﺎﺋﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ ) ‪: ( Cf‬‬ ‫‪ 9‬ﻟﺪﻳﻨﺎ ‪ . lim f (x ) = 0 :‬إذن ) ‪ ( Cf‬ﻳﻘﺒﻞ ﻣﻘﺎرﺑﺎ أﻓﻘﻴﺎ ﺑﺠﻮار ∞‪ ±‬ﻣﻌﺎدﻟﺘﻩ ‪. y = 0‬‬ ‫∞‪x → ±‬‬

‫‪ 9‬ﻟﺪﻳﻨﺎ ‪ . lim f (x ) = +∞ :‬إذن ) ‪ ( Cf‬ﻳﻘﺒﻞ ﻣﻘﺎرﺑﺎ ﻋﻤﻮدﻳﺎ ﻣﻌﺎدﻟﺘﻩ ‪. x = 0‬‬ ‫‪x →0‬‬

‫‪ 9‬ﻟﺪﻳﻨﺎ ‪ . lim f (x ) = −∞ :‬إذن ) ‪ ( Cf‬ﻳﻘﺒﻞ ﻣﻘﺎرﺑﺎ ﻋﻤﻮدﻳﺎ ﻣﻌﺎدﻟﺘﻩ ‪. x = 1‬‬ ‫‪x →1‬‬

‫‪ .5‬ﻟﻴﻜﻦ ‪ . x ∈Df‬ﻟﺪﻳﻨﺎ ‪:‬‬

‫‪′‬‬ ‫‪′‬‬ ‫‪′‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫⎛‬ ‫⎞‪2 +x +2‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪−‬‬ ‫‪+‬‬ ‫‪+‬‬ ‫‪−‬‬ ‫‪−‬‬ ‫‪−‬‬ ‫‪+‬‬ ‫‪+‬‬ ‫‪−‬‬ ‫(‬ ‫)‬ ‫(‬ ‫)‬ ‫‪−‬‬ ‫‪x‬‬ ‫⎟‬ ‫⎜⎜ =‬ ‫‪2‬‬ ‫= ⎟‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫⎜‬ ‫⎟‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪−‬‬ ‫(‬ ‫)‬ ‫⎝‬ ‫⎠‬

‫)‬

‫إﺷﺎرة‬

‫)‬

‫()‬

‫)‬

‫( )‬

‫(‬

‫()‬

‫(‬

‫)‬

‫(‬

‫) ‪f ′′ ( x‬‬

‫) ‪( −2x + 1) ( x ( x −1) ) − ( −x 2 + x + 2 ) ( x −1+ x‬‬ ‫= ) ‪f ′′ ( x‬‬ ‫‪2‬‬ ‫))‪( x ( x −1‬‬ ‫)‪− ( 2x − 1) ( x ( x − 1) ) − ( −x 2 + x + 2 ) ( 2x − 1‬‬ ‫= ) ‪f ′′ ( x‬‬ ‫‪2‬‬ ‫))‪( x ( x −1‬‬ ‫)‪( 2x −1) ( −x 2 + x + x 2 − x − 2) −2 ( 2x −1‬‬ ‫= ) ‪f ′′ ( x‬‬ ‫=‬ ‫‪2‬‬ ‫‪2‬‬ ‫))‪( x ( x −1‬‬ ‫))‪( x ( x −1‬‬

‫‪ f ′′ ( x‬ﻋﻠﻰ ‪ Df‬هﻲ إﺷﺎرة ‪ ، 1 − 2x‬وﻣﻨﻩ ﻧﺴﺘﻨﺘﺞ أن ‪:‬‬

‫ﻣﺤﻤﺪ اﻟﺤﻴﺎن‬

‫‪-8-‬‬

‫اﻟﺜﺎﻧﻴﺔ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬

‫‪12‬‬

‫⎞ ‪⎛1‬‬ ‫وﺑﺎﻟﺘﺎﻟﻲ ﻓﺈن اﻟﻨﻘﻄﺔ ⎟ ‪ A ⎜ ,0‬ﻧﻘﻄﺔ اﻧﻌﻄﺎف ﻟﻠﻤﻨﺤﻨﻰ ) ‪. ( Cf‬‬ ‫⎠ ‪⎝2‬‬ ‫‪ .6‬إﻧﺸﺎء اﻟﻤﻨﺤﻨﻰ ) ‪: ( Cf‬‬

