!#" $%!$ &('' )+*,.- %/02143563 $Id: quantic physics.lyx,v 1.31 2005/01/24 08:18:34 itay Exp $
47 8:9;8<8:9;=?>A@6BDC E FGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFIFHFGFHFGFKJML(NGJMOPJRQTSNGU V E FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFXWYV[Z]\<^_`JMJbacXdPJRJMegfhJMU;aINiL(ejYaHj`Q k2lmaINiQ e!k V[F V E FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGF(WYVZ:no\f2_pjYaIQ q!j`NraINGQ e V[F n s FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFGFutGJML(vwxtiJRNiJRNiL(y V[F E s FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGF{zHJR|Xe%L(N}kq!~NGk VF E{F V ^ FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHF]JbaIdjpj`Nrcj`qJRc VF E{F n ^ FHFGFHFHFGFHFHFGFIFIFGFHFHFGFGFHFHFGFHFHFGFHFIF!FHUF~DtGj`|XJML(qUaIcXNGJR+Q v|qtGtGJmJMdjpj`j`NU;aI NiU kL(j`eUL(j`cOPJRQutgljYaIWYe!VZ:kn
;Lf~U j`qKq2U vo~Dj2U _pj`j`Q |XUhJm zIjp~ Uu_pj`JM|XJRd V[F s FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFU kj`L:ctgjYaIe%kL~Dj`q VF s F V FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFNiJRNiL(ykzGj`vkdPzIkL:czHj`JRL(ejp~ V[F ^ FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFW Young ftGJMNi~|JRdmc_pj`JR|XJMd V[F ^]F V FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFL(vizIJRJMNGdj`Q FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFzGj`e%~jpj`k2lPJRe}_pj`U NiS;L#JMj`|XJMdPkL:ckqvojp~ FGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFGtGJRaIdPjpj`NikzIUj`z}L:cJML(qUj`Q5e%L#yj`|XJRdj2UvdmJm~UczHj`ejpjYcXq n FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHF~ye_pjpj`JRwDS;dmcNiJRNiL(yUj`+SkejpjYcXqkzIU~vk n
F V Z FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGF]kJRUj`Q5tiUj`Q|XdPUaHj2tGJML(vGzHU j`+y n
F n V\ FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHFHFGFIFHF_`qOPukSdHkL(JMy V\ FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFL(vkzIJRJMNGdj`Q V
n IF FGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHtiJM~Jm~qtGJMUjYaIUQj`e§L:ckq2L:c zwDU S;q n FGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFtiJbaIdjpj`NGkzIUj`z}L:cJRL(q2U j`Qxyj`|XJRd n FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFW¡zHj`q2j`JM|XNGeXftiJbaIdjpj`NikzHU j`z}L(czHj`JML(NiJROPJRQ kzHj`ydmk E{F V n
Z FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHFtiJRNg~|JMdmcJMj`|XJMdIkqvojp~ n
Z FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFGFIFHFrkJRJROj`Q U Qj`| E{F n n
Z FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHF_`qOPxJmj`L(z}JRzHL( E{F E E]\ FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFGzHj`e~Djpj`k2lJRe}_pj`U NGHS E{F s EAV©FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIF~JM~DqJRL(NiJROPJRQTL;~Dj`vgL:cSDj`qqL(c_`qOPuzHj`yzIQ zIk E{F ^ E(nªFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFJR|XL(N«_`Qj`e%j`qwtGJMvkdPzIq P lj x L:c zIJRQ zrJbwDU S E{F E]sE FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFvU dPOPJReL:ckvkk E{F E FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHF_`qOPzHj`e~Djpj`k2lJRe}_pj`U NGS E{F E<^ FGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFIFHFGFHFGF_pj`U zIQ5zGjYaIJbc E<^ FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHF{_pj`UzHQLTzGjYaIJbc E<^¬FIFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHF4zHj`NiJMjp~qzHjYaIJRc E<^¬FIFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFhzHj`+Uj`NGqzHjYaIJRc E<^ FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFGFzIJRJMU;aIqzIsaIJbc s F V E<^ FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIF tGJMq§ntGSTzIwDUSq F V[F V E] FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHFHF_`qOPuqzHj`yzIQ zIk E FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFJMdPj`q2U kUjYaIL(JMs|j`e s F n Es FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFDJM~q2q~y.JMdPj`q2U kUjYaIL(JM|j`e F n
