Ruta De Convergencia Solucion Numerica De Ecuaciones No Lineales

  • Uploaded by: Programa Ingeniería de Sistemas
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ruta De Convergencia Solucion Numerica De Ecuaciones No Lineales as PDF for free.

More details

  • Words: 2,409
  • Pages: 22
FUNDACIÓN UNIVERSITARIA KONRAD LORENZ FACULTAD DE MATEMÁTICAS E INGENIERÍAS PROGRAMA DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS

TRAYECTORIA DE CONVERGENCIA DE LOS PRINCIPALES MÉTODOS PARA RESOLVER ECUACIONES NO LINEA

f ( x) = x 2 − e −x

g ( x) =

f ( x ) = x 2 − e− x = 0

x2 = e− x

e− x

PROCEDIMIENTO ITERATIVO DEL METODO DE PUNTO FIJO i

xi

g(xi)

error

1 2 3 4 5 6 7 8 9

-3 4.48 0.11 0.95 0.62 0.73 0.69 0.71 0.7

4.48 0.11 0.95 0.62 0.73 0.69 0.71 0.7 0.7

166.94 4113.36 88.78 52.34 15.03 5.66 1.94 0.69 0.24

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

0.09 0.03 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TRAY

5

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TRAY

5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 y

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -4 -4.5 -5

------------3 22 2 2 2 2 22 2 2 1 1 .. . . . . .. . . .

ECUACIONES NO LINEALES

5

x2 = e− x

x=

e− x

tabulación para grafica a g(x) y f(x)

ruta de convergencia

x

X

G(X)

Y

-3 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2

4.48 4.26 4.06 3.86 3.67 3.49 3.32 3.16 3

-11.09 -9.76 -8.6 -7.59 -6.7 -5.93 -5.26 -4.68 -4.19

-2 -2 2.72 2.72 0.26 0.26 0.88 0.88 0.64

0 2.72 2.72 0.26 0.26 0.88 0.88 0.64 0.64

-2.1 -2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

2.86 2.72 2.59 2.46 2.34 2.23 2.12 2.01 1.92 1.82 1.73 1.65 1.57 1.49 1.42 1.35 1.28 1.22 1.16 1.11 1.05 1 0.95 0.9 0.86 0.82 0.78 0.74

-3.76 -3.39 -3.08 -2.81 -2.58 -2.39 -2.23 -2.1 -1.98 -1.88 -1.79 -1.72 -1.65 -1.59 -1.52 -1.46 -1.4 -1.33 -1.26 -1.18 -1.1 -1 -0.89 -0.78 -0.65 -0.51 -0.36 -0.19

0.64 0.72 0.72 0.7 0.7 0.71 0.71 0.7 0.7 0.7 0.7

0.72 0.72 0.7 0.7 0.71 0.71 0.7 0.7 0.7 0.7 0.7

TRAYECTORIA DE CONVERGENCIA METODO PUNTO FIJO. f(x)=x2-e-x Y g(x)=raiz(e-x) Se observa que el punto fijo coincide con la raíz

