Revisi~1.pdf

  • Uploaded by: Leion Uchiha
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Revisi~1.pdf as PDF for free.

More details

  • Words: 4,570
  • Pages: 13
Review Exercises for Chapter 3

43. r 

v02 sin 2 32

45. Let f x  x, x  100, dx  0.6. f x  x  f x  f x dx

v0  2200 ftsec

 changes from 10 to 11 dr 

 x 

22002 cos 2 d 16

  10

f x  x  99.4

 180 

d  11  10

1 dx 2x

 100 

1 0.6  9.97 2100

Using a calculator: 99.4  9.96995

 180

r  dr 

22002 20 cos 16 180

  180   4961 feet

 4961 feet 49. Let f x  x, x  4, dx  0.02, f x  1 2x .

4 x, x  625, dx  1. 47. Let f x   4 x  f x  x  f x  f x d x  

Then

1 dx 44x3

f 4.02  f 4  f 4 dx

1 4 624   4 625  f x  x   1 4 625 3 4  5

4.02  4 

1 1 0.02  2  0.02. 4 24

1  4.998 500

4 624  4.9980. Using a calculator, 

51. In general, when  x → 0, dy approaches y. 53. True

55. True

Review Exercises for Chapter 3 1. A number c in the domain of f is a critical number if f c  0 or f is undefined at c.

y 4

f ′(c) is 3 undefined.

f ′(c) = 0

x −4 −3

−1 −2 −3 −4

3. gx  2x  5 cos x, 0, 2

18

(6.28, 17.57)

g x  2  5 sin x 2

 0 when sin x  5 . Critical numbers: x  0.41, x  2.73 Left endpoint: 0, 5 Critical number: 0.41, 5.41 Critical number: 2.73, 0.88 Minimum Right endpoint: 2, 17.57 Maximum

(2.73, 0.88) − 4

2 −1

1

2

4

163

164

Chapter 3

Applications of Differentiation

5. Yes. f 3  f 2  0. f is continuous on 3, 2 , differentiable on 3, 2.





7. f x  3  x  4 y

(a)

f x  x  33x  1  0 for x  13.

6 4

c  13 satisfies f c  0.

2 x

−2

2

4

6

10

−4 −6

f 1  f 7  0 (b) f is not differentiable at x  4.

9.

f x  x23, 1 ≤ x ≤ 8

f x  x  cos x, 

11.

2 f x  x13 3

f x  1  sin x f b  f a 2   2  1 ba 2   2

f b  f a 4  1 3   ba 81 7

f c  1  sin c  1

2 3 f c  c13  3 7 c

13.

149

3

  ≤ x ≤ 2 2



c0

2744  3.764 729

f x  Ax2  Bx  C f x  2Ax  B f x2  f x1 Ax22  x12  Bx2  x1  x2  x1 x2  x1  Ax1  x2  B f c  2Ac  B  Ax1  x2  B 2Ac  Ax1  x2 c

x1  x2  Midpoint of x1, x2

2

15. f x  x  12x  3 f x  x  1 1  x  32x  1 2

 x  13x  7 7 Critical numbers: x  1 and x  3

17. hx  xx  3  x32  3x12 Domain: 0,  3 3 h x  x12  x12 2 2 3 3x  1  x12x  1  2 2x Critical number: x  1

Interval:

 < x < 1

1 < x <

7 3

7 3

< x <



Sign of f x:

f x > 0

f x < 0

f x > 0

Conclusion:

Increasing

Decreasing

Increasing



Interval:

0 < x < 1

Sign of h x:

h x < 0

h x > 0

Conclusion:

Decreasing

Increasing

1 < x <

Review Exercises for Chapter 3 19. ht  14t 4  8t

Test Interval: < t < 2

h t  t 3  8  0 when t  2. Relative minimum: 2, 12

165



2 < t <

Sign of h t:

h t < 0

h t > 0

Conclusion:

Decreasing

Increasing

1 1 cos12t  sin12t 3 4

21. y 

v  y  4 sin12t  3 cos12t (a) When t 

 1 , y  inch and v  y  4 inches/second. 8 4

(b) y  4 sin12t  3 cos12t  0 when

sin12t 3 3   ⇒ tan12t   . cos12t 4 4

3 4 Therefore, sin12t   and cos12t  . The maximum displacement is 5 5 y (c) Period:

1345  41  53  125 inch. 2   12 6 1 6  6 

Frequency:

23. f x  x  cos x, 0 ≤ x ≤ 2 f x  1  sin x f x  cos x  0 when x  Points of inflection:

