MATHEMATICS Sample test papers with hints Class-X (CBSE) Rational Expression Formula used:(a + b)2 = a2 +b2 + 2ab (a - b)2 = a2 +b2 - 2ab a3 + b3 = (a + b) (a2 – ab + b2) a3 - b3 = (a - b) (a2 + ab + b2) (a + b)3 = a3 + 3a2b + 3ab2 + b3 (a - b)3 = a3 - 3a2b + 3ab2 - b3 (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 –ab –bc -ca)
Q.A Express the following in lowest terms (x
2 x 4 − 162 + 9 ( 2 x − 6)
) 1. x +3 ] 2
[ans.
2.
x −1 y
x(x 2 - 3x + 2y) x 2 y - 2xy
[Ans.
] ( x 2 + 3x + 2)( x 2 + 5 x + 6) x 2( x 2 + 4 x + 3)
3.
[Ans.
x+2 x
]
8 x 3 − 125
4. 4x + 10x + 25 2x-5]
[Ans.
2
5.
3 x 2 − 24 2 x 2 − 15 x + 22
3( x 2 + 2 x + 4)` 2 x − 11
6.
[Ans.
]
x 3 − 3x + 2 2x 3 − 4x 2 + 6x − 4
( x + 2)( x − 1) 2( x − 2)() x + 3
8.
]
5 x 2 − 15 x 3 1− 9x 2
5x 2 3x + 1
7.
[Ans.
[Ans.
]
x 3 + 216 x − 6 x 3 + 36 x 2
[Ans.
4
x+6 x2
]
9.
x 2 + 2x + 4 x 4 + 4 x 2 + 16
1 x 2 − 2x + 4
10.
[Ans.
]
x 3 + 4 x 2 + 3x x 4 − 10 x 2 + 9
[Ans.
x ( x − 1)( x − 3)
] Q.B Simplify 1.
1 1 2 4 − − − 1− x 1 + x x 2 +1 x 4 +1
[Ans. x
8
2.
1 1 2 4 + + + 1− z 1+ z z +1 z4 +1
[Ans. z
8
3.
1 1 2x − + 1+ x + x 2 1− x + x 2 1+ x 2 + x 4
[Ans. 0]
8 −1
]
8 −1
]
4.
1 1 1 ax bx cx + + + + + x + a x + b x + c x 3 + ax 2 x 3 + bx 2 x 3 + cx 2
5.
x3 x2 1 1 − − + x −1 x + 1 x −1 x +1
6.
7.
3
[Ans. x ] [Ans.x2+2]
y x z + + ( x − y )( x − z ) ( y − z )( y − x) ( z − x)( z − y )
[Ans.0]
2 3 + x2 − x − 6 x2 + x − 2 4 x 2 − 4x + 3
5 x − 11 4x + 8
[Ans.
]
8.
x y y z z x − − − y x z y x z 1 1 1 1 1 1 2 − 2 2 − 2 2 − 2 y y z z x x
9.
1 1 1 − 3 y − ÷ y − y3 − y3 y y
[Ans.-x2y2z2] [Ans.
10.
x+3 x+2 x +1 + + x 2 − 3x + 2 x 2 − 4 x + 3 x 2 − 5 x + 6
11.
x4 − y4 x 2 + xy x 5 − y 3 x 3 x y ÷ 2 ÷ − 2 xy x 3 + y 3 y x x − 2 xy + y
12.
y2 + x2 y2 − x2 x+ y y−x − 2 − 3 2 ÷ 3 3 y + xy + x 2 y − xy + x 2 y + x3 y +x
13.
1 2x − 1 2x − 2 2x −1 4x −1
1 2 x( 2 x − 1)
14.
16.
[Ans
x 2 y( x 2 + y 2 ) x3 + y3
x( x 3 + y 3 ) x4 + y3 + x 2 y2
]
]
] ]
]
a a +b b
)
a + b ( a − b)
+
2 b a+ b
x 3 + y 3 + z 3 − 3xyz x 2 + y 2 + z 2 − xy − yz − zx
Q.C
[Ans.
3 x 2 − 14 ( x − 1)( x − 2)( x − 3)
2
[Ans.
x3 + y3 ( x + y ) 2 − 3xy xy × ( x − y ) 2 + 3xy ÷ x 3 − y 3 x2 − y2
15. (
[Ans.
1 y − y
−
ab a−b
[Ans. xy] [Ans.- (
2( a b − b a )
)
a + b (a − b)
]
[Ans + y +z]
x3 + y3 x3 − y3 x2 − y2 ,Q = and , R = xy ( x − y ) 2 + 3xy ( x + y ) 2 − 3xy
If lowest form. xy]
[Ans-
1
If A = 4 x + x , find A + 16 x 4 + 9 x 2 + 1 x(4 x 2 + 1)
If m = ]
1 A
[Ans.
] x +1 x −1
and n =
x −1 x +1
4x x 2 −1
If
If x =
26 54
,y=
28 54
x +1
7x x 2 + x − 12
to get
[Ans.
4 x+4
?
[Ans.
3 x−3
]
find the value of A and B. then find the value of
What should be added to
If P =
[Ans. x
to get x −1 ?
What should be subtracted from 5 x − 13 A B = + x 2 − 5x + 6 x − 2 x − 3
x 4 + 14 x 2 + 1 4 − 2x 2 +1
find the value of m2 + n2 –mn
What should be added to x −1 x +1 ]
− 2 x 3 + 10 x − 4 3x − 4
express [ P × Q ÷ R ] as a rational expression in
2 x 3 − 5x + 1 3x − 4
x3 + y3 y2 ÷ x + x− y x − y
to get additive inverses of
− 5x + 3 3x − 4
. [Ans.
]
x +1 x −1
and Q =
x −1 x +1
, then find
P−Q P+Q
[Ans.
2x x 2 +1
]