Comenzado el Estado Finalizado en Tiempo empleado Puntos Calificación
sábado, 19 de marzo de 2016, 09:08 Finalizado sábado, 19 de marzo de 2016, 09:41 33 minutos 2 segundos 5,0/6,0 41,7 de 50,0 (83%)
Pregunta 1 Correcta Puntúa 1,0 sobre 1,0
Marcar pregunta
Enunciado de la pregunta La solución de la ecuación diferencial dydx=4x−5dydx=4x−5es: Seleccione una: a. y=2x2−5x+Cy=2x2−5x+C
b. y=x2−5+Cy=x2−5+C
c. y=x22−5x5+Cy=x22−5x5+C
d. y=2x−5x+C−−−−−−−−−−√y=2x−5x+C
Retroalimentación Respuesta correcta La respuesta correcta es: y=2x2−5x+Cy=2x2−5x+C
Pregunta 2 Correcta Puntúa 1,0 sobre 1,0
Marcar pregunta
Enunciado de la pregunta La solución general de la ecuación diferencial dydx=x−2+2xdydx=x−2+2x es Seleccione una: a. y=−1x+x2+Cy=−1x+x2+C b. y=−x2+x+Cy=−x2+x+C c. y=−1x2+x2+Cy=−1x2+x2+C d. 1y=−1x+x2+C1y=−1x+x2+C Retroalimentación La respuesta correcta es: y=−1x+x2+Cy=−1x+x2+C Pregunta 3 Correcta Puntúa 1,0 sobre 1,0
Marcar pregunta
Enunciado de la pregunta Al resolver ∫(t−2t)(t+2t)dt∫(t−2t)(t+2t)dt se tiene: Seleccione una: a. t33+4t3+k.t33+4t3+k. b. t33+4t+k.t33+4t+k. c. t33+1t.t33+1t.
d. t33−12t3+k.t33−12t3+k. Retroalimentación La respuesta correcta es: t33+4t+k.t33+4t+k. Pregunta 4 Correcta Puntúa 1,0 sobre 1,0
Marcar pregunta
Enunciado de la pregunta Al integrar ∫[u5−u3+u2]du∫[u5−u3+u2]du se tiene: Seleccione una: a. u66+u44+u33.u66+u44+u33. b. u55−u33+u22+K.u55−u33+u22+K. c. u66−u44+u33+K.u66−u44+u33+K. d. u66+u44−u3+K.u66+u44−u3+K. Retroalimentación La respuesta correcta es: u66−u44+u33+K.u66−u44+u33+K. Pregunta 5 Correcta Puntúa 1,0 sobre 1,0
Marcar pregunta
Enunciado de la pregunta
Con base en la gráfica
Sino puede ver la imagen, clic aquí
El área de la región sombreada es Seleccione una: a. 323 u2323 u2
b. 13 u213 u2
c. 32 u232 u2
d. 9 u29 u2
Retroalimentación Respuesta correcta La respuesta correcta es: 323 u2323 u2
Pregunta 6 Incorrecta Puntúa 0,0 sobre 1,0
Marcar pregunta
Enunciado de la pregunta
Observe la región sombreada
Si no puede ver la imagen, clic aqui
Cual integral o integrales son necesarias para calcular el área de la región sombreada Seleccione una:
a. ∫30(−x3+3x2)dx
b. \(\int_0^1(x^3-3x^2)dx\)
c. \(\int(x^3+3x^2)dx\)
d. \(\int_0^3x-(x^3+3x^2)dx\)
Retroalimentación Respuesta incorrecta. La respuesta correcta es: \(\int_0^3(-x^3+3x^2)dx\) Comenzado el Estado Finalizado en Tiempo empleado Puntos Calificación
domingo, 20 de marzo de 2016, 07:52 Finalizado domingo, 20 de marzo de 2016, 08:07 14 minutos 57 segundos 4,0/6,0 33,3 de 50,0 (67%)
Pregunta 1 Correcta Puntúa 1,0 sobre 1,0
Marcar pregunta
Enunciado de la pregunta La solución general de la ecuación diferencial dydx=x2ydydx=x2y es: Seleccione una:
a. y=x22+C−−−−−−√y=x22+C b. y=x22+Cy=x22+C c. y=x22+x+C−−−−−−−−−√y=x22+x+C d. y=x22+x33+Cy=x22+x33+C Retroalimentación La respuesta correcta es: y=x22+C−−−−−−√y=x22+C Pregunta 2 Incorrecta Puntúa 0,0 sobre 1,0
Marcar pregunta
Enunciado de la pregunta La solución general de la ecuación diferencial dydt=t3y2dydt=t3y2 es: Seleccione una: a. −1y=t44+C−1y=t44+C b. 1y=t44+C1y=t44+C c. y=t44+t3Cy=t44+t3C d. y=t44+Cy=t44+C Retroalimentación La respuesta correcta es: −1y=t44+C−1y=t44+C Pregunta 3 Correcta Puntúa 1,0 sobre 1,0
Marcar pregunta
Enunciado de la pregunta Al calcular ∫2x3−3xdx,∫2x3−3xdx, se obtiene: Seleccione una: a. x33−3ln|x|+C.x33−3ln|x|+C. b. 2x33−ln|x|+C.2x33−ln|x|+C. c. x33−ln|x|+C.x33−ln|x|+C. d. 2x33−3ln|x|+C.2x33−3ln|x|+C. Retroalimentación La respuesta correcta es: 2x33−3ln|x|+C.2x33−3ln|x|+C. Pregunta 4 Correcta Puntúa 1,0 sobre 1,0
Marcar pregunta
Enunciado de la pregunta Al integrar ∫12x+x√+1x2dx∫12x+x+1x2dx se obtiene Seleccione una: a. F(x)=12lnx+23x32−1x+c.F(x)=12lnx+23x32−1x+c. b. F(x)=ln(2x)+23x32−1x+c.F(x)=ln(2x)+23x32−1x+c. c. F(x)=12lnx+23x32+ln(x2)+c.F(x)=12lnx+23x32+ln(x2)+c. d. F(x)=ln(2x)+23x32+ln(x2)+c.F(x)=ln(2x)+23x32+ln(x2)+c. Retroalimentación
La respuesta correcta es: F(x)=12lnx+23x32−1x+c.F(x)=12lnx+23x32−1x+c. Pregunta 5 Correcta Puntúa 1,0 sobre 1,0
Marcar pregunta
Enunciado de la pregunta
Con base en la gráfica
Sino puede ver la imagen, clic aquí
El área de la región A1A1 es Seleccione una: a. 1,07 u21,07 u2
b. 3,15 u23,15 u2
c. 2,08 u22,08 u2
d. 0,07 u20,07 u2
Retroalimentación Respuesta correcta La respuesta correcta es: 1,07 u21,07 u2 Pregunta 6 Incorrecta Puntúa 0,0 sobre 1,0
Marcar pregunta
Enunciado de la pregunta
Con base en la gráfica
Sino puede ver la imagen, clic aquí
El área de la región A3A3 es Seleccione una: a. 2,08 u22,08 u2
b. 1,07 u21,07 u2
c. 3,15 u23,15 u2
d. 0,07 u2
Retroalimentación Respuesta incorrecta.
La respuesta correcta es: \(2,08\ u^2\)