 3 , . 2 2

Test Interval: Sign of f x: Conclusion:

 3 < x < 2 2

3 < x < 2 2

f x < 0

f x > 0

f x < 0

Concave downward

Concave upward

Concave downward

0 < x <

 2

2 , 2 , 32, 32

25. gx  2x21  x2

y

g x  4x2x2  1 Critical numbers: x  0, ±

(−

1 2

1, 1 2 2

)

1

−2

g x  4  24x

(

1, 1 2 2

)

(0, 0)

2

x

−1

2

−2

g 0  4 > 0

Relative minimum at 0, 0

 

1 1 Relative maximums at ± , 2 2

y

27. 6

(5, f(5))

5 4

(3, f(3))

2 1 −1

 29. The first derivative is positive and the second derivative is negative. The graph is increasing and is concave down.

7

3

−3



1 g ±  8 < 0 2

(6, 0) (0, 0) 2 3 4 5

x 7

166

Chapter 3

Applications of Differentiation

31. (a) D  0.0034t4  0.2352t3  4.9423t2  20.8641t  94.4025 (b)

369

0

29 0

(c) Maximum at 21.9, 319.5 1992 Minimum at 2.6, 69.6 1972 (d) Outlays increasing at greatest rate at the point of inflection 9.8, 173.7 1979

33. lim

x →

2x2 2 2  lim   5 x → 3  5x2 3

35. lim

2x  3 x4

39. f x 

3x2

37. hx 

Discontinuity: x  4 lim

x →

x →

5 cos x  0, since 5 cos x ≤ 5. x



3 2 x

Discontinuity: x  0

2x  3 2  3x  lim 2 x → 1  4x x4

lim

x →

3x  2  2

Vertical asymptote: x  4

Vertical asymptote: x  0

Horizontal asymptote: y  2

Horizontal asymptote: y  2

41. f x  x3 



243 x

43. f x 

x1 1  3x2

Relative minimum: 3, 108

Relative minimum: 0.155, 1.077

Relative maximum: 3, 108

Relative maximum: 2.155, 0.077 0.2

200

−2

−5

5

5

− 1.4

− 200

Vertical asymptote: x  0

Horizontal asymptote: y  0

45. f x  4x  x2  x4  x Domain:  , ; Range:  , 4 f x  4  2x  0 when x  2. f x  2 Therefore, 2, 4 is a relative maximum. Intercepts: 0, 0, 4, 0

y

5

)2, 4)

4 3 2 1

x 1

2

3

5

Review Exercises for Chapter 3 47. f x  x16  x2, Domain: 4, 4 , Range: 8, 8

y

2

2, 8

8

Domain: 4, 4 ; Range: 8, 8

6 4

16  2x2 f x   0 when x  ± 22 and undefined when x  ± 4. 16  x2 f x 

2xx2  24 16  x232

2

(− 4, 0)

(4, 0) x

8

6

2

2

4

6

8

(0, 0)

8

2

2,

8

f  22  > 0

Therefore,  22, 8 is a relative minimum. f  22  < 0

Therefore,  22, 8 is a relative maximum. Point of inflection: 0, 0 Intercepts: 4, 0, 0, 0, 4, 0 Symmetry with respect to origin 49. f x  x  13x  32

y

Domain:  , ; Range:  , 

4

f x  x  12x  35x  11  0 when x  1,

11 , 3. 5

f x  4x  15x2  22x  23  0 when x  1,

( 115 , 1.11(

(1, 0)

(2.69, 0.46) (3, 0)

2

x

−2

4 −2

11± 6 . 5

6

(1.71, 0.60)

−4

f 3 > 0 Therefore, 3, 0 is a relative minimum. f

115 < 0

Therefore,

is a relative maximum. 115, 3456 3125 

Points of inflection: 1, 0,

11 5

6

 11 5

, 0.60 ,

6



, 0.46

Intercepts: 0, 9, 1, 0, 3, 0 51. f x  x13x  323

y

Domain:  , ; Range:  , 

4 3

x1 f x   0 when x  1 and undefined when x  3, 0. x  313x23 2 f x  53 is undefined when x  0, 3. x x  343 3 4 is By the First Derivative Test 3, 0 is a relative maximum and  1,    a relative minimum. 0, 0 is a point of inflection.

