1
regression.nb
In[2]:=
<< Statistics`LinearRegression`
In[19]:=
<< Graphics`MultipleListPlot`
Page 387 ü 1. ü A In[27]:=
data = 880, 0<, 84, 2<, 86, 3<, 88, 4<, 812, 6<, 814, 7<, 816, 8<, 822, 11<, 826, 11<<;
In[28]:=
dplot = ListPlot@dataD;
10 8 6 4 2
5
10
15
20
25
In[29]:=
func = Fit@data, 81, x<, xD
Out[29]=
0.361111 + 0.451389 x
In[30]:=
regress = Regress@data, 81, x<, xD
Out[30]= 9ParameterTable → 1 x
Estimate 0.361111
SE 0.33646
TStat 1.07327
PValue 0.318751
0.451389
0.0233293
19.3486
2.45583 × 10−7
,
RSquared → 0.981645, AdjustedRSquared → 0.979023, EstimatedVariance → 0.313492, Model ANOVATable → Error Total In[31]:=
In[36]:=
DF 1 7 8
SumOfSq 117.361 2.19444 119.556
MeanSq 117.361 0.313492
FRatio 374.367
PValue 2.45583 × 10−7
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD;
=
2
regression.nb Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
In[37]:=
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
In[38]:=
14 12 10 8 6 4 2 5
10
15
20
25
Graphics
Out[38]=
ü B In[39]:=
data = 880, 0<, 84, 2<, 86, 4<, 88, 3<, 812, 7<, 814, 6<, 816, 8<, 822, 11<, 826, 13<<;
In[40]:=
dplot = ListPlot@dataD;
12 10 8 6 4 2
5
10
15
In[41]:=
func = Fit@data, 81, x<, xD
Out[41]=
0.0833333 + 0.493056 x
20
25
3
regression.nb
In[42]:=
Out[42]=
regress = Regress@data, 81, x<, xD 9ParameterTable → 1 x
Estimate 0.0833333
SE 0.452677
TStat 0.18409
PValue 0.859162
0.493056
0.0313875
15.7087
1.02564 × 10−6
,
RSquared → 0.972415, AdjustedRSquared → 0.968474, EstimatedVariance → 0.56746,
ANOVATable →
In[43]:=
In[44]:= In[45]:=
In[46]:=
Model Error Total
DF 1 7 8
SumOfSq 140.028 3.97222 144.
MeanSq 140.028 0.56746
FRatio 246.762
PValue 1.02564 × 10−6
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD; Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
12.5 10 7.5 5 2.5 5
Out[46]=
10
15
20
25
Graphics
ü C In[47]:=
=
data = 880, 2<, 84, 8<, 86, 0<, 88, 6<, 812, 3<, 814, 4<, 816, 13<, 822, 7<, 826, 11<<;
4
regression.nb
In[48]:=
dplot = ListPlot@dataD;
12 10 8 6 4 2
5
10
15
20
25
In[49]:=
func = Fit@data, 81, x<, xD
Out[49]=
2.41667 + 0.298611 x
In[50]:=
regress = Regress@data, 81, x<, xD
Out[50]=
9ParameterTable → 1 x
Estimate 2.41667 0.298611
SE 2.18609 0.151578
TStat 1.10547 1.97002
PValue 0.305495 , 0.0894892
RSquared → 0.356674, AdjustedRSquared → 0.264771, EstimatedVariance → 13.2341, Model ANOVATable → Error Total In[51]:=
In[52]:= In[53]:=
DF 1 7 8
SumOfSq 51.3611 92.6389 144.
MeanSq 51.3611 13.2341
FRatio 3.88096
PValue 0.0894892
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD; Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
5
regression.nb
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
In[54]:=
20 15 10 5
5
10
15
20
25
-5
Graphics
Out[54]=
ü D In[56]:=
data = 880, 4<, 84, 3<, 86, 8<, 88, 6<, 812, 7<, 814, 13<, 816, 2<, 822, 11<, 836, 0<<;
In[57]:=
dplot = ListPlot@dataD;
12 10 8 6 4 2
5
10
15
20
25
30
In[58]:=
func = Fit@data, 81, x<, xD
Out[58]=
6.83255 − 0.0634995 x
In[59]:=
regress = Regress@data, 81, x<, xD
Out[59]=
9ParameterTable → 1 x
35
Estimate 6.83255 −0.0634995
SE 2.42255 0.145586
TStat 2.8204 −0.436166
PValue 0.0257584 , 0.675852
RSquared → 0.0264581, AdjustedRSquared → −0.112619, EstimatedVariance → 20.0271, Model ANOVATable → Error Total
DF 1 7 8
SumOfSq 3.80997 140.19 144.