5

5

4

5

3

5

2

5

1

5

0

5

1

5

2

5

3

5

4

5

5

0.7

0.7

-0.01

TRAYECTORIA METODO PUNTO FIJO. f(x)=x2-e-x Y g(x)=raiz(e-x) 0.8 0.67DE CONVERGENCIA 0.19 Se observa que el punto fijo coincide con la raíz 0.9 0.64 0.4 1 0.61 0.63 1.1 0.58 0.88 1.2 0.55 1.14 1.3 0.52 1.42 1.4 0.5 1.71 1.5 0.47 2.03 1.6 0.45 2.36 1.7 0.43 2.71 1.8 0.41 3.07 1.9 0.39 3.46 2 0.37 3.86 2.1 0.35 4.29 2.2 0.33 4.73 2.3 0.32 5.19 2.4 0.3 5.67 2.5 0.29 6.17 2.6 0.27 6.69 2.7 0.26 7.22 2.8 0.25 7.78 2.9 0.23 8.35 3 0.22 8.95 3.1 0.21 9.56 3.2 0.2 10.2 3.3 0.19 10.85 3.4 0.18 11.53 3.5 0.17 12.22 3.6 0.17 12.93 3.7 0.16 13.67 3.8 0.15 14.42 3.9 0.14 15.19 4 0.14 15.98 4.1 0.13 16.79 4.2 0.12 17.63 4.3 0.12 18.48 4.4 0.11 19.35 4.5 0.11 20.24 4.6 0.1 - - - - - - - - - - - - - - - - - - - - - - - - 21.15 - - - - - - 0 0 0 00 0 0 0 0 01 1 1 1 1 1 11 1 1 2 2 22 2 2 2 2 22 3 3 3 3 3 33 3 3 3 2 2 2 2 2 2 2 2 2 24.7 1 1 1 1 1 1 1 0.1 1 1 1 0 0 022.08 0 0 00 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8 0.09 23.03 . . . . . . . . . 4.9 . . . . . . .0.09 . . . . . . .24. . . . 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 5 0.08 24.99 x

ruta de convergencia: claves

Xo Xo x1 x1 x2 x2

0 X1 x1 x2 x2 x3

Recuérdese que X1=g(Xo), X2=g(X1) y en general Xi+1=g(xi)

Y g(x)=raiz(e-x)

raiz y punto fijo

0.7 0.7

0.7 0

Y g(x)=raiz(e-x)

2 2 22 3 3 3 3 3 33 3 3 3 4 44 4 4 4 4 4 44 5 . . .. . . . . .. . . . .. . . . . . .. 6 7 89 1 2 3 4 56 7 8 9 12 3 4 5 6 7 89

FUNDACIÓN UNIVERSITARIA KONRAD LORENZ FACULTAD DE MATEMÁTICAS E INGENIERÍAS PROGRAMA DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS

TRAYECTORIA DE CONVERGENCIA DE LOS PRINCIPALES MÉTODOS PARA RESOLVER ECUACIONES NO LINEAL

f ( x) = x 2 − e −x MÉTODO DE NEWTON RAPHSON

K

tabulación gráfica función

Xi 1 2 3 4 5 6 7 8 9 10 11 12 13

Xi+1 -2.5 -1.67 -0.4 1.52 0.88 0.71 0.7 0.7 0.7 0.7 0.7 0.7 0.7

-5.93 -2.53 -1.33 2.1 0.36 0.02 0 0 0 0 0 0 0

7.18 1.99 0.69 3.27 2.17 1.92 1.9 1.9 1.9 1.9 1.9 1.9 1.9

error -1.67 -0.4 1.52 0.88 0.71 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

x 49.34 319.33 126.2 73.27 23.08 1.57 0.01 0 0 0 0 0 0

TRAYECTORIA DE CONVERGENCIA METODO NEWTON RAPHSON. f(x)=x2-e-x 25 22.5 20 17.5 15 12.5 10

y

7.5 5 2.5 0

-3 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

15 12.5 10

y

7.5 5 2.5 0 -2.5 -5 -7.5 -10 -12.5 -3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1 x

1.5

2

2.5

3

3.5

4

4.5

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 5 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

ECUACIONES NO LINEALES

abulación gráfica función

f(x) -11.09 -9.76 -8.6 -7.59 -6.7 -5.93 -5.26 -4.68 -4.19 -3.76 -3.39 -3.08 -2.81 -2.58 -2.39 -2.23 -2.1 -1.98 -1.88 -1.79 -1.72 -1.65 -1.59 -1.52 -1.46 -1.4 -1.33 -1.26 -1.18 -1.1 -1 -0.89 -0.78 -0.65 -0.51 -0.36 -0.19 -0.01 0.19

trayectoria de convergencia

X 5 5 2.5 2.5 1.29 1.29 0.8 0.8 0.71 0.71 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Y 0 24.99 0 6.18 0 1.38 0 0.2 0 0.01 0 0 0 0 0 0 0 0

trayectoria de convergencia: claves

xo xo x1 x1 x2 x2

0 f(xo) 0 f(x1) 0 f(x2)

