Resolucion Prueba 1

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Resolucion Prueba 1 as PDF for free.

More details

  • Words: 411
  • Pages: 4
Resolucion Prueba I Opcional.

1.x2

x2

x2

x2

Largo= 30 Ancho = 20 Alto= x

a) V ( x) = (30 − x)(20 − x) x b) V ( x) = (30 − 2 x)(20 − 2 x) x = 600 x − 100 x 2 + 4 x3 x1 = 0

x2 = 15 x3 = 10 c)

2.- XD nunca aprendi programación lineal jja

a 3.- 0
a a a   *  <   b b b n

n +1

a <  b

n

n

n

a a   *a <   *b b b Por lo tanto como 0 < a < b , o sea a < b , se cumple la desigualdad

B)

1− x < −1 1 + 2x 1− x 1 − x +1 + 2x 2+ x + 1 < 0 = rel="nofollow"> < 0 => <0 1 + 2x 1 + 2x 1 + 2x

=>

2+ x <0

=>

1 + 2x > 0

o

x < −2

=>

x>−

=>

1 2

2 + x > 0 1 + 2x < 0 x > −2

o

x<−

1  ∅ ∪  −2, −  2 

 Sol:  −2, −  2  1

1 2

4.-

Lado= a Area=

a2 3 4

a) Al unir el punto medio de cada lado se forma otro triangulo de lado El siguiente es

a 4

Entonces: A(a ) =

a2 3 4

2

a   3 2 r=  a2 1 4 = * = 1/ 4 4 a2 a2 3 4

2

a   3 a 2 A( ) =   2 4 2

a   3 a 4 A  = 4 4

Con r = 1 / 4 , el area infinita es an = a0 * r n

−1

n

a2 3  1   1  a2 3  1  *  *  = *  *4 = 4 4 4 4 4

Solucion:

a2 3  1  *  4

n

n −1

a2 3  1  *  = 4 4

n −1

=

a 2

b) Suma infinita de los perímetros de los triangulos. P0 = 3a 3 P1 = a 2

3a 1 entonces r = 2 = 3a 2

suma infinta=

a0 3a = = 6a 1 1− r 1− 2

Related Documents

Resolucion Prueba 1
April 2020 0
Resolucion Prueba Iv
June 2020 0
Resolucion
May 2020 34
Resolucion
May 2020 20
Resolucion
November 2019 34