QUESTION 2 : DERIVATION OF THE SLUTSKY EQUATION FOR A CHANGE IN THE CONSUMPTION OF COMMODITY X2 AS A RESULT OF A CHANGE IN THE PRICE OF COMMODITY X1.
with budget constraint Suppose a consumers utility function is U ( X 1 , X 2 , X 3 )
, I = P1 X 1 + P2 X 2 + P3 X 3
then he can maximize his utility as shown below.
L = u ( x1 , x 2 , x3 ) + λ ( I − p1x1 − p 2x 2 − p 3x 3) ∂L ∂u = − λ p1 = 0 ∂x1 dx1 u1 − λ p1 = 0 .....................(1) ∂L ∂u = − λ p2 = 0 dx2 dx2 u2 − λ p2 = 0 ...................(2) ∂L ∂u = − λ p3 = 0 ∂x3 ∂x3 u3 − λ p3 = 0 .....................(3) ∂L = I − p1 x1 − p 2 x 2 − p3 x3 = 0 ∂λ I − p1 x1 − p2 x2 − p3 x3 = 0 ...............(4)
Where
is the Lagrange function and
is the Lagrange multiplier which represents the marginal
λ
L
utility of money and
>0. Taking the total differentials of (1),(2),(3), and (4), we have;
λ
u11dx1 + u12 dx2 + u13 dx3 − λ dp1 − p1 d λ = 0 u21dx2 + u22 dx2 + u23 dx3 − λ dp2 − p2 d λ = 0 u31dx3 + u32 dx2 + u33 dx3 − λ dp3 − p3 d λ = 0 − p1dx1 − p2 dx2 − p3 dx3 − x1 dp1 − x2 dp2 − x3 dp3 + dI = 0
In matrix form, we have; u11 u21 u31 − p1
u12
u13
u22
u 23
u32
u 33
− p1 dx1 λ dp1 λ − p 2 dx2 λ dp 2 = 0 = 0 − p 3 dx3 λ dp3 0 d λ x1dp1 + x2dp 2 + x3dp 3 − dI x1
− p2 − p3
let u11
u12
u13
∆ = u21
u22
u23
u31
u32
u33
Now, the total change in x2 as a result of a change in p1 , we have
λ u13 0 u23 0 u3 3 x1 − p3 ∆
u11 u21 u31 ∂x2 − p1 = ∂p
− p1 − p2 − p3 0
u21
u23
− p2
u11
u13
− p1
u31
u33
− p3
u21
u23
− p2
u31
u33 ∆
− p3
− p1 ∂x2 =λ ∂p1
− p3 ∆
0
+ x1
u21
u 23
− p2
u 11
u 13
− p1
let ∆12 = u31
u 33
− p3
and ∆ 42 = u 21
u 23
− p2
u 31
u 33
− p3
− p1
− p3
therefore, ∂x2 ∆ ∆ = λ 12 + x1 42 ∂p1 ∆ ∆
0
0 0 0 dp1 λ 0 0 dp2 0 λ 0 dp3 x2 x3 − 1 dI
Now, we consider a change in x2 with respect to a change in income,
u11
0
u13
− p1
u21
0
u23
− p2
u31
0
u33
− p3
∂x2 − p1 − 1 − p3 = ∂I ∆ u11
u13
− p1
u21
u23
− p2
∂x2 u31 = ∂I
u33 ∆
− p3
∂x2 ∆ = − 42 ∂I ∆
0
................(5)
Also, we try to investig1ate the effect of a change in p1 holding p2, p3 and I (income) constant. We then have;
3
∴ ∑ pi dxi = 0 i =1
3
The budget line is also given as I= ∑ pi xi 1=1
3
3
i =1
i =1
dI = ∑ pi dxi + ∑ xi dpi but 3
∑ p dx i =1
i
i
=0 3
∴ dI = ∑ xi dpi i =1
with p2 and p3 constant, then dpi = 0, i = 2, 3 ∴ dI = x1 p1
u = u ( x1 , x2 , x3 ) du = u1dx1 + u 2 dx2 + u3dx3 = 0 3
∴ ∑ ui dxi = 0 i =1
but, from (1) u i = λ pi so,
3
λ ∑ pi dxi = 0 i =1
but λ ≠ 0, (since the marginal utility of money is positive).
Hence;
u11 u12 u21 u22 u31 u32 − p1 − p2
u13 u23 u33 − p3
u11 u21 u31 − p1 ∂x2 − = ∂p1 u
− p1 dx1 λ dp1 − p2 dx2 0 0 = − p3 dx3 0 0 0 d λ 0 0
λ u13 − p1 0 u 23 − p 2 0 u33 − p3 0 − p3 0 ∆
but u22
u23
− p2
∆12 = λ u 32
u 33
− p3
− p2
∴
− p3
0
∂x2 ∆12 .......................... (6) − =λ ∂p1 u ∆
, Now, from (5) and (6), we have that
∂x2 ∂x2 ∂x 2 = − − x1 ∂p1 ∂p1 u ∂I
of a This represents the Slutsky equation of a change in the quantity of commodity x2 as a result change in the price of commodity X.