MeanSq 3.80997 20.0271
FRatio 0.19024
PValue 0.675852
=
6
regression.nb regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
In[60]:=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD;
In[61]:=
Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
In[62]:=
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
In[63]:=
15 10 5
5
10
15
20
25
30
35
-5
Graphics
Out[63]=
ü E In[64]:=
data = 880, 8<, 84, 7<, 86, 6<, 88, 13<, 812, 0<, 814, 2<, 816, 11<, 822, 3<, 826, 4<<;
In[65]:=
dplot = ListPlot@dataD;
12 10 8 6 4 2
5
10
15
In[66]:=
func = Fit@data, 81, x<, xD
Out[66]=
8.20833 − 0.184028 x
20
25
7
regression.nb regress = Regress@data, 81, x<, xD
In[67]:=
9ParameterTable → 1 x
Out[67]=
SE 2.53422 0.175716
Estimate 8.20833 −0.184028
TStat 3.239 −1.0473
PValue 0.0142728 , 0.329771
RSquared → 0.135465, AdjustedRSquared → 0.0119599, EstimatedVariance → 17.7847, DF 1 7 8
Model ANOVATable → Error Total
SumOfSq 19.5069 124.493 144.
MeanSq 19.5069 17.7847
FRatio 1.09684
PValue 0.329771
=
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
In[68]:=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD;
In[69]:=
Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
In[70]:=
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
In[71]:=
20 15 10 5
5
10
15
20
25
-5
Out[71]=
Graphics
ü F In[72]:=
data = 880, 12<, 84, 13<, 86, 8<, 88, 4<, 812, 7<, 814, 6<, 816, 3<, 822, 2<, 826, 0<<;
8
regression.nb
In[73]:=
dplot = ListPlot@dataD;
12 10 8 6 4 2
5
10
15
20
25
In[74]:=
func = Fit@data, 81, x<, xD
Out[74]=
11.6944 − 0.465278 x
In[75]:=
regress = Regress@data, 81, x<, xD
Out[75]=
9ParameterTable → 1 x
Estimate 11.6944 −0.465278
SE 1.24806 0.0865373
TStat 9.37011 −5.37662
PValue 0.0000327972 , 0.00103413
RSquared → 0.805057, AdjustedRSquared → 0.777208, EstimatedVariance → 4.31349, Model ANOVATable → Error Total In[76]:=
In[77]:= In[78]:=
DF 1 7 8
SumOfSq 124.694 30.1944 154.889
MeanSq 124.694 4.31349
FRatio 28.908
PValue 0.00103413
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD; Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
9
regression.nb
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
In[79]:=
15
10
5
5
10
15
20
25
-5
Graphics
Out[79]=
ü2 In[88]:=
data = 8832, 90<, 848, 105<, 864, 112.5<, 880, 105<, 896, 90<<;
In[90]:=
dplot = ListPlot@dataD;
110
105
100
95
40
50
60
70
In[91]:=
func = Fit@data, 81, x<, xD
Out[91]=
100.5 + 1.26353 × 10−16 x
80
90
10
regression.nb
In[92]:=
regress = Regress@data, 81, x<, xD DesignedRegress::badfit : Warning: unable to find a fit that is better than the mean response.
Out[92]=
9ParameterTable → 1 x
Estimate 100.5
SE 15.5885
TStat 6.44708
PValue 0.00756816 ,
2.64775 × 10−16
0.22964
1.153 × 10−15
1
RSquared → $Failed, AdjustedRSquared → $Failed, EstimatedVariance → 135., DF SumOfSq MeanSq 3 405. 135. = ANOVATable → Error Total 4 405.
هﻤﺒﺴﺘﮕﻲ
ﻧﺪارﻧﺪ ﺧﻄﻲ
ü3 In[93]:=
data = 8820, 22<, 822, 24<, 821, 23<, 818, 20<, 819, 21<, 827, 29<<;
In[94]:=
dplot = ListPlot@dataD;
28
26
24
22
20
22
24
In[95]:=
func = Fit@data, 81, x<, xD
Out[95]=
2. + 1. x
In[96]:=
regress = Regress@data, 81, x<, xD
Out[96]= 9ParameterTable → 1 x
26
Estimate
SE
TStat
2.