F V s s EV©FHFGFHFHFGFHFHFGFIFIFGFHFHFGFGFHFHFGFHFHFGFHFIFHFHFHFGFHFHFGFGFHFHFGFIFHFGFIFHFGFHFHFGFHFHFGFGFHFFIFGzIJbFHaIFGdjpFHj`N}FHFGkFNiJRE]OP\<JMFQV<un
F n
JR\]zH\ JMs jpj`OHSkdPe%z§L(U ck tiJR+q F E s E¨FIFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHF_`qJMqtgjYaIe s]s FGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGF_`q2OmkJmj`L(zrJRzILkzHj`SUQ kkzHU j`z s ^ FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFT®R¯p¯`°Y±G²D³:³µ´¯Y¶;·:¸A¹;¹#´h·(¯`´ ^F V s ^ FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGF0_pjYcge%UxU ~D|XzHj`S;U Q kkzIUj`z ^]F V[F V s{ FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFºJMdMcU ~D|XqzHj`S;U Q kkzIUj`z ^]F V[F n s Z FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHF_pjpj`dGtGeKzHj`S;U Q kkzIUj`z ^F n ^{V FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHFHFGFIFHF(tGJMqJRdmczIJMJRS ^An FGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFIFHFGFHF:tiJRQ |j`dItiJRe!cj`d ^An¨FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGF+S j`N}JRaIdPvqk2~ cX_`qJRqtgjYaIe F \{F V ^[E FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHF5_`JMQ |Xk F V ^[sE FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFI¢LUvX_`UacJmj`|XJRd F V[F V ^ FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFNg~kkdPq2k F V[F n ^]^ FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHFJMLj`e%Q5zHj`JMU;aIqzGj`dPjYwDz ^ FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGF»+yhU q2h¼_`JRQ |«+yUq2U j`e%JMz ^ FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFtiJRL(JMvU z F n
n
E
s
^
8{½µ¾68:¿D8AÀÁ=5¾ÃÂ Ä zHj`SQ j`z tiJRNiJRNiL(yj`qwzIvkdmzHqzIJbaIdPvq%lj`UaINGL(e§kdPJRU N F V F tiJRL(vwutGJMvkdPzIqtiJRNiJRNiL(y»F n F kdPJRU NgjtiJRNiJRNiL(yL:czHj`JRL(ejp~tikj`L(L(kzHj`SQj`zIk F tGJMJbaIU Ni|XJM~tiJbwDU SkJRvU dPeKF tiJRL(NiJROPJMQTtGJML~viL:ckJROPJbaIdjpj`N F E ÅÆ]Ç ÈDÉ.ÊËËÌ6ÍÎ[ËoË
ÏÐË
ÑÌÃÒÓÏgÔÌ6Ô[ÕHÖi×oÌÃÒÕÏÖ Æ<ØÆ WYV ] ;fÙ;U kJMj`|XJRd lPUaINiL(etGJRaIL(Q d!zHqJMj`|XqzwDzIq25Svj`Q λ = 10 anstron Lj`v|lPkUaILj`e%j`eke%U d%U j`eÚF V tGJMdPj tiJRdj`UaINGL(e kJML(SqNiU;c£R|ÛzHj`U JM~zG£6cXJ6zwDzIqL:wDL.kdPJMUNzHj`U JM~DzI§kJMj`L(zÜkaIJRL(Q kÝF n F tGJRaIL(Q d U j`e%kzIq2S;LTzIJML(dj`JRUj`Qj`U QxtiJRdj`UaINGLe!ktiU OmkzIq2SF E zHj`U JM~DzIkJMj`Lz}tGJMdPj`UaINiL(e%kL(ckJMvU dme%kÝF s UcXe2w E = hυ kJRvUdPecXJGNiJRNiL(yL:wDLF tiJRNiJRNiL(yL:cÞ|j`e«e%JRkkdPJMUNikÜ_`JMJbacXdPJReL:c0_pj`JRSU ~q2qk§ h = 6.63 × 10 (joul × sec) kqvjp~DLF _`qOiLj`QwkJRvU dPee%j`k h L:c»~q2qk fzIJMzIJMjpj`OGS;dPzrL:ce%j`k L(c W JM~w_pj`UaINiL(e%L kcXj`U~ c0kJMvU dPe!kzIezIU e%zIqLc =wmvr k~Dj`+S5zIJMJRNidj`QTcXJzwDzIqhL:wDL JROPeKF U U yzcXkL mv = hυ − w ÅÆ]Çß È2ÐXÊ
ÔÌÕ%àGÔAÒ§ÌÃÒÕÏ Æ<Øbß tivj θ zIJmj`OPuzHUOPQ zIqkdPJMUNikUq!j`yzIS;voj`Q x zIdPJRU N}UcXe!wF λ = 1WYV Z<^_`vaIdPUfq%£be§kdPJRU Ná X zIdPJRU N 3
−34
1 2
0
λ −λ
=
2
h me c
(1 − cos θ)
âW _pj`UaINGL(e%kzI|Xq m fF _pj`UaINiL(e%kL(c_pjYaIQ q2j`N«Lvi¢;Uj`e§e%U NGd = 0.024A Ucge!w U|XyxNGJMNGLyF ~DUe%JML(JRTUjp~ wj`qwTU OPQ zIq2j_pj`UaINGLe!TSvj`Q k|XqU |Xy5NiJRNiL(ykWâ_pjYaIQ q2j`NfU |Xk zHjYcXvdPzIkJMdmQ L#k|Xq zHjYcXvdPzIkkKã¡V6U j`JMe h me c
