Question 2

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Question 2 as PDF for free.

More details

  • Words: 945
  • Pages: 5
QUESTION 2 : DERIVATION OF THE SLUTSKY EQUATION FOR A CHANGE IN THE CONSUMPTION OF COMMODITY X2 AS A RESULT OF A CHANGE IN THE PRICE OF COMMODITY X1.

with budget constraint Suppose a consumers utility function is U ( X 1 , X 2 , X 3 )

, I = P1 X 1 + P2 X 2 + P3 X 3

then he can maximize his utility as shown below.

L = u ( x1 , x 2 , x3 ) + λ ( I − p1x1 − p 2x 2 − p 3x 3) ∂L ∂u = − λ p1 = 0 ∂x1 dx1 u1 − λ p1 = 0 .....................(1) ∂L ∂u = − λ p2 = 0 dx2 dx2 u2 − λ p2 = 0 ...................(2) ∂L ∂u = − λ p3 = 0 ∂x3 ∂x3 u3 − λ p3 = 0 .....................(3) ∂L = I − p1 x1 − p 2 x 2 − p3 x3 = 0 ∂λ I − p1 x1 − p2 x2 − p3 x3 = 0 ...............(4)

Where

is the Lagrange function and

is the Lagrange multiplier which represents the marginal

λ

L

utility of money and

>0. Taking the total differentials of (1),(2),(3), and (4), we have;

λ

u11dx1 + u12 dx2 + u13 dx3 − λ dp1 − p1 d λ = 0 u21dx2 + u22 dx2 + u23 dx3 − λ dp2 − p2 d λ = 0 u31dx3 + u32 dx2 + u33 dx3 − λ dp3 − p3 d λ = 0 − p1dx1 − p2 dx2 − p3 dx3 − x1 dp1 − x2 dp2 − x3 dp3 + dI = 0

In matrix form, we have;  u11   u21  u31   − p1

u12

u13

u22

u 23

u32

u 33

− p1   dx1   λ dp1  λ      − p 2   dx2   λ dp 2  = 0 =  0 − p 3   dx3   λ dp3       0   d λ   x1dp1 + x2dp 2 + x3dp 3 − dI   x1

− p2 − p3

let u11

u12

u13

∆ = u21

u22

u23

u31

u32

u33

Now, the total change in x2 as a result of a change in p1 , we have

λ u13 0 u23 0 u3 3 x1 − p3 ∆

u11 u21 u31 ∂x2 − p1 = ∂p

− p1 − p2 − p3 0

u21

u23

− p2

u11

u13

− p1

u31

u33

− p3

u21

u23

− p2

u31

u33 ∆

− p3

− p1 ∂x2 =λ ∂p1

− p3 ∆

0

+ x1

u21

u 23

− p2

u 11

u 13

− p1

let ∆12 = u31

u 33

− p3

and ∆ 42 = u 21

u 23

− p2

u 31

u 33

− p3

− p1

− p3

therefore, ∂x2 ∆ ∆ = λ 12 + x1 42 ∂p1 ∆ ∆

0

0 0 0   dp1    λ 0 0   dp2  0 λ 0   dp3    x2 x3 − 1  dI 

Now, we consider a change in x2 with respect to a change in income,

u11

0

u13

− p1

u21

0

u23

− p2

u31

0

u33

− p3

∂x2 − p1 − 1 − p3 = ∂I ∆ u11

u13

− p1

u21

u23

− p2

∂x2 u31 = ∂I

u33 ∆

− p3

∂x2 ∆ = − 42 ∂I ∆

0

................(5)

Also, we try to investig1ate the effect of a change in p1 holding p2, p3 and I (income) constant. We then have;

3

∴ ∑ pi dxi = 0 i =1

3

The budget line is also given as I= ∑ pi xi 1=1

3

3

i =1

i =1

dI = ∑ pi dxi + ∑ xi dpi but 3

∑ p dx i =1

i

i

=0 3

∴ dI = ∑ xi dpi i =1

with p2 and p3 constant, then dpi = 0, i = 2, 3 ∴ dI = x1 p1

u = u ( x1 , x2 , x3 ) du = u1dx1 + u 2 dx2 + u3dx3 = 0 3

∴ ∑ ui dxi = 0 i =1

but, from (1) u i = λ pi so,

3

λ ∑ pi dxi = 0 i =1

but λ ≠ 0, (since the marginal utility of money is positive).

Hence;

 u11 u12   u21 u22  u31 u32   − p1 − p2

u13 u23 u33 − p3

u11 u21 u31 − p1 ∂x2 − = ∂p1 u

− p1  dx1   λ   dp1    − p2  dx2   0   0  = − p3  dx3   0   0       0  d λ   0  0 

λ u13 − p1 0 u 23 − p 2 0 u33 − p3 0 − p3 0 ∆

but u22

u23

− p2

∆12 = λ u 32

u 33

− p3

− p2



− p3

0

∂x2 ∆12 .......................... (6) − =λ ∂p1 u ∆

, Now, from (5) and (6), we have that

∂x2 ∂x2 ∂x 2 = − − x1 ∂p1 ∂p1 u ∂I

of a This represents the Slutsky equation of a change in the quantity of commodity x2 as a result change in the price of commodity X.

Related Documents

Question 2
November 2019 8
Question 2
November 2019 8
Question 2
May 2020 0
Question 2
June 2020 1
Question 2
November 2019 3
Question 2
November 2019 1