2.86665 × 10−14
6.97677 × 1013
0.
7.45324 × 10
0.
1.
−15
1.3417 × 10
PValue 14
,
RSquared → 1., AdjustedRSquared → 1., EstimatedVariance → 9.15079 × 10−29 , ANOVATable →
In[97]:=
In[98]:=
Model
DF 1
SumOfSq 50.8333
MeanSq 50.8333
Error Total
4 5
3.66031 × 10−28 50.8333
9.15079 × 10−29
FRatio 5.55508 × 1029
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
PValue 0.
=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD;
11
regression.nb Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
In[99]:=
In[100]:=
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
26
24
22
20
22
24
26
Out[100]=
Graphics
ü4 data = 88−4, 0.5<, 8−4, −.6<, 8−3, −.5<, 83, .5<, 84, .5<, 84, −.6<<;
In[101]:=
In[102]:=
dplot = ListPlot@dataD; 0.4 0.2
-4
-2
2 -0.2 -0.4 -0.6
func = Fit@data, 81, x<, xD
In[103]:=
Out[103]=
−0.0333333 + 0.0365854 x
4
12
regression.nb
regress = Regress@data, 81, x<, xD
In[104]:=
Out[104]=
9ParameterTable → 1 x
Estimate −0.0333333 0.0365854
SE 0.258487 0.0699211
TStat −0.128955 0.523238
PValue 0.903617, 0.628456
RSquared → 0.06406, AdjustedRSquared → −0.169925, EstimatedVariance → 0.400894, DF 1 4 5
Model ANOVATable → Error Total
SumOfSq 0.109756 1.60358 1.71333
MeanSq 0.109756 0.400894
FRatio 0.273778
PValue 0.628456
=
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
In[105]:=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD;
In[106]:=
Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
In[107]:=
In[108]:=
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
1
-4
-2
2 -1
-2 Out[108]=
Graphics
4
13
regression.nb
ü B In[109]:=
data = data ê. 8x_, y_< → 9 99−
Out[109]=
x 10
, 10 y=
2 2 3 3 2 2 , 5.=, 9− , −6.=, 9− , −5.=, 9 , 5.=, 9 , 5.=, 9 , −6.== 5 5 10 10 5 5
In[110]:=
dplot = ListPlot@dataD;
4 2
-0.4
-0.2
0.2
0.4
-2 -4 -6
func = Fit@data, 81, x<, xD
In[111]:=
Out[111]=
−0.333333 + 3.65854 x regress = Regress@data, 81, x<, xD
In[112]:=
Out[112]=
9ParameterTable → 1 x
Estimate −0.333333 3.65854
SE 2.58487 6.99211
TStat −0.128955 0.523238
PValue 0.903617, 0.628456
RSquared → 0.06406, AdjustedRSquared → −0.169925, EstimatedVariance → 40.0894, Model ANOVATable → Error Total
DF 1 4 5
SumOfSq 10.9756 160.358 171.333
MeanSq 10.9756 40.0894
FRatio 0.273778
PValue 0.628456
=
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
In[113]:=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD;
In[114]:=
14
regression.nb
Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
In[115]:=
In[116]:=
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
10
-0.4
-0.2
0.2
0.4
-10
-20 Out[116]=
Graphics
ü C r1=0.06405997912119195` r2 =0.06405997912119195` ﺗﻐﻴﻴﺮهﻤﺎهﻨﮓ ﻃﻮر ﺑﻪ دادﻩهﺎ
آﺮدﻩاﻧﺪ
ü5 ü A data = 881.30, 0.11<, 82.40, .38<, 82.60, .41<, 82.80, .45<, 82.40, .39<, 83.00, .48<, 84.10, .61<<;
In[131]:=
15
regression.nb
In[132]:=
dplot = ListPlot@dataD; 0.6 0.5 0.4 0.3 0.2
1.5
2.5
3
3.5
4
func = Fit@data, 81, x<, xD
In[133]:=
Out[133]=
−0.063111 + 0.175902 x regress = Regress@data, 81, x<, xD
In[134]:=
Out[134]=
9ParameterTable → 1 x
Estimate −0.063111 0.175902
SE 0.0530339 0.0191619
TStat −1.19001 9.17977
PValue 0.28746 , 0.000257308
RSquared → 0.943989, AdjustedRSquared → 0.932787, EstimatedVariance → 0.0015411, Model ANOVATable → Error Total
DF 1 5 6