Recuerde que x1 = x 0 −

En general:

f ( x0 ) f ′( x 0 )

xi +1 = xi −

x 2 = x1 −

f ( xi ) f ′( xi )

f f

0.4 0.63 0.88 1.14 1.42 1.71 2.03 2.36 2.71 3.07 3.46 3.86 4.29 4.73 5.19 5.67 6.17 6.69 7.22 7.78 8.35 8.95 9.56 10.2 10.85 11.53 12.22 12.93 13.67 14.42 15.19 15.98 16.79 17.63 18.48 19.35 20.24 21.15 22.08 23.03 24 24.99

x 2 = x1 −



f ( xi ) f ′( xi )

f ( x1 ) f ′( x1 )

FUNDACIÓN UNIVERSITARIA KONRAD LORENZ FACULTAD DE MATEMÁTICAS E INGENIERÍAS PROGRAMA DE INGENIERÍA DE SISTEMAS

MÉTODOS NUMÉRICOS TRAYECTORIA DE CONVERGENCIA DE LOS PRINCIPALES MÉTODOS PARA RESOLVER ECUACIONES NO LINEAL MÉTODO DE LA SECANTE tabulación para graficar la K

Xi-1 1 2 3 4 5 6 7 8 9 10 11 12 13

Xi -2 2.5 -0.4 0.11 1.12 0.6 0.69 0.7 0.7 0.7 0.7 0.7 0.7

Xi+1 2.5 -0.4 0.11 1.12 0.6 0.69 0.7 0.7 0.7 0.7 0.7 0.7 #DIV/0!

f(Xi-1) -0.4 0.11 1.12 0.6 0.69 0.7 0.7 0.7 0.7 0.7 0.7 #DIV/0! #DIV/0!

f(Xi) -3.39 6.17 -1.33 -0.88 0.92 -0.18 -0.03 0 0 0 0 0 0

error

x

6.17 -1.33 -0.88 0.92 -0.18 -0.03 0 0 0 0 0 0 #DIV/0!

-3 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

TRAYECTORIA DE CONVERGENCIA METODO DE LA SECANTE. f(x)=x2-e-x 25 22.5 20 17.5 15 12.5 10

y

7.5 5 2.5 0 -2.5 -5 -7.5 -10 -12.5 -3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1 x

1.5

2

2.5

3

3.5

4

4.5

5

0 -2.5 -5 -7.5 -10 -12.5 -3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1 x

1.5

2

2.5

3

3.5

4

4.5

5

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

ECUACIONES NO LINEALES

abulación para graficar la función

ruta de convergencia

f(x) -11.09 -9.76 -8.6 -7.59 -6.7 -5.93 -5.26 -4.68 -4.19 -3.76 -3.39 -3.08 -2.81 -2.58 -2.39 -2.23 -2.1 -1.98 -1.88 -1.79 -1.72 -1.65 -1.59 -1.52 -1.46 -1.4 -1.33 -1.26 -1.18 -1.1 -1 -0.89 -0.78 -0.65 -0.51 -0.36 -0.19 -0.01 0.19 0.4 0.63 0.88 1.14 1.42

-3 -3 5 5 -0.54 -0.54 5 -0.24 -0.24 -0.54 1.49 1.49 -0.24 0.41 0.41 1.49 0.63 0.63 0.41 0.71 0.71

0 -11.09 24.99 0 0 -1.43 24.99 0 -1.22 -1.43 0 2 -1.22 0 -0.49 2 0 -0.14 -0.49 0 0.02

xo x0 x1 x1 x2 x2 x1 x3 x3 x2 x4 x4

0 f(xo) f(x1) 0 0 f(x2) f(x1) 0 f(x3) f(x2) 0 f(x4)

