Quiz Ii.pdf

  • Uploaded by: Pedro J Barrios Argel
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Quiz Ii.pdf as PDF for free.

More details

  • Words: 301
  • Pages: 6
Figura: 2

Sg =

6M b2t

Tenemos que :

" 1000 N % " 1000 mm % 6 M = 5800 kNm ⋅ $ '⋅$ ' = 5800 ×10 Nmm # 1 kN & # 1 m & Sg =

6 ( 5800 ×10 6 Nmm ) 2

(1000 mm) (300 mm)

Sg = 116 MPa Calculando el factor de intensidad de esfuerzos:

a 100 mm = = 0.1 b 1000 mm

K I = 1.12 ⋅ Sg π a

Para a/b ≤0.4

K I = 1.12 ⋅116 MPa π ( 0,1 m ) K I = 72.82 MPa m Entonces, el factor de seguridad contra fractura frágil es:

Fs =

K IC 120 MPa m = K I 72.82 MPa m

Fs = 1.65

Solución segundo punto: Asumiendo que F = 1.12

K I = K IC = 1.12 ⋅ Sg

1 # K IC & (( π aC ⇒ aC = %% π $ 1.12 ⋅ Sg '

1 " 120 MPa m % aC = $ ' π # 1.12 ⋅116 MPa &

aC = 271.5 mm

2

2

aC 271.5 mm Fs = = a 100 mm Fs = 2.7

Solución tercer punto: El esfuerzo de Mises para un estado de esfuerzo bidimensional es dado:

(

6 ⋅ 5800 ×106 N ⋅ mm

6M σx = 2 = bt 900 mm

(

)

2

) (300 mm)

σ x = 143 MPa

σ Mises = σ x2 + σ y2 − σ xσ y + 3τ xy2 σ Mises = 143 MPa

345 MPa Fs = 143 MPa Fs = 2.4

Conclusión: Como, el factor de seguridad contra fractura frágil (Fs = 1.65) es mucho menor que el factor de seguridad contra fractura dúctil (Fs = 2.4), entonces se espera que la viga del puente falle frágilmente.

Related Documents

Quiz
November 2019 39
Quiz
May 2020 34
Quiz
November 2019 35
Quiz
May 2020 33
Quiz
October 2019 45
Quiz
November 2019 39

More Documents from ""

Quiz Ii.pdf
October 2019 11
October 2019 22
June 2020 9
Bp 68.docx
May 2020 9
Crm.docx
December 2019 26