SumOfSq 0.129866 0.00770551 0.137571
MeanSq 0.129866 0.0015411
FRatio 84.2682
PValue 0.000257308
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
In[135]:=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD;
In[136]:=
Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
In[137]:=
=
16
regression.nb
In[138]:=
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
0.6
0.4
0.2
1.5
2.5
3
3.5
4
Out[138]=
Graphics
ü B data = data ê. 8x_, y_< → 8x2 , y<
In[139]:=
881.69, 0.11<, 85.76, 0.38<, 86.76, 0.41<, 87.84, 0.45<, 85.76, 0.39<, 89., 0.48<, 816.81, 0.61<<
Out[139]=
In[140]:=
dplot = ListPlot@dataD; 0.6 0.5 0.4 0.3 0.2
4
6
8
10
func = Fit@data, 81, x<, xD
In[141]:=
Out[141]=
0.178021 + 0.0295385 x
12
14
16
17
regression.nb
regress = Regress@data, 81, x<, xD
In[142]:=
Out[142]=
9ParameterTable → 1 x
SE 0.0544383 0.00619835
Estimate 0.178021 0.0295385
TStat 3.27015 4.76553
PValue 0.0221949 , 0.00503469
RSquared → 0.819562, AdjustedRSquared → 0.783474, EstimatedVariance → 0.00496463, Model ANOVATable → Error Total
DF 1 5 6
SumOfSq 0.112748 0.0248232 0.137571
MeanSq 0.112748 0.00496463
FRatio 22.7103
PValue 0.00503469
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
In[143]:=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD;
In[144]:=
Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
In[145]:=
In[146]:=
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
0.8
0.6
0.4
0.2
2.5 Out[146]=
Graphics
5
7.5
10
12.5
15
=
18
regression.nb
ü C data = data ê. 8x_, y_< → 8Log@xD, y<
In[148]:=
880.262364, 0.11<, 80.875469, 0.38<, 80.955511, 0.41<, 81.02962, 0.45<, 80.875469, 0.39<, 81.09861, 0.48<, 81.41099, 0.61<<
Out[148]=
In[149]:=
dplot = ListPlot@dataD; 0.6 0.5 0.4 0.3 0.2
0.4
0.6
0.8
1.2
1.4
func = Fit@data, 81, x<, xD
In[150]:=
Out[150]=
−0.00130688 + 0.436253 x regress = Regress@data, 81, x<, xD
In[151]:=
Out[151]=
9ParameterTable → 1 x
Estimate −0.00130688
SE 0.00645851
TStat −0.202349
PValue 0.847619
0.436253
0.006566
66.4412
1.46239 × 10−8
,
RSquared → 0.998869, AdjustedRSquared → 0.998642, EstimatedVariance → 0.0000311288, ANOVATable → Model Error Total
DF 1 5 6
SumOfSq 0.137416 0.000155644 0.137571
MeanSq 0.137416 0.0000311288
FRatio 4414.43
PValue 1.46239 × 10−8
=
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
In[152]:=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD;
In[153]:=
19
regression.nb
Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
In[154]:=
In[155]:=
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
0.6
0.8
1.2
1.4
Out[155]=
Graphics
ü D è!!!! data = data ê. 8x_, y_< → 9 x , y=
In[157]:=
881.14018, 0.11<, 81.54919, 0.38<, 81.61245, 0.41<, 81.67332, 0.45<, 81.54919, 0.39<, 81.73205, 0.48<, 82.02485, 0.61<<
Out[157]=
In[158]:=
dplot = ListPlot@dataD; 0.6 0.5 0.4 0.3 0.2
1.2
1.4
1.6
1.8
20
regression.nb
func = Fit@data, 81, x<, xD
In[159]:=
Out[159]=
−0.511247 + 0.568088 x regress = Regress@data, 81, x<, xD
In[160]:=
Out[160]=
9ParameterTable → 1 x
SE 0.0541346 0.0332099
Estimate −0.511247 0.568088
TStat −9.44399 17.106
PValue 0.00022476 , 0.0000124966
RSquared → 0.9832, AdjustedRSquared → 0.97984, EstimatedVariance → 0.000462247, ANOVATable → Model Error Total
DF 1 5 6
SumOfSq 0.13526 0.00231124 0.137571
MeanSq 0.13526 0.000462247