Intercepts: 3, 0, 0, 0

2 1

) 3, 0)

)0, 0) x

5

4

2

) 1,

1

1

1.59) 3

2

167

168

Chapter 3

Applications of Differentiation

x1 x1

53. f x 

x

1

y

Domain:  , 1, 1, ; Range:  , 1, 1,  f x 

2 < 0 if x 1. x  12

f x 

4 x  13

4

y

1 2

x 2

2

4

2

Horizontal asymptote: y  1 Vertical asymptote: x  1 Intercepts: 1, 0, 0, 1 55. f x 

4 1  x2

y 5

Domain:  , ; Range: 0, 4

8x  0 when x  0. f x  1  x22 3 81  3x2 .  0 when x  ± f x  1  x23 3

(0, 4)

4

(−

3,3 3

(

(

3,3 3

1

2

(

2 1 −3

−2 −1

x −1

3

f 0 < 0 Therefore, 0, 4 is a relative maximum. Points of inflection:  ± 33, 3 Intercept: 0, 4 Symmetric to the y-axis Horizontal asymptote: y  0

57. f x  x3  x 

y

4 x

10

Domain:  , 0, 0, ; Range:  , 6 , 6,  f x  3x2  1  f x  6x 

4  x2

3x4

 4  0 when x  ± 1. x2 x2

8 6x4  8  0 x3 x3

f 1 < 0 Therefore, 1, 6 is a relative maximum. f 1 > 0 Therefore, 1, 6 is a relative minimum. Vertical asymptote: x  0 Symmetric with respect to origin

5

(1, 6) x

2

1

(−1, −6) −5

1

x

2

0

Review Exercises for Chapter 3





59. f x  x2  9

y

Domain:  , ; Range: 0,  f x 

2xx2  9  0 when x  0 and is undefined when x  ± 3. x2  9



10



5

2x2  9 is undefined at x  ± 3. f x  2 x 9



)0, 9)



) 3, 0)

)3, 0) x

4

f 0 < 0

2

2

4

Therefore, 0, 9 is a relative maximum. Relative minima: ± 3, 0 Points of inflection: ± 3, 0 Intercepts: ± 3, 0, 0, 9 Symmetric to the y-axis 61. f x  x  cos x

y

)2 , 2

Domain: 0, 2 ; Range: 1, 1  2

3 3 , 2 2

f x  1  sin x ≥ 0, f is increasing. f x  cos x  0 when x  Points of inflection:



1)

2

 3 , . 2 2

  3 3 , , , 2 2 2 2



)0, 1)

, 2 2 x

2



Intercept: 0, 1 63. x2  4y2  2x  16y  13  0 (a) x 2  2x  1  4y 2  4y  4  13  1  16

y

x  1  4y  2  4 x  12 y  22  1 4 1 The graph is an ellipse: 2

2

4

(1, 3) 3 2 1

Maximum: 1, 3

(1, 1) x −1

Minimum: 1, 1

1

2

3

(b) x2  4y2  2x  16y  13  0 2x  8y

dy dy  2  16  0 dx dx dy 8y  16  2  2x dx dy 2  2x 1x   dx 8y  16 4y  8

The critical numbers are x  1 and y  2. These correspond to the points 1, 1, 1, 3, 2, 1, and 2, 3. Hence, the maximum is 1, 3 and the minimum is 1, 1.

169

170

Chapter 3

Applications of Differentiation

65. Let t  0 at noon.

(100 − 12t, 0) (0, 0)

L  d 2  100  12t2  10t2  10,000  2400t  244t 2

A

(100, 0)

d

300 dL  2400  488t  0 when t   4.92 hr. dt 61

B (0, −10t)

Ship A at 40.98, 0; Ship B at 0, 49.18 d 2  10,000  2400t  244t 2  4098.36 when t  4.92  4:55 P.M.. d  64 km 67. We have points 0, y, x, 0, and 1, 8. Thus,

y

08 8x y8  or y  . m 01 x1 x1

(0, y)

10

(1, 8)

8 6

Let f x  L 2  x 2 

x 8x 1 . 2

4 2



x f x  2x  128 x1 x



(x, 0)

x  1  x 0 x  12

x 2

4

6

8

10

64x 0 x  13

x x  13  64  0 when x  0, 5 minimum. Vertices of triangle: 0, 0, 5, 0, 0, 10 69.

A  Average of basesHeight 

x 2 s

3s2  2sx  x2

2

s

see figure

s

dA 1 s  xs  x   3s2  2sx  x2 dx 4 3s2  2sx  x2



x−s 2

22s  xs  x  0 when x  2s. 43s2  2sx  x2 A is a maximum when x  2s. 71. You can form a right triangle with vertices 0, 0, x, 0 and 0, y. Assume that the hypotenuse of length L passes through 4, 6. 60 6x y6  or y  04 4x x4

Let f x  L2  x2  y2  x 2  f x  2x  72

x 6x 4 . 2

0 x x 4 x 4  4 2

3 x x  43  144  0 when x  0 or x  4   144.