‫ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ ‪: 2‬‬

‫ﻟﺘﻜﻦ ‪ f‬اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ اﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ ‪:‬‬

‫(‬

‫)‬

‫‪⎧ f ( x ) = ln 1 − x 3‬‬ ‫‪; x <0‬‬ ‫⎪‬ ‫⎨‬ ‫‪⎪f ( x ) = 4x x − 3x 2 ; x ≥ 0‬‬ ‫⎩‬ ‫‪ .1‬أ‪ -‬ﺑﻴﻦ أن ‪ f‬ﻣﺘﺼﻠﺔ ﻓﻲ ‪. 0‬‬ ‫ب‪ -‬ﺑﻴﻦ أن ‪ f‬ﻗﺎﺑﻠﺔ ﻟﻻﺷﺘﻘﺎق ﻓﻲ ‪. 0‬‬ ‫أدرس ﺗﻐﻴﺮات اﻟﺪاﻟﺔ ‪ f‬ﻋﻠﻰ ‪. R‬‬ ‫‪.2‬‬ ‫‪ .3‬أ‪ -‬أﺣﺴﺐ اﻟﻨﻬﺎﻳﺘﻴﻦ ‪ lim f ( x ) :‬و ) ‪. lim f ( x‬‬ ‫∞‪x →−‬‬

‫ﻣﺤﻤﺪ اﻟﺤﻴﺎن‬

‫∞‪x →+‬‬

‫‪-9-‬‬

‫اﻟﺜﺎﻧﻴﺔ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬

‫‪12‬‬

‫ب‪ -‬أدرس اﻟﻔﺮﻋﻴﻦ اﻟﻻﻧﻬﺎﺋﻴﻴﻦ ﻟﻠﻤﻨﺤﻨﻰ ) ‪. ( Cf‬‬ ‫‪ .4‬أﻧﺸﺊ اﻟﻤﻨﺤﻨﻰ ) ‪. ( Cf‬‬ ‫‪ .5‬ﻟﻴﻜﻦ ‪ g‬ﻗﺼﻮر اﻟﺪاﻟﺔ ‪ f‬ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡ ‪. I = ⎤⎦ −∞,0‬‬ ‫أ‪ -‬ﺑﻴﻦ أن ‪ g‬ﺗﻘﺎﺑﻞ ﻣﻦ اﻟﻤﺠﺎل ‪ I‬ﻧﺤﻮ ﻣﺠﺎل ‪ J‬ﻳﻨﺒﻐﻲ ﺗﺤﺪﻳﺪﻩ‪.‬‬ ‫ب‪ -‬ﺣﺪد‬

‫) ‪g −1 ( x‬‬

‫ﻟﻜﻞ ‪ ) . x ∈ J‬ﻳﻨﺠﺰ هﺬا اﻟﺴﺆال ﺑﻌﺪ درس اﻟﺪوال اﻷﺱﻴﺔ ( ؟‬

‫‪ .6‬ﻧﻌﺘﺒﺮ `∈‪ (u n )n‬اﻟﻤﺘﺘﺎﻟﻴﺔ اﻟﻌﺪدﻳﺔ اﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ ‪:‬‬

‫`∈ ‪; n‬‬

‫⎧‬ ‫‪4‬‬ ‫= ‪u0‬‬ ‫⎪‬ ‫‪9‬‬ ‫⎨‬ ‫‪2‬‬ ‫‪⎪u‬‬ ‫‪⎩ n +1 = 4u n u n − 3u n‬‬

‫‪4‬‬ ‫أ‪ -‬ﺑﻴﻦ أن ‪≤ u ≤ 1 :‬‬ ‫‪9 n‬‬ ‫ب‪ -‬ﺑﻴﻦ أن `∈‪ (u n )n‬ﺗﺰاﻳﺪﻳﺔ ‪.‬‬

‫‪. ∀n ∈ ` :‬‬

‫ﺟـ‪ -‬ﺑﻴﻦ أن `∈‪ (u n )n‬ﻣﺘﻘﺎرﺑﺔ وﺣﺪد ﻧﻬﺎﻳﺘﻬﺎ‪.‬‬

‫‪ -3‬اﺱﺘﻨﺘﺎج ‪:‬‬ ‫ﻟﺘﻜﻦ ‪ u‬داﻟﺔ ﻗﺎﺑﻠﺔ ﻟﻺﺷﺘﻘﺎق وﻻ ﺗﻨﻌﺪم ﻋﻠﻰ ﻣﺠﺎل ‪. I‬‬

‫‪u′‬‬ ‫اﻟﺪوال اﻷﺻﻠﻴﺔ ﻟﻠﺪاﻟﺔ ﻋﻠﻰ ‪ I‬هﻲ اﻟﺪوال ‪ x 6 ln u ( x ) + α :‬ﺣﻴﺚ \∈ ‪α‬‬ ‫‪u‬‬