FRatio 292.614
PValue 0.0000124966
=
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
In[161]:=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD;
In[162]:=
Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
In[163]:=
In[164]:=
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
Graphics
1.4
1.6
1.8
21
regression.nb
ü E In[166]:=
data = data ê. 8x_, y_< → 9
1 x
, y=
880.769231, 0.11<, 80.416667, 0.38<, 80.384615, 0.41<, 80.357143, 0.45<, 80.416667, 0.39<, 80.333333, 0.48<, 80.243902, 0.61<<
Out[166]=
In[167]:=
dplot = ListPlot@dataD; 0.6 0.5 0.4 0.3 0.2
0.4
0.5
0.6
0.7
func = Fit@data, 81, x<, xD
In[168]:=
Out[168]=
0.778439 − 0.896463 x regress = Regress@data, 81, x<, xD
In[169]:=
Out[169]=
9ParameterTable → 1 x
Estimate 0.778439 −0.896463
SE 0.0325635 0.0732069
TStat 23.9053 −12.2456
PValue 2.38631 × 10−6 , 0.0000642482
RSquared → 0.967733, AdjustedRSquared → 0.961279, EstimatedVariance → 0.000887815, ANOVATable → Model Error Total
DF 1 5 6
SumOfSq 0.133132 0.00443908 0.137571
MeanSq 0.133132 0.000887815
FRatio 149.955
PValue 0.0000642482
=
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
In[170]:=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD;
In[171]:=
22
regression.nb
Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
In[172]:=
In[173]:=
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
0.25
0.35
0.4
0.45
0.5
Out[173]=
Graphics
Page 406 ü7 data = 881, 8.1<, 81.1, 7.5<, 81.2, 8.5<, 81.3, 9.5<, 81.4, 9.5<, 81.5, 8.9<, 81.6, 8.6<, 81.7, 10.2<, 81.8, 9.3<, 81.9, 9.1<, 82, 10.5<<;
In[175]:=
23
regression.nb
ü A In[167]:=
dplot = ListPlot@dataD; 0.6 0.5 0.4 0.3 0.2
0.4
0.5
0.6
0.7
ü B func = Fit@data, 81, x<, xD
In[168]:=
Out[168]=
0.778439 − 0.896463 x
ü C a = 0.778438553758127` b = −0.8964633841626545`
ü D 0.778438553758127` − 0.8964633841626545` x ê. x → 1.75
In[176]:=
Out[176]=
−0.790372
24
regression.nb
ü E&F regress = Regress@data, 81, x<, xD
In[177]:=
Out[177]=
9ParameterTable → 1 x
Estimate 6.15909 1.93636
SE 0.924545 0.603106
TStat 6.66176 3.21065
PValue 0.0000924862 , 0.0106478
RSquared → 0.533879, AdjustedRSquared → 0.482087, EstimatedVariance → 0.400111, Model ANOVATable → Error Total
DF 1 9 10
SumOfSq 4.12445 3.601 7.72545
MeanSq 4.12445 0.400111
FRatio 10.3083
PValue 0.0106478
=
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
In[178]:=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD;
In[179]:=
Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
In[180]:=
In[181]:=
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
11 10 9 8
1.2 Out[181]=
Graphics
1.4
1.6
1.8
2
25
regression.nb
ü8 data = 880, 8 + 5 + 8<, 815, 12 + 10 + 14<, 830, 25 + 21 + 24<, 845, 31 + 33 + 28<, 860, 44 + 39 + 42<, 875, 48 + 51 + 44<<;
In[182]:=
In[183]:=
dplot = ListPlot@dataD; 140 120 100 80 60 40
10
20
30
40
50
60
70
50
60
70
ü A func = Fit@data, 81, x<, xD
In[184]:=
Out[184]=
16.9524 + 1.71238 x pl = Plot@func, 8x, 0, 75
In[186]:=
140 120 100 80 60 40 20 10 Out[186]=
Graphics
20
30
40
26
regression.nb
ü B In[187]:=
Show@dplot, plD 140 120 100 80 60 40 20 10
20
30
40
50
60
70
Out[187]=
Graphics
ü C func ê. x → 50
In[188]:=
Out[188]=
102.571
ü D regress = Regress@data, 81, x<, xD
In[194]:=
Out[194]=
9ParameterTable → 1 x
