1A: 766 1B: 382801*pi 1C:1024/765 2A: 1.005004168055804 2B: 0.693147180559945 2C: 0.463647609000806 3: [x ,y, z]= solve ('3*x+4*y+5*z-2','2*x-3*y+7*z+1','x-6*y+z-3') X=241/92 Y=-21/92 Z=-91/92
A=[3 4 5;2 -3 7;1 -6 1]; b=[2;-1;3]; inv(A)*b X= 2.619565217391304 Y= -0.228260869565217 Z= -0.989130434782609 4: [x,y,z]=solve('3*x-9*y+8*z-2','2*x-3*y+7*z+1','x-6*y+z-3') X=22/5+39/5*y Y=Y Z=-9/5*y-7/5
A=[3 -9 8;2 -3 7;1 -6 1] b=[2;-1;3]; inv(A)*b X=
0
Y=-0.500000000000000 Z=
0
5: (x-y)*(x+y)*(x^2+y^2)
6A: simplify(1/(1+1/(1+1/x))) (x+1)/(2*x+1) simple(1/(1+1/(1+1/x))) (x+1)/(2*x+1) 6B: simplify(((cos(x))^2)-((sin(x))^2)) 2*cos(x)^2-1 simple(((cos(x))^2)-((sin(x))^2)) cos(2*x) 7: 4.106744371757652e+143 8A: solve(8*x+3) -3/8 8B: fzero(inline('8*x+3'),[-13 13]) -0.375000000000000 8C: solve('x^3+p*x+q') 1/6*(-108*q+12*(12*p^3+81*q^2)^(1/2))^(1/3)-2*p/(108*q+12*(12*p^3+81*q^2)^(1/2))^(1/3) -1/12*(-108*q+12*(12*p^3+81*q^2)^(1/2))^(1/3)+p/(108*q+12*(12*p^3+81*q^2)^(1/2))^(1/3)+1/2*i*3^(1/2)*(1/6*(108*q+12*(12*p^3+81*q^2)^(1/2))^(1/3)+2*p/(108*q+12*(12*p^3+81*q^2)^(1/2))^(1/3)) -1/12*(-108*q+12*(12*p^3+81*q^2)^(1/2))^(1/3)+p/(108*q+12*(12*p^3+81*q^2)^(1/2))^(1/3)-1/2*i*3^(1/2)*(1/6*(108*q+12*(12*p^3+81*q^2)^(1/2))^(1/3)+2*p/(108*q+12*(12*p^3+81*q^2)^(1/2))^(1/3))
8D: Las raices reales se encuentran en 1 y 3
9A: plot((x.^3)-x)
9B: 9C: ezplot(('tan(x/2)'),[-pi pi -10 10])
9D: plot(exp(-x.^2))
10:
>> fzero(inline('(x^4)-(2^x)'),-1) ans = -0.861345332309651
>> fzero(inline('(x^4)-(2^x)'),1) ans = 1.239627729522762