Review 7 Gongjun Yan
Homework • Homework: uniqueness quantifier • ! P(x) = “there exists a unique x such that P(x) is true” • P59 10.h • x !y f(x,y) • Page 37 • P59 12.L • x y (x!=y^ c(x,y) ^c(y,x)) • P49 46 • P73 10.c
P73 10.e
Variants of Quantified Conditional Statements • Statement: x D, P(x) Q(x) • Contrapositive: x D, ~Q(x) ~P(x) • Converse: x D, Q(x) P(x) • Inverse: x D, ~P(x) ~Q(x) • Same logical variants apply to existentially quantified conditional statements
18 September 2008
Introduction & Propositional Logic
4
Rules of Inference for Quantified Statements Universal Modus Ponens
Universal Modus Tollens
x D, P(x) Q(x) P(a) aD Q(a) Universal Instantiation
x D, P(x) aD P(a) 18 September 2008
x D, P(x) Q(x) ~Q(a) aD ~P(a) Existential Generalization
P(c) cD x D, P(x) Predicate Calculus
5
Errors in Decution • Existential Modus Ponens - Doesn't exist • Existential Modus Tollens - Doesn't exist
Inverse Error
xD, P(x) Q(x) ~P(a) ~Q(a) • Converse Error: xD, P(x) Q(x) Q(a) P(a)
Concept • Variants of Quantified Conditional Statements • Rules of Inference for Quantified Statements