L  14.05 feet

s

x−s 2 x



m

3s 2 + 2sx − x 2 2

Review Exercises for Chapter 3 csc  

73. csc

L1 or L1  6 csc  6

2    9 or L L2

2

 9 csc

see figure

L1 θ

2  

L2

θ 9

L  L1  L2  6 csc   9 csc

171

6

(π2 − θ(

2    6 csc   9 sec 

dL  6 csc  cot   9 sec  tan   0 d tan3  

3 2  2 ⇒ tan   3 3 3

sec   1  tan2   csc   L6

1  23

23



323  223

313

sec  323  223  tan  213

323  22312 323  22312 9  3323  22332 ft  21.07 ft Compare to Exercise 72 using a  9 and b  6. 13 2 313

75. Total cost  Cost per hourNumber of hours T

v 110 11v 550  5   600 v  60 v 2

dT 11 550 11v 2  33,000   2  dv 60 v 60v 2  0 when v  3000  1030  54.8 mph. d 2T 1100  3 > 0 when v  1030 so this value yields a minimum. dv 2 v 77. f x  x3  3x  1 From the graph you can see that f x has three real zeros. f x  3x2  3 f xn 

f xn 

f xn  f xn 

1.5000

0.1250

3.7500

0.0333

1.5333

2

1.5333

0.0049

4.0530

0.0012

1.5321

n

xn

f xn 

f xn 

f xn  f xn 

1

0.5000

0.3750

2.2500

 0.1667

0.3333

2

0.3333

 0.0371

2.6667

0.0139

0.3472

3

0.3472

 0.0003

2.6384

0.0001

0.3473

n

xn

f xn 

f xn 

f xn  f xn 

1

 1.9000

0.1590

7.8300

0.0203

1.8797

2

1.8797

0.0024

7.5998

0.0003

1.8794

n

xn

1

xn 

f xn  f xn 

xn 

xn 

f xn  f xn 

f xn  f xn 

The three real zeros of f x are x  1.532, x  0.347, and x  1.879.

172

Chapter 3

Applications of Differentiation

79. Find the zeros of f x  x4  x  3. fx  4x3  1 From the graph you can see that f x has two real zeros. f changes sign in 2, 1.

n

xn

f xn 

f xn 

f xn  fxn 

1

1.2000

0.2736

7.9120

0.0346

1.1654

2

1.1654

0.0100

7.3312

0.0014

1.1640

xn 

f xn  fxn 

On the interval 2, 1: x  1.164. f changes sign in 1, 2. f xn 

f xn  fxn 

0.5625

12.5000

0.0450

1.4550

1.4550

0.0268

11.3211

0.0024

1.4526

1.4526

 0.0003

11.2602

0.0000

1.4526

n

xn

1

1.5000

2 3

f xn 

xn 

f xn  fxn 

On the interval 1, 2; x  1.453. 81.

y  x1  cos x  x  x cos x dy  1  x sin x  cos x dx dy  1  x sin x  cos x dx

83.

S  4 r 2. dr  r  ± 0.025 dS  8r dr  89± 0.025  ± 1.8 square cm dS 8 r dr 2 dr 100  100  100 S 4 r 2 r 

2± 0.025 100  ± 0.56% 9

4 V  r3 3 dV  4 r 2 dr  492± 0.025  ± 8.1 cubic cm dV 4 r 2 dr 3 dr 100  100  100 V 43r 3 r 

3± 0.025 100  ± 0.83% 9

Problem Solving for Chapter 3 1. Assume y1 < d < y2. Let gx  f x  dx  a. g is continuous on a, b and therefore has a minimum c, gc on a, b. The point c cannot be an endpoint of a, b because ga  fa  d  y1  d < 0 gb  fb  d  y2  d > 0 Hence, a < c < b and gc  0 ⇒ fc  d.

Problem Solving for Chapter 3 3. (a) For a  3, 2, 1, 0, p has a relative maximum at 0, 0. For a  1, 2, 3, p has a relative maximum at 0, 0 and 2 relative minima. (b) px  4ax3  12x  4xax2  3  0 ⇒ x  0, ±

3a

p x  12ax2  12  12ax2  1 For x  0, p 0  12 < 0 ⇒ p has a relative maximum at 0, 0. (c) If a > 0, x  ±

3a are the remaining critical numbers.