e
E P
= hυ hυ = c 3
zHjYcXvdPzIkU yhe%L E P
0
0
= hυ 0 hυ = c
0
= mc2
Ee P hυ + mc2
~2 P
=
kJMvU dmeKU j`q2JbcJROPe 0
= hv +
P~
zGjYcgvdmzHkkU yhe%L_pj`UaINiL(e%kL(cXj
p
m 2 c2 + P 2 c2
S;dPzrUj`qJRc
0 ~ = P~ + P
_YwDL
2 p~ − p~0 0
~ 2 c2 P
= p~2 + p~ 2 − 2~ pp~ !2 ! 2 0 0 hv hv hv hv = + −2 cos θ c c c c 0 0 2 = hv − hv + 2 (hv) hv (1 − cos θ)
m2 c 4 + P 2 c 2
=
hυ − hυ
0
2
(1)
kJRvU dPeUj`qJRc
0 + m2 c4 + 2 hυ − hυ mc2
(2)
e%Dj`JzHj`ejpjYcXkJMdMcXq
0 0 (1) , (2) ⇒ mc2 v − v = hvv (1 − cos θ) 1 1 0 − v v
=
0
⇒λ −λ =
h (1 − cos θ) mc2 h (1 − cos θ) mc2
ä ËÓ2å;æ ä ËÒ2ËÒÓç Æ<ØRè éêRëDìhí+îxïhð+ñîï ò
ó¡ôAóRò tiJRU~Dj`|XqzGj`Lj`NGL;j`q%õtiJRq!jYaIeÞj`DcÝcXJR+vzISvj`Q Lv4¢Uj`eW¡q!£ReXf zIdPJRU NÞL:cÛUj`OPJRQ0WYVZ
sin θ = n
λ 2a
4
j`e
vUUj`OPJRQxã¤nUj`JMe
Rê ÷øùù
îúùðhêMú ò
ó¡ôAó¡û JMLj`U hlPk2~xLvg¢;Uj`ecXJ P SdPzrL(S;NiJRNiL(yLWYVZ:n
E;fJMLj`U hlPk2~ λ =
p =
a
h p
_YwDL
E = hυ = pc, λ =
c υ
_pjYaHj`Q LTkqvjp~DL
hυ h = c λ
S jp~JtiJRUjYcXJRq_`JRNGyU q ü ñDùëð.ú6êMýhþ[ðÿDêMøù ü ÷Iîí ì ü ù ê Mò {û ü ð ü þ[ù bùëêMùñ
sin θ
=
λ
= = =
⇒V
λ 2a
NiJRQ |Xq_YaIN λ ¢JMUj`kcXqzHj`e%U LTL(JRcX L(e%JMdMaHj`Q Ù;ej`q_pj`U;aINiL(e í êRþ ü é V (volt)
= 1.6 × 10−19 [coul] · V [Joul] √ 2mE h √ 2me 6.6 × 10−34 √ 2 · 0.9 × 10−30 · 1.6 × 10−19 12.3 √ A V 2 (12.3) [Joule]
E = eV p
= n
'
JROPe
m = 10−15 [kg] , v = 10−3
6.6 × 10−34 h = −15 m mv 10 × 10−3 = 6.6 × 10−6 A
λ =
^
m s
NieU JRvUv éêRë í+î ïhðhþ[ùñ
ä ËÓÑÌÃÒ2Õ ä ËoÔÔ:Ò YÑÖGÔ Ó!Í ä Ô[̺ÏÖÓ Ôà IÑ2Ô[Õ%Ñ ÑÊ
Ô[Ë %Ë
Î Æ<Ø JRhj`JRyk5_`S;aIqkF _pj`|XQ q2jYaL:c§£btiJRNgj`qJMkTzIvj`S£+L~Dj`quJRQ Lº tiJRdj`UaINGL(ej`cXJRcJRL(UaIJRdáhtgjYaIeÝJR|XL(NikL~Dj`q2k F tgjYaIe%kL:wuLStGJMS;hj`NGqtiJRdj`UaINGLe!kF tgjYaIe!kyhacL:wuLSyj`Uq Uj`OPJRQÃtiJbcXQ yq2jW He _`JRSU v]f +2e zIJRhj`JRy5_pj`S;a α NiJRNiL(yTtietijYaIe%kuzIe.tiJROPJMvQ qÝV[ZAV]Vº_p~|XU q%¼hUvJRJRvGJMj`|XJMdmk F zHj`JRkL#LjYwDJHe!L#JM|XL(NGkL~Dj`q2kOme§kUj`ye§Uj`OPJRQTcXJtieKF kUj`ye _`JRSU vkzHeKtiJRQ JRNiqtGJMdPj`UaINiL(e%kjJM+j`JMyhk_`S;aIqkL:wtHcgc_`JMS;U vGcXJ _pj`U zIQ zHj`JMS; kJMvU dPeK~e%q!j2_`Uj`N«Ù;e%j`q_`S;aIqÛF V tiJRLU;aINiQ |tiJMjpj`N}Jmj`L(JRvF n
1 λ
= R
1 1 + n1 n2
"!
vU +~JMUTSj`+N R ' 10 A Ucge!w kdmJMU N}L:czHj`U~|cXJ%Ucge!w U q2L(zIU~| n = 2 W¡eXf _`q2JRL zIU~| n = 1 W¡!f _YcgQ5zIU~| n = 3 W¡v{f ü ïhùýí ú»ÿDùP÷2ìïí ñDùð
ò ó :óRò zHj`ydPk L(ckq2L:ckL;j`Q;wej`kJRzHJMjpj`OPkS;dPzIkj`DcJRL(vS;qLj`L(|Xq2S;di_pj`UaINGL(e%kÝF V −3
−1
1 1 1
$#
%
F~ =
h 2π
(n = 1, 2, 3, ..) mvr
= n
h 2π
¡W JRU dj`JR aI|qifF j`zIe%kzHj`U qLTkdPJMUNraIL;j`Qxj`dPJReK_pj`UaINiL(e j`e«kaIJML(Q .e!aIzHqkJRvU dPe%kJMj`dPJbcjHUye%L~ye«JRUcXQ e}Lj`L(|Xqq«Ùj`Q NGLxLjYwDJX_pj`UaINGL(e%kÝF n F kdPJRU N}L:ckS;JML( tiJRJRNiqJROmwDU qyjYwJM|«Sdmc j`v L~Dj`q2k e2 r2 E E2 − E 1
mv 2 r e2 1 = − + mv 2 r 2 = hν =
(3) (4) (5) &$' (*),+.-0/1' 24356'$'$78-95$) 3:/<;
6
JROPe (3) →
e2 v e2 v
⇒v r ⇒E R
= mvr h = n 2π 2πe 1 = h n 2 e h2 = = n2 mv 2 4π 2 me2 2π 2 me4 1 2π 2 me4 1 −4π 2 me4 1 + =− = 2 2 2 2 h n h n h2 n 2 2 4 2π me ' 10−3 A = h3 c
Ucge!w ÒËÒÓç6Ö XÔ[åÖGÎ 6Ö Ó!Í Ô[ËÓÏgÔ Æ<ØbÉ ÿêî;ñDëuêRøú bùêRëêMøò
ó :óRò Young lPkhj I ∼ |E| kqSk§SJRvqc»k~ cL:wDLuOme«~DyheÙJMUytiJRq2|j`yUcge!w«F tiJRJRU yJMdMcÞ¢;U~.U hj`ScÞLv6_pj`zId zHjYwD+e%z _YwDLjIW¡zGj`JRU e%JRdPJRL#zHj`ejpjYcXqKtiktGJML(vHL:c y£R~DqGf E = E + E L(NidItiJRyj`IzI∼QxtG|EJMNi~+|EJRdm|cUj`S 2π 2 me4 h2
' 13.2ev =
>
?