‫‪ -IV‬داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ ﻟﻸﺱﺎس‬ ‫‪ -1‬ﺗﻌﺮﻳﻒ ‪:‬‬ ‫ﻟﻴﻜﻦ‬

‫‪a >0‬‬

‫‪ln x‬‬ ‫اﻟﺪاﻟﺔ‬ ‫‪ln a‬‬

‫و‬

‫‪a ≠1‬‬

‫‪a‬‬

‫‪.‬‬

‫‪:‬‬

‫‪.‬‬

‫‪ x 6‬اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡ ∞‪، ⎤⎦ 0, +‬‬

‫ﺗﺴﻤﻰ داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ ﻟﻸﺱﺎس ‪a‬‬ ‫\‬

‫‪ . loga‬وﻟﺪﻳﻨﺎ ‪:‬‬

‫→‬

‫وﻧﺮﻣﺰ ﻟﻬﺎ ﺑﺎﻟﺮﻣﺰ‬

‫⎡ ∞‪⎤ 0, +‬‬ ‫⎦‬ ‫⎣‬

‫‪ln x‬‬ ‫= ) ‪6 loga ( x‬‬ ‫‪ln a‬‬

‫‪loga :‬‬

‫‪x‬‬

‫‪ln x‬‬

‫= ) ‪. ∀x ∈ ⎤⎦ 0, +∞ ⎡⎣ : loge ( x‬‬ ‫ﻣﻼﺣﻈﺔ ‪ :‬ﻟﺪﻳﻨﺎ ‪= ln x :‬‬ ‫‪ln e‬‬ ‫داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ اﻟﻨﺒﻴﺮي هﻲ داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ ﻟﻸﺱﺎس ‪. e‬‬

‫‪ -2‬ﺧﺎﺻﻴﺎت ‪:‬‬

‫ﻟﻴﻜﻦ ‪a > 0‬‬

‫و‬

‫‪a ≠1‬‬

‫‪.‬‬

‫‪ .1‬ﻟﻜﻞ ‪ x‬و ‪ y‬ﻣﻦ ⎣⎡ ∞‪ ⎤⎦ 0, +‬وﻟﻜﻞ `∈ ‪ n‬؛ ﻟﺪﻳﻨﺎ ‪:‬‬ ‫‪; loga ( xy ) = loga ( x ) + loga ( y ) (i‬‬

‫‪(ii‬‬

‫;‬

‫‪(iv‬‬

‫‪(iii‬‬

‫⎞‪⎛1‬‬ ‫) ‪loga ⎜ ⎟ = − loga ( x‬‬ ‫⎠ ‪⎝x‬‬

‫‪ .2‬ﻟﻜﻞ _∈ ‪ r‬وﻟﻜﻞ ⎣⎡ ∞‪ x ∈ ⎤⎦ 0, +‬؛ ﻟﺪﻳﻨﺎ ‪:‬‬

‫ﻣﺤﻤﺪ اﻟﺤﻴﺎن‬

‫‪- 10 -‬‬

‫) ‪loga ( x n ) = n loga ( x‬‬

‫)‬

‫⎞ ‪⎛x‬‬ ‫‪⎟⎟ = loga ( x ) − loga ( y‬‬ ‫⎠ ‪⎝y‬‬

‫⎜⎜ ‪loga‬‬

‫) (‬

‫) ‪. loga x r = r loga ( x‬‬

‫اﻟﺜﺎﻧﻴﺔ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬

‫‪12‬‬

‫‪ -3‬رﺗﺎﺑﺔ اﻟﺪاﻟﺔ ‪loga‬‬

‫‪:‬‬

‫أ‪ -‬ﻣﺠﻤﻮﻋﺔ ﺗﻌﺮﻳﻒ اﻟﺪاﻟﺔ‬

‫‪loga‬‬

‫هﻲ ‪:‬‬

‫⎣⎡ ∞‪. Dloga = ⎤⎦ 0, +‬‬

‫‪ln x‬‬

‫= ) ‪ . ∀x ∈ ⎤⎦ 0, +∞ ⎡⎣ : loga (x‬إذن ‪:‬‬ ‫ب‪ -‬اﻟﻨﻬﺎﻳﺎت ‪ :‬ﻧﻌﻠﻢ أن ‪:‬‬ ‫‪ln a‬‬ ‫∞‪ lim+ loga (x ) = −‬و ∞‪lim loga (x ) = +‬‬ ‫‪ 9‬إذا آﺎن ‪ a > 1‬؛ ﻓﺈن ‪:‬‬