3a  12 3a  12  24 > 0 ⇒ p has relative minima for a > 0.

p ±

(d) 0, 0 lies on y  3x2. Let x  ±

3a. Then

px  a

3a

2

6

3 a

2

a=1 a=3 y

 2ax  2x

2x2

8 7 6 5 4 3 2

 a

For a ≥ 0, there is one relative minimum at 0, 0.

(c) For a < 0, there are two relative minima at x  ±

−2

 2a.

(d) There are either 1 or 3 critical points. The above analysis shows that there cannot be exactly two relative extrema. c  x2 x c c c  2x  0 ⇒ 2  2x ⇒ x3  ⇒ x  x2 x 2

cx 3

2c 2 x3

If c  0, f x  x2 has a relative minimum, but no relative maximum.

2c is a relative minimum, because f  2c > 0. c If c < 0, x   is a relative minimum too. 2 If c > 0, x 

3

3

Answer: all c.

a=2

a=0

a = −1 a = −2 a = −3

(b) For a < 0, there is a relative maximum at 0, 1.

f  x 

a = −1 a = −3

 3x2 is satisfied by all the relative extrema of p.

p x  16x2  2a

fx  

1

2

3

3a  a9  18a   a9.

5. px  x 4  ax2  1

7. f x 

a=1 x

−3



(a) px 

a=3

2

9 Thus, y    3 ± a

4x4

y

a=2

3

x −1 −2

2

−8

a = −2 a=0

173

174

Chapter 3

9. Set

Applications of Differentiation

f b  f a  f ab  a  k. b  a2

Define Fx  f x  f a  fax  a  kx  a2. Fa  0, Fb  f b  f a  fab  a  kb  a2  0 F is continuous on a, b and differentiable on a, b. There exists c1, a < c1 < b, satisfying Fc1  0. Fx  fx  fa  2kx  a satisfies the hypothesis of Rolle’s Theorem on a, c1: Fa  0, Fc1  0. There exists c2, a < c2 < c1 satisfying F c2   0. Finally, F x  f x  2k and F c2   0 implies that k

f  c2 . 2

Thus, k 

11. E   E  

f b  f a  f ab  a f  c2 1  ⇒f b  f a  fab  a  f  c2b  a2. b  a2 2 2

tan 1  0.1 tan  10 tan  tan2  0.1  tan 1  10 tan

1  10 tan 10 sec2  2 tan sec2   10 tan  tan2 10 sec2 0 1  10 tan 

⇒ 1  10 tan 10 sec2  2 tan sec2   10 tan  tan2 10 sec2 ⇒ 10 sec2  2 tan sec2  100 tan sec2  20 tan2 sec2  100 tan sec2  10 tan2 sec2 ⇒ 10  2 tan  10 tan2 ⇒ 10 tan2  2 tan  10  0 tan 

2 ± 4  400  0.90499, 1.10499 20

Using the positive value,  0.7356, or 42.14 . 13. v  2400 sin v  2400 cos  0



 3  2n,  2n, n an integer 2 2

Problem Solving for Chapter 3 x y 4   1 or y   x  4. 3 4 3

15. The line has equation Rectangle:





4 4 Area  A  xy  x  x  4   x2  4x. 3 3 8 8 3 Ax   x  4  0 ⇒ x  4 ⇒ x  3 3 2 Dimensions:

3 2 2

Calculus was helpful.

Circle: The distance from the center r, r to the line

r





r r  1 3 4







x y   1  0 must be r: 3 4



12 7r  12 7r  12  5 12 5

1 1  9 16 5r  7r  12 ⇒ r  1 or r  6.





Clearly, r  1. x y   1 and satisfies x  y  r. 3 4

Semicircle: The center lies on the line

7 12 r r  1 ⇒ r  1 ⇒ r  . No calculus necessary. 3 4 12 7

Thus

17. y  1  x21 y 

2x 1  x22

y 

3 23x2  1 1 0 ⇒ x± ± 3 x2  13 3

y′′:

+++ −−−− −−−− +++ −

3 3

0

3 3



The tangent line has greatest slope at 

19. (a)

x sin x

3 3

3

,

4

and least slope at 33, 34 . 

0.1

0.2

0.3

0.4

0.5

1.0

0.09983

0.19867

0.29552

0.38942

0.47943

0.84147

sin x ≤ x (b) Let f x  sin x. Then fx  cos x and on 0, x you have by the Mean Value Theorem, fc  cosc  Hence,

f x  f 0 , 0 < c < x x0 sin x x



sin x  cosc ≤ 1 x









⇒ sin x ≤ x ⇒ sin x ≤ x

175

More Documents from "Leion Uchiha"