@
$A
2
B
1
1
I
2
2
2
2
2
2
2
∼ |E| = |E1 + E2 | = |E1 | + |E2 | + 2< (E1 E2∗ )
tiJRNg~|Xk5~ye¢;U ~ÃtGJM|XdMwDdmctiJRdj`UaINGL(e%kzHetGJm~D~Dj`qj`dmJMJRk5j`LJReF tGJMNGJMNGLyµtivjtiJRdjYaHj`QUj`SºkUj`NU h~k F zIJMNGJMNGL(ykkzIUj`LTzIU Oj`yke!Dj`zHkkzIJRJMk W¡zIJM|Xe!LNzIJRaIdPvq!lj`UaINiL(eukdPJRU NL:ckq2vjp~4JMvj`L(dPe E Ucge!wf+W¡L(vzIJMJRNidj`Qf ψ (x, t) UJm~vd í þIéêMê î;øù W¡kdPJRU NGkq2Dj`S;LTzHJRvj`L(dPeXfzHj`U +zI|Xkk P = |ψ| U JM~vd kNiJbaIq2zIJRU e lP+zI|XkHf¢|Xq24_pj`UaINGL(e%ktgj`NiJRqLXzGj`U+zI|Xkk |ψ | UcXe!w ψ (x, t) yj`zIQÃ~yeNi~D|Uj`+S«F V W¡tgj`JR|qL#zHj`U zIe ej`qLzHj`U zI|Xkk2j ψ = ψ + ψ OmeöF L(vÃzHJRJRNidj`QkOMcÛU ye%qtiJRNg~|JRdmcÛU j`+S«F n tGJMNGJMNGLyhk |ψ + ψ | kdPNi|Xq F zGj`U+zI|XkU e%zIqL(vkc_`+j`q2F zIJRL(vikdjYwDzrcXJ%NGJMNGL(yLrF V F P = |ψ| e%JRkzHj`U zI|Xkk ← ψ (x, t) L(vkzIJMJRNidPj`QF n F zHj`JMe%~j2e%Lj2zHj`JMzHj`U zI|XkNiU5_`kNGJMNGLyhL zHj`JRaIdPjpj`NzHj`JRQ z F E F kqSxk~JM~DqkqzISQcj`qk~Jm~qkL:cke%Dj`zIkF s F ψ j`e ψ tGJMqk~ye§zHeKkU yk~JM~DqkÛF ^ C
2
1
1
2
1
2
1
2
2
2
2
1
DFEHG IHJG DJJKML
7
-N),O+.-QP
F _pj`U NiJRSkL;jp~v éùìñùùï Mêmì bù ü î íxêRùëêMøïíúÞïhðhþ[ùñ JMOPeK∆xF zH·jYwD∆pe%zI>kh tij`q2JR|XNiq_`zHj`dPk a sin θ = nλ kOPe%Q kcgU Q kL(SL:wDzH|Xd tij`q2JR|XNiqJMdmc_`JRxcXU Qkk M R
S
x
n ∈ Z; sin θn =
n λa
∆xmax
≈ d sin θn − d sin θn−1 λ ≈ d a
∆xmax
F zHj`e~Djpj`k§JReK_pj`U NiJRSTQD£bS j kJRDj`Lj`OPUx¢;JRU utGJMNi~D|Xk~ye§zIe§~Djp~DqLTJM~wxJROPe a 2
∆px
_YwDL
∆θ
∆x
>
2h a
≥ P =
h λ
UcXe2wzIJmjpj`OPzHj`e~DjpjblPJRer_`zHj`d
∆px P
= ∆θ
2λ 2h λ · = a h a
tiej _YwDL
λ > 2 d > ∆xmax a
748 9;BB¾ CÂ6BDC¥½ <8 ½ 5Â6B;À #½ B 8:9;B} 98 µÂ CxB TBB IçÏ»Ê
ÔÔ[Ëoæ GÎÍ ÒË]Ò%Ó çÝÑ2Ô ÜiÖ ÏgÔÔÍàÖ Ñ %åÖ ßØÆ zIJbaIdPJMNGkkJRvU dPe%k zHJRL(e%JRdmaHj`QxkJRvU dPe V (x) zIL(LjYwDkkJRvU dPe%k E= + V (x) kejpjYcXqk =T
9U
0V
XW
ZY
\[
,]
fe
_^
a`
bV
1Y
ge
c
VcW
h
p2 2m
P2 2m
i~
∂ψ (x, t) ∂t
= −
~2 ∂ 2 ψ + V (x) ψ 2m ∂x2
zHJM~q2qzIL(zIkkejpjYcXqk ~2 2 ∂ψ (x, t) = − ∇ ψ + V (x) ψ ∂t 2m ~2 ∆ = ∇2 ⇒ = − ∆ψ + V (x) ψ 2m i~
E
=
Uj`S}UjYwDOPL#kaIJbc
P2 +V 2m ψ = ei(kx−wt)
h λ = ~ω = hν
p = ~k = E
8
yNiJRdj
d
yzIQ d i = − Eψ h
∂ψ ∂t ∂ψ i~ ∂t ∂ψ ∂x ∂2ψ ∂x2 2 ~ ∂2ψ − 2m ∂x2
i pψ ~ p2 = − 2ψ ~ p2 = ψ 2m
=
=
Eψ
= Eψ
p2 +V 2m