1.71 2.03 2.36 2.71 3.07 3.46 3.86 4.29 4.73 5.19 5.67 6.17 6.69 7.22 7.78 8.35 8.95 9.56 10.2 10.85 11.53 12.22 12.93 13.67 14.42 15.19 15.98 16.79 17.63 18.48 19.35 20.24 21.15 22.08 23.03 24 24.99

FUNDACIÓN UNIVERSITARIA KONRAD LORENZ FACULTAD DE MATEMÁTICAS E INGENIERÍAS PROGRAMA DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS

TRAYECTORIA DE CONVERGENCIA DE LOS PRINCIPALES MÉTODOS PARA RESOLVER ECUACIONES NO LINEALES MÉTODO DE REGLA FALSA

A

B -2 -0.4 0.11 0.41 0.57 0.64 0.68 0.69 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

XR 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

f(A) -0.4 0.11 0.41 0.57 0.64 0.68 0.69 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

f(B) -3.39 -1.33 -0.88 -0.49 -0.25 -0.12 -0.05 -0.02 -0.01 0 0 0 0 0 0 0 0 0 0 0

f(XR) 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.17

-1.33 -0.88 -0.49 -0.25 -0.12 -0.05 -0.02 -0.01 0 0 0 0 0 0 0 0 0 0 0 0

f(A)*f(XR) 4.52 1.18 0.44 0.12 0.03 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TRAYECTORIA DE CONVERGENCIA METODO REGLA FALSA. f(x)=x2-e-x 6.5 6 5.5 5 4.5 4 3.5 3 2.5 2 y

K

1.5 1 0.5 0 -0.5 -1

3.5 3 2.5

y

2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -2

-1.7 -1.5 -1.2 5 5

-1

-0.7 -0.5 -0.2 5 5

0

0.25 0.5 0.75 x

1

1.25 1.5 1.75

2

2.25 2.5 2

ECUACIONES NO LINEALES

A. f(x)=x2-e-x

error 459.5 72.63 27.39 11.66 5.12 2.27 1.01 0.45 0.2 0.09 0.04 0.02 0.01 0 0 0 0 0 0

TABULACIÓN PARA GRAFICAR A f(x)

TRAYECTORIA DE CONVERGENCIA

x

X

f(x) -2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

-3.39 -3.08 -2.81 -2.58 -2.39 -2.23 -2.1 -1.98 -1.88 -1.79 -1.72 -1.65 -1.59 -1.52 -1.46 -1.4 -1.33 -1.26 -1.18 -1.1 -1 -0.89 -0.78 -0.65 -0.51 -0.36 -0.19 -0.01 0.19 0.4 0.63 0.88 1.14 1.42 1.71 2.03 2.36 2.71 3.07 3.46

Y 2.5 2.5 -2 -2 -0.4 -0.4 2.5 0.11 0.11 2.5 0.41 0.41 2.5 0.57 0.57 2.5 0.64 0.64 2.5 0.68 0.68 2.5 0.69 0.69 2.5 0.7 0.7 2.5 0.7 0.7 2.5 0.7 0.7 2.5 0.7 0.7 2.5 0.7 0.7 2.5

0 6.17 -3.39 0 0 -1.33 6.17 0 -0.88 6.17 0 -0.49 6.17 0 -0.25 6.17 0 -0.12 6.17 0 -0.05 6.17 0 -0.02 6.17 0 -0.01 6.17 0 0 6.17 0 0 6.17 0 0 6.17 0 0 6.17

5 1.5 1.75

2 2.1 2.2 2.3 2.4 2.5

2

2.25 2.5 2.75

3.86 4.29 4.73 5.19 5.67 6.17

0.7 0.7 2.5 0.7 0.7 2.5 0.7 0.7 2.5 0.7 0.7

0 0 6.17 0 0 6.17 0 0 6.17 0 0

A DE CONVERGENCIA

a a b b xr xr si(f(a)*f(xr)<0,b,a) xr xr SI(Q12*Q15>0,P13,P12) xr xr

0 f(a) f(b) 0 0 f(xr) f(P13) 0 f(xr) f(P16) 0 f(xr)

Related Documents


More Documents from ""