‫∞‪x →+‬‬

‫‪x →0‬‬

‫‪ 9‬إذاآﺎن ‪ 0 < a < 1‬؛ ﻓﺈن ‪:‬‬

‫‪1 1‬‬ ‫‪ln a x‬‬

‫ﺟـ‪ -‬ﺟﺪول اﻟﺘﻐﻴﺮات ‪ :‬ﻟﺪﻳﻨﺎ ‪:‬‬

‫= ) ‪∀x ∈ ⎤⎦ 0, +∞ ⎡⎣ : loga′ ( x‬‬

‫أ‪ -‬ﺣﺎﻟﺔ ‪: a > 1‬‬ ‫ﻟﺪﻳﻨﺎ ‪ loga‬ﺗﺰاﻳﺪﻳﺔ ﻗﻄﻌﺎ‬

‫ﻟﺪﻳﻨﺎ ‪ loga‬ﺗﻨﺎﻗﺼﻴﺔ‬

‫ﻋﻠﻰ اﻟﻤﺠﺎل ⎡ ∞‪⎤ 0, +‬‬ ‫⎦‬ ‫⎣‬

‫ﻗﻄﻌﺎ ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡ ∞‪⎤⎦ 0, +‬‬

‫‪a‬‬

‫‪a >1‬‬

‫ﻣﺤﻤﺪ اﻟﺤﻴﺎن‬

‫‪.‬‬

‫ب‪ -‬ﺣﺎﻟﺔ ‪: 0 < a < 1‬‬

‫د‪ -‬إﻧﺸﺎء ) ‪( Clog‬‬ ‫ﺣﺎﻟﺔ‬

‫∞‪lim loga (x ) = +‬‬

‫‪x →0+‬‬

‫و‬

‫∞‪lim loga (x ) = −‬‬

‫∞‪x →+‬‬

‫‪.‬‬

‫‪:‬‬ ‫‪ ،‬ﻣﺜﻼ ‪:‬‬

‫) ‪(a = 2‬‬

‫⎛‬ ‫⎞‪1‬‬ ‫ﺣﺎﻟﺔ ‪ ، 0 < a < 1‬ﻣﺜﻼ ‪⎜ a = ⎟ :‬‬ ‫⎠‪4‬‬ ‫⎝‬

‫‪- 11 -‬‬

‫اﻟﺜﺎﻧﻴﺔ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬

‫‪12‬‬

‫‪Logarithme décimal :‬‬

‫‪ -V‬داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ اﻟﻌﺸﺮي ‪:‬‬ ‫‪ -1‬ﺗﻌﺮﻳﻒ ‪:‬‬

‫اﻟﺪاﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻤﻴﺔ اﻟﺘﻲ أﺱﺎﺱﻬﺎ ‪ 10‬ﺗﺴﻤﻰ داﻟﺔ اﻟﻠﻮﻏﺎرﻳﺘﻢ اﻟﻌﺸﺮي‬ ‫وﻧﺮﻣﺰ ﻟﻬﺎ ﺑﺎﻟﺮﻣﺰ ‪ ) log‬ﻋﻮض ‪ . ( log10‬وﻟﺪﻳﻨﺎ ‪:‬‬