Estimate 16.9524 1.71238
SE 3.63867 0.0801208
TStat 4.65895 21.3725
PValue 0.00959707 , 0.0000283413
RSquared → 0.991319, AdjustedRSquared → 0.989149, EstimatedVariance → 25.2762, Model ANOVATable → Error Total
DF 1 4 5
SumOfSq 11545.7 101.105 11646.8
MeanSq 11545.7 25.2762
FRatio 456.783
PValue 0.0000283413
=
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
In[195]:=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD;
In[196]:=
27
regression.nb
Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
In[197]:=
In[198]:=
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
10
20
30
40
50
60
70
Out[198]=
Graphics
ü E regress = Regress@data, 81, x<, x, RegressionReport → 8AdjustedRSquared
In[200]:=
8AdjustedRSquared → 0.989149<
Out[200]=
ü 11 data = 881, 0.1<, 82, 0.2<, 83, 0.25<, 84, 0.4<, 85, 0.4<, 86, 0.5<, 87, 1<, 88, 1<<;
In[203]:=
ﺑﻴﻦ راﺑﻄﻪ
ln(x) , -ln(y) اﺳﺖ ﺧﻄﻲ data = data ê. 8x_, y_< → 8Log@xD, −Log@yD< êê N
In[204]:=
880., 2.30259<, 80.693147, 1.60944<, 81.09861, 1.38629<, 81.38629, 0.916291<, 81.60944, 0.916291<, 81.79176, 0.693147<, 81.94591, 0.<, 82.07944, 0.<<
Out[204]=
28
regression.nb
In[205]:=
dplot = ListPlot@dataD;
2
1.5
1
0.5
0.5
1
1.5
2
func = Fit@data, 81, x<, xD
In[206]:=
Out[206]=
2.41171 − 1.08157 x regress = Regress@data, 81, x<, xD
In[207]:=
Out[207]=
9ParameterTable → 1 x
Estimate 2.41171 −1.08157
SE 0.168761 0.114036
TStat 14.2907 −9.48446
PValue 7.34449 × 10−6 , 0.0000782631
RSquared → 0.937471, AdjustedRSquared → 0.927049, EstimatedVariance → 0.0450385, Model ANOVATable → Error Total
DF 1 6 7
SumOfSq 4.05144 0.270231 4.32167
MeanSq 4.05144 0.0450385
FRatio 89.955
PValue 0.0000782631
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
In[208]:=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD;
In[209]:=
Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
In[210]:=
=
29
regression.nb
In[211]:=
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
1
1.5
2
-0.5 Out[211]=
Graphics
ü 12 data = 881280, 5<, 81300, 10<, 81320, 31<, 81340, 31<, 81360, 50<, 81380, 70<<;
In[212]:=
In[213]:=
dplot = ListPlot@dataD; 70 60 50 40 30 20 10 1300
1320
1340
func = Fit@data, 81, x<, xD
In[214]:=
Out[214]=
−812.667 + 0.635714 x
1360
1380
30
regression.nb
regress = Regress@data, 81, x<, xD
In[215]:=
Out[215]=
9ParameterTable → 1 x
Estimate −812.667 0.635714
SE 97.3472 0.0731693
TStat −8.34812 8.68827
PValue 0.00112552 , 0.00096606
RSquared → 0.949677, AdjustedRSquared → 0.937096, EstimatedVariance → 37.4762, Model ANOVATable → Error Total
DF 1 4 5
SumOfSq 2828.93 149.905 2978.83
MeanSq 2828.93 37.4762
FRatio 75.486
PValue 0.00096606
=
regress = Regress@data, 81, x<, x, RegressionReport → 8FitResiduals, SinglePredictionCITable, ParameterConfidenceRegion
In[216]:=
8observed, predicted, se, ci< = Transpose@HSinglePredictionCITable ê. regressL@@1DDD;
In[217]:=
Hxval = Map@First, dataD; predicted = Transpose@8xval, predicted
In[218]:=
In[219]:=
MultipleListPlot@data, predicted, lowerCI, upperCI, SymbolShape → 8PlotSymbol@DiamondD, None, None, None<, PlotJoined → 8False, True, True, True<, PlotStyle → 8Automatic, Automatic,
[email protected], .05
1300 -20 Out[219]=
Graphics func ê. x → 1400
In[220]:=
Out[220]=
77.3333
1320
1340
1360
1380