j`dPL(+JRNrw+£Rk|
ψ
kU Sk
i
L(vizIJRJMNGdj`QJP£bS5L:cXqL#U e%j`zHqJbaIdjpj`N}qcXJIF DaIJMkU~voj`qLj`L(|Xq_`JReKNGJMNGL(yLrF V P ã JRLU;aINiQ |Ngj`U QF n c ψ ψ (x, t) = W¡tiJR+qk~ye!LTk|XJRU NrcXJ!OPetiJM~~Dj`qUcge!wf2k|XJRU Nik.aIQcXqÛF E ÖHË
Ñ2Ô[Õ ä ÑÔ[Õ Î]ÑÌ6Ô ä ËÓ!å Ñ2Ô gç ßØbß F yU qkL:wDNiJRNiL(yej`qLTJmjYwDJR|j`zHj`eKcXJ%JbwuJRzIJMJRSkO |ψ| = 1 j`dPL(JMN e Uj`S tiJRL(vizIL(JMykdPdIL(JMvkLµJm~ wuF +yhU q2kL(wj2tiJRdPq2OmkL:wuJRdPQL(STcj`U Q ψ a a a
j
2
f (x)
g (k) =
=
Z
∞ −∞
zIJMUj`NGq2kkJRNidPj`Q L Uj`SdGF ∆k = +yj`U kzIe§UJm~vdIJMOPe √2 α
=
Z
Z
∞
mO e |j`e%vX_pj`qSQ
2
2
e−α(k−k0 ) eikx dk
−∞ ∞
2
kJRUj`Q5tiUj`Q |XdmUaL:ckOmOPkkzIy|j`dPcXqzcXkL5_`zHJRdkJMk_`JMQj`L(yL
F [f (ax + b)] (ω) =
ω 1 ibω e F (x) |a| a 9
UcXe2w
F [f (x)] (k) = g (k) f (x) = eik0 x δ (x − x0 )
g (k) = e−α(k−k0 )
e−α(k−k0 ) +ikx dk −∞ Z ∞ 02 0 0 0 ik0 x e−αk eik x dk k = k0 + k ⇒ = e −∞ Z ∞ “ 0 ”2 0 −α k − ix x2 ik0 x 2α dk e = e e− 4α −∞ r x2 π − 2α +ik0 x = e α =
i(kx−wt)
g (k) eikx dk
Uj`+S5kq2vjp~LxF tiJRdjYc k lPLTzHj`Lj`NGcXq§_`zHj`d f (x) L(ckJMUj`QxtiUj`Q|XdPUa f (x)
kqvojp~
OPe 2
2
|f (x)| = |ψ| = |E| =
2
√2 2α
(g (k)) → ∆k =
√ π − x2 e 2α → ∆x = 2 2α α
∆k∆x
L:cyj`U j`dmLJRN
= 4
UcXe!w
p = ~k ⇒ ∆p = ~∆k ∆p∆x ∼ ~
kOPe%QkzHj`U JMkq2j e =
vp
Z
f (x, t) =
∞
ω k
w (k) = w (k0 ) + (k − k0 ) f (x, t) =
Z
∞
0
dk e
−αk
02
e
1 + (k − k0 )2 2
−∞
Ome |f (x, t)|2
~2 k 2 2m
=
s
*S
JRcXQ j`yNGJMNGLyUj`Skq2vjp~L
d2 ω dk 2
k0 „ i (k−k0 )x− w(k0 )+(k−k0 )( dω dk ) »
k
Ml
dkg (k) ei(kx−ω(k)t)
−∞
dω dk
tiJMj`|XqLv Rð
ýï øXï+í êMý
_`q2OmukSdHe%JRk¢;JReKke!U dj2kL(JR+yUj`JRd
~ω =
i(kω−ωt)
2β =
k0
+ 21 (k−k0 )2 k0
d2 w dk2
w (k)
k0
“
tivj
2
α(x−vg t) π2 − 2 α2 +βt2 ( ) e α2 + β 2 t2
d2 ω dk2
”
k0
« – t
dw dk k0
= vg
UcXe!w
í þ]ïéêMê î;øù á t _`q2Omhj x tgj`NGq2xNiJRNiL(yej`q2L zHj`U zI|Xkk zHj`Q JRQ P = |ψ| qzHj`JMU;aIdPq2L(e§zGjYcgJMU~ P Sj`+JRU zHj`JRLJRU vaIdPJMe_`k ψ (x, t) kJRNidj`QkaIU Q _YwDL R P dx = 1 kJMOmJML(qUj`d5F V C
nm
2
∞ −∞
Z
|ψ|2 dx
< ∞
W ψ ∈ ` U +jp~qcJMLµkq!~d[f ψ ∈ L zHj`e%U NGdij`L(e!wzHj`JRNidj`Q F _`qOPkdPzcXqkdPJRe}W¡+yhU q2kL(wD2fzIJML(L:wDkzHj`U +zI|Xkkc kyJbaI+qU vdPJm~UczIejYcXqF n 2
2
KG IIHG DJJKoL -N),O+.-Qp
10
L