‫→‬

‫\‬

‫‪ln x‬‬ ‫‪ln10‬‬

‫‪log (10r ) = r log10‬‬

‫‪(b‬‬

‫‪ -3‬ﻣﺜﺎل ‪:‬‬

‫)‬

‫‪ .1‬أﺣﺴﺐ ‪100 :‬‬

‫;‬

‫_ ∈ ‪∀r‬‬

‫(‬

‫‪2‬‬

‫)‬

‫(‬

‫⎣⎡ ∞‪∀ ( x , y ) ∈ ⎤⎦ 0, +‬‬

‫‪ A = log‬و )‪ B = log ( 0, 0001‬و ) ‪. C = log (10000‬‬

‫‪ .2‬ﺣﻞ ﻓﻲ \ اﻟﻤﻌﺎدﻟﺔ ‪:‬‬

‫ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ ‪:‬‬

‫;‬

‫‪log1 = 0‬‬

‫‪; log x = log y ⇔ x = y‬‬

‫‪(c‬‬

‫‪3‬‬

‫= ) ‪6 log(x‬‬

‫‪x‬‬

‫‪log10 = 1‬‬

‫‪(a‬‬

‫‪ -2‬ﻣﻻﺣﻈﺔ ‪:‬‬

‫⎡ ∞‪⎤ 0, +‬‬ ‫⎦‬ ‫⎣‬

‫‪log :‬‬

‫‪10−x = 3‬‬

‫ﺛﻢ أﻋﻁ ﻗﻴﻤﺔ ﻣﻘﺮﺑﺔ ﻟﻠﺤﻞ ﻣﺴﺘﻌﻤﻻ اﻟﻤﺤﺴﺒﺔ ‪.‬‬

‫ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ‪ f‬ﻟﻤﺘﻐﻴﺮ ﺣﻘﻴﻘﻲ ‪ x‬ﺣﻴﺚ ‪:‬‬ ‫‪ .1‬أ‪ -‬ﺣﺪد ‪ Df‬ﺣﻴﺰ ﺗﻌﺮﻳﻒ اﻟﺪاﻟﺔ ‪. f‬‬

‫)‬

‫‪3‬‬ ‫‪+ 2ln ( x‬‬ ‫‪x‬‬

‫‪f (x ) = x +‬‬

‫ب‪ -‬أﺣﺴﺐ ﻧﻬﺎﻳﺎت ‪ f‬ﻋﻨﺪ ﻣﺤﺪات ‪.Df‬‬ ‫‪ .2‬أ‪ -‬أﺣﺴﺐ )‪ f ′( x‬ﻣﻦ أﺟﻞ آﻞ ﻋﻨﺼﺮ ‪ x‬ﻣﻦ ‪.Df‬‬ ‫ب‪ -‬أﻋﻁ ﺟﺪول ﺗﻐﻴﺮات اﻟﺪاﻟﺔ ‪. f‬‬

‫) (‬

‫‪ .3‬ﻟﻴﻜﻦ ‪ Cf‬اﻟﻤﻨﺤﻨﻰ اﻟﻤﻤﺜﻞ ﻟﻠﺪاﻟﺔ‬

‫‪ f‬ﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ )‬

‫أ‪ -‬أدرس اﻟﻔﺮوع اﻟﻻﻧﻬﺎﺋﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ ) ‪( Cf‬‬ ‫ب‪ -‬أدرس ﺗﻘﻌﺮ اﻟﻤﻨﺤﻨﻰ ) ‪. ( Cf‬‬ ‫ﺟـ‪ -‬أﻋﻁ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻤﻤﺎس اﻟﻤﻨﺤﻨﻰ ) ‪ ( Cf‬ﻓﻲ اﻟﻨﻘﻄﺔ ‪ I‬ذات اﻷﻓﺼﻮل ‪. 3‬‬ ‫د‪ -‬أرﺱﻢ اﻟﻤﻨﺤﻨﻰ ) ‪ ( Cf‬ﻣﺒﺮزا ﻧﻘﻄﻩ اﻟﺘﻲ أﻓﺎﺻﻴﻠﻬﺎ هﻲ ‪ 3‬و ‪ -2‬و ‪. -4‬‬

‫‪JG JJG‬‬

‫(‬

‫‪. O ,i , j‬‬

‫‪.‬‬

‫ﺑﺎﻟﺘﻮﻓﻴﻖ إﻧﺸﺎء اﷲ‬

‫ﻣﺤﻤﺪ اﻟﺤﻴﺎن‬

‫‪- 12 -‬‬

‫اﻟﺜﺎﻧﻴﺔ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬

‫‪12‬‬

Related Documents

S-exp-ii Math Cour De Log
October 2019 10
Cour De Chimie Organique
October 2019 25
Cour De C
April 2020 11
Cour De Virologie.pdf
June 2020 8
Notes De Cour Dipr
November 2019 21

More Documents from ""

Tajribi Math Sx (39)
April 2020 6
Solutions 1
November 2019 4
I04pm1e
November 2019 3
Tdmeca2
November 2019 2
Tdmeca4
November 2019 2
M026m1e_2
November 2019 5