tiJRJbcXq2q V yJRdPdW¡eXf ∂ψ ∂t ∂ψ ∗ −i~ ∂t ∂ψ ⇒ i~ψ ∗ ∂t ∂ψ ∗ −i~ψ ∂t ∗ ∂ψ ∂ψ i~ ψ ∗ +ψ ∂t ∂t i~
∂ |ψ| ∂t
~2 d 2 ψ +Vψ 2m dx2 ~2 d 2 ψ ∗ − + V ψ∗ 2m dx2 ~2 ∗ d 2 ψ − ψ + V ψψ ∗ 2m dx2 ~2 d 2 ψ ∗ − ψ + V ψ∗ψ 2m dx2 2 ~2 d 2 ψ ∗ ∗d ψ − + V ψ∗ψ − V ψ∗ ψ ψ−ψ 2m dx2 dx2 ~2 ∂ dψ ∗ ∗ dψ − ψ−ψ 2m ∂x dx dx
= −
i~
= = = =
2
=
zHj`U zI|XktiU OIkU~vk J
~ 2im
=
dψ dψ ∗ ψ − ψ∗ dx dx
∂ ∂ P+ J ∂t ∂x
JROPe
= 0
tGJMJMjYwDJM|XkzHj`Q JMUxzIejpjYcXqKj`dPL(+JRNGckejpjYcXqLe%U NGJMd WpnAfkydPkkzIeNijp~+d
0=
Z
∞ −∞
J|∞ −∞
Z ∂ d ∞ ∂ P+ J dx = P (x, t) dx + (J) |∞ −∞ ∂t ∂x dt −∞ d = 0 ⇒ P (x, t) = 0 dt P (x, t) = const
[−a, a] d dt
Z
SaIN«Ngjp~d kq2vjp~
a −a
P (x, t) dx = J (−a, t) − J (a, t) 6= 0
OPezHJM~q2qEkJRS
kU S;k
∂P ~ · J~ = 0 (~r, t) + ∇ ∂t J~ =
~ ∗~ ~ ∗ (~r, t) ψ ∇ψ − ψ ∇ψ 2im V
d dt
Z
P (~r, t) d3 V V
= −
Z
V
~ · Jd ~ 3V = − ∇
11
Z
Jn dσn σ
yhQ dGU j`+S
kU S;k
Ome«W R
∂ψ ∂x ∂ψ ∗ ∂x
W P L:czHj`Q JRU_`JRezIU yeXfkQJMU ψ F E F ψ zIyetGSQ t +j ψ tiJRJMqSQ xlPkU JMOmvuF s j`OHkq2vjp~tidmq!j`eXf ψ = e kqvjp~ =∞ ∂ ∂t
∞ −∞
|ψ|
2
∂ ∂x2
i(kx−ωt)
= ikψ
= −ikψ ∗ ~ 2 2 ik |ψ| + ik |ψ| J = 2im ~k 2 = |ψ| m p |ψ|2 = 1 ⇒ = =v m
F tiUOGkJRkJbcJm~ wxzIwDUj`qzHj`JRkL zHJRJMy ψ kU S;k éù ëùøgéùêMñDùëêIéù ü ñDþ]ï £bSDj`qq%£GázIJRQ z}¢U S kU~vk W x j`eXf hxi Jm£RS_`q2j`|XJ x L:cS;Dj`q2q ψ (x, t)
hxi
=
Z
∞ −∞
2
x |ψ (x, t)| dx f (x)
hf (x)i =
Z
∞
f (x) P (x, t) dt
−∞
hpi 2
P = |ψ| ; hpi =
i~
∂ψ ∂t
= −
Z
L:cSDj`qq p SdPz§cXJ%NiJRNiL(yL kU~vk
pP (x, t) dx
~ ∂ 2 (ψ) +Vψ 2m ∂x2
p2 +V 2m ∂2 ⇒ p2 = −~ 2 ∂x ∂ = = i~ ∂x E
ej`kc NGJMNGLyL:ckdPjYwDz
=
12
Fp =
UcXe!w ã tGJMU+|Xk U vdPJM~UczHe%jYcXq2qF V ~ ∂ i ∂x
JR|Xe%L(NikkS j`dPzIkNgj`yÞF n dx dt
= p
hpi
= m
m
∂ψ ∂t ∂ψ m ∂t d hxi m dt i~
= =
=
~2 ∂ 2 ψ +Vψ 2m ∂x2 ~ ∂2ψ m − + Vψ 2 2i ∂x i~ Z d ∞ ∗ ψ xψdx m dt −∞ Z ∞ ψ ∗ xψdx m −∞ Z ∞ ∗ ∂ψ ∗ ∂ψ m dx xψ + ψ x ∂t ∂t −∞
= = ∞ −∞
∂ ∂x
∂ψ ∂ψ ∗ xψ − ψ ∗ x ∂x ∂x
(6)
(7)
L(+NGdjW¡fplPW fzHeKJMd
=
U vdPJM~DU;czIejpjYcXqLUj`Sq
= −
=
Z
d hxi dt
=0⇒ = = hpi =
∞
2 m m ∂ 2 ψ∗ ∂ ψ ∗ ∗ − V ψ xψ + ψ x − 2 + V ψ dx ∂x2 i~ ∂x i~ −∞ Z ∞ 2 ∗ 2 ∂ ψ ∂ ψ ~ xψ − ψ ∗ x 2 dx 2i −∞ ∂x2 ∂x ∗ Z ∞ ~ ∂ψ ∗ ∂ ∂ψ ∗ ∂ψ ∗ ∂ψ − dx xψ − ψ x ψ+ψ 2i −∞ ∂x ∂x ∂x ∂x ∂x Z ∞ ~ ∂ψ ∗ ∂ψ − dx ψ + ψ∗ 2i −∞ ∂x ∂x Z ∞ Z ∂ ~ ∞ ~ ∂ψ ∗ (ψ ψ) dx + dx − 2ψ ∗ 2i −∞ ∂x 2i −∞ ∂x Z ∞ ~ ∂ ψ∗ ψdx i ∂x −∞ ~ 2i
Z
F kdjYc ke%Dj`z}L(NidSqe%j`zHj`etGJRcgdHe!L#tie§_YwDL UjYaIUQj`eej`k zHj`JMNGdj`Q kyU q UjYaIUQj`e p = ψ (x, t) JRU e%JRdPJRL UjYaIUQj`e p = i t R J b J X c 2 q q ` j ( L c I z M J Q H z k b J D w U S 2 j b J aIJMqU kU jYaIU Qj`e p = hpi ∈ R rq
~ i ~ i ~ i
p ∂ ∂x ∂ ∂x ∂ ∂x
FV Fn FE Fs
zHj`U S;k
;ùPíê .ë ê ûAó¡ûAóRò zHj`JMkLTU~vj`q j`L(JRy|XyJ kU~vk s
Hl
8l
[A, B] = AB − BA
[A, B] = − [B, A]
VE
tiJRJMNGzHq j`L(JRy|XyJRL
kUSk EHG IIHG DJJKoL -N),O+.-Qt
j`L(JMy.|XyJ%tGJMqJRJMNGqtgj`NGJMqkjS;dPzIkÝ j`L(JRyk|XyJ [p, x] =
~ i
zGj`y+wj`k
|XyJRkzIeKNgjp~+d5F V [p, x] ψ (x, t)
~ ∂ , x ψ (x, t) i ∂x ~ ∂ ~ ∂ (xψ (x, t)) − x ψ (x, t) i ∂x i ∂x ~ ~ ∂x ψ (x, t) = ψ (x, t) i ∂x i
= = =
hpi − hpi
∗
=
Z
∞
∂ψ ψ dx + i ∂x −∞ ∞
∗~
2
Z
∞ −∞
ψ
zHj`JbaIJMqU kNgjp~+d5F n
~ ∂ψ ∗ dx i ∂x
~ ∂ |ψ| = dx −∞ i ∂x i∞ hh 2 |ψ (x)| = i −∞ 2 = |ψ (∞)| − |ψ (−∞)|2 = 0 Z
iÎ ÞÓ!Í Ó!å XËË Ò2ÎÔ[Õ ß ØRè zHj`U~vk F S;dPzIkL(cL(vizIJRJMNGdj`Qw φ (p, t) _`q2|XdF V ~Djp~q2LTzHj`U zI|Xkk |φ (p, t)| F n p L:c kJRJMUj`QtGUj`Q |XdPUaej`k φ (p) kU~vk ψ (x) e =
j
.u
2
ψ (x)
k=
=
p ⇒ = ~ φ (p) = =
φ (p) = = =
Z ∞ 1 √ g (k) eikx dk 2π −∞ Z ∞ 1 i √ φ (p) e ~ px dp 2π~ −∞ Z ∞ 1 √ f (k) e−ipk dk 2π −∞ Z ∞ 1 i √ ψ (x) e− ~ px dx 2π~ −∞
∞ ∞ 1 1 i 0 i √ φ (p) e ~ p x dpe− ~ px dx 2π~ −∞ 2π~ −∞ Z ∞ Z ∞ “ 0” i 1 p−p x dxdp φ (p) e~ 2π~ −∞ −∞ Z ∞ 0 1 φ (p) 2π~δ p − p dp = φ (p) 2π~ −∞
√
Z
Z
Vs
L(JMvU z
p
~Djp~q2LTzHj`U zI|Xkk R∞
−∞
Z
Z
φ∗ (p) φ (p) dp =
∞
dp φ∗ √ 2π~ −∞
Z
∞
|φ (p)|
2
c yJbwj`d kyhwj`k cke%UdxF V =1 |φ (p)|
2
i
dxψ (x) e− ~ px −∞ Z ∞ Z ∞ i 1 = dxψ (x) √ φ∗ e− ~ px dp 2π~ −∞ −∞ Z ∞ ∗ = ψ (x) ψ (x) dx = 1 −∞
R∞
hpi = Z
∞
−∞
dpφ∗ (p) pφ (p)
ke%U dHU q2j`L(w
hpi
S;Dj`q2qNijp~Dd5F n
~ ∂ψ i ∂x −∞ Z ∞ Z ∞ ~ ∂ 1 i √ = dxψ ∗ φe ~ px dp i ∂x 2π~ −∞ −∞ Z ∞ Z ∞ i 1 = dpφ (p) p √ dxψ ∗ e ~ px 2π~ −∞ −∞ Z ∞ dpφ (p) pφ∗ (p) =
hpi =
dxψ ∗
−∞
_`q2JR|JM~ w~S x
ψ (x) = i~
yU q p L#kkOIUjYaIU Qj`e§ej`k x φ (p) yU q
kU S;k
∂ ~ ∂ =− ∂p i ∂p
hXP i
F zHj`JbaIJMqU k
ü ùP÷ ü ùìï kU Sk
bJ wxJRaIJRq2Uke%L hXP i UjYaIUQj`eÚF V kJROPJRUaIqJM|«Jm£RSzHj`JRaIJRq2UkL(+NGLT_`zIJMdF n hXP + P Xi IçÏ àià XÔË HÓ XÔ]ÎÔ]Ñ gÕ ßØ U vdPJM~UczHe%jpjYcXq X, P
i~
∂ψ (x, t) ∂t
= −
c
vw
xev f
"!
~2 ∂ 2 ψ +Vψ 2m ∂x2
p2 ψ + vψ 2m 2 p +v ψ = 2m =
_`JRJMLjYaIL(JMqke%j`k H = + v UcXe!w _`qOPutGJMJMj`L(zrtidPJRe!cyJRdPd ¢JML(kzIk V (x) p2 2m
i~
∂ψ (x, t) ∂t
= −
~2 ∂ 2 ψ (x, t) + V (x) ψ (x, t) 2m ∂x2 15
ψ (x, t) = T (t) u (x) i~
∂T (t) u (x) ∂t i~ ∂T∂t(t) T (t)
= −
kUj`kqK_pj`U zIQ5ej`q2LTk|XdPd
~2 ∂ 2 u (x) T (t) + V (x) T (t) u (x) 2m ∂x2 ∂ 2 u(x)
~2 ∂x2 = − + V (x) 2m u (x)
zHj`ejpjYcXqKJRdmc j`dmLJRNrJMOme«W¡kJRvU dPe%kHf E e%L#e!U NidmcS j`NiLµtiJMjpjYckejpjYcgq2kU JR+STJRdmckdPNi|Xq dT dy T
= −
iE T ~ i
= e− h Et
UcXe!wF _`q2OmkJmj`L(z}e%L#zHj`U zI|XkkJMU dPj`JM aI|«q2F zIJRU dj`JR aI|kJRNidj`QzIe%O −
~2 ∂ 2 u + V (x) u (x) = Eu (x) 2 2m ∂x 2 p + v u (x) = Eu (x) 2m
F _`qOPkJMj`LzJMzIL(U vdPJM~UczIejpjYcgq§j`dmLJRN W¡tGJRaIUNi|XJM~xtikkJMvU dPe!kJbwDU SU q!j`L:wfzaaIdjpjpj`Niqe%JRkkJRvUdPe%k_`e2wczHj`e%U L_`zIJRd
k U Sk zHj`e%qvjp~
kvU~qLe!JMdmaHj`QF V JMQj`|Uj`0F n JRQj`|tgj`|XyqF E zIJMJRNidj`QL:ctiJRLe!JMdmaHj`QF s δ tGJMJRUj`OPyqtiJRLe!JMdmaHj`QF ^ F kJRQ NGkqNGJMQ|Xq¢j`UeL(vk¢;Uj`e§j`Dcq2L tiJR+Uj`NGqtGkj`L(LktGJMUh~L zHj`dj`UzHQk ïhþ ü ñDðíìê høP÷ù Aû ó :óRò L(L(vJRQj`|0L(e%JRdmaHj`QUj`S.F x = 0 W¡;JMULx¢;j`Q kd[f!NGJML(ydjHWYVUj`JReXf!tGJMdPjYcXktiJRUj`OPe%tGJMU zHj`Q kIa Jbc kvU~qL(e%JRdmaHj`Qã¡V6kL(Da C
U vdPJM~UczHe%jpjYcXq du dx
= u
0
16
$#
Uj`zIQ d 00
u +
2m (E − V (x)) u = 0 ~2 2mE = k2 > 0 ~2 2m (E − V0 ) = q2 > 0 ~2
00
u1 + k 2 u1 00
2
u1 + q u1
(8)
j`dPL:ckejpjYcXqkKJM~JM5JRdmc
= 0 = 0
u1 (x)
= eikx + Re−ikx
u2 (x)
= T eiqx
JROPe
it JRS j`N T − T ransmition, R − Ref lection UcXe2w F Uj`OPyJIj`kcXqc0_YwDzIJ%e!L#JRw e JMj`L(z}e%L u kU Sk Y_ wj`qw ψ = T (t) u (x) = e e L(L(vzIe%O x _pjpj`JRwDL(vgj`dmLJRN zIUjYwDOmz −iqk
2
− ~i Et iqx
u1 (x = 0) = u2 (x = 0) 0
0
u1 (x = 0) = u2 (x = 0) k − kR = qT K (1 − R) = qT 1+R = T k−q ⇒R = k+q 2k T = k+q
J~ =
JR
~ 2im
J1
=
J2
=
zHj`U zH|XktiU OIDcXyd
∂u∗ u −u ∂x ∂x ∗ ∂u
~k 2 1 − R2 m ~k 2 T m
|XdmwDdPkzHj`U zI|Xkk§tGU O J U +S;q§zHj`U zI|Xk P kUOPykzHj`U +zI|Xk P UJm~vd F U +j`SkzHj`U zH|XktiU O J F U OPyj`qkzHj`U zH|XkktGU O I
T
R
T
JI
=
JR
=
JT
=
~k m ~k 2 R m ~q 2 T m 17
2 JR k−q 2 = =R JI k+q q 4kq JT = T2 = = 2 JI k (k + q) = 1
PR PT PR + P T
zHj`U S;k
U vdPJM~DU;cÜzIejpjYcgk}L(c_pj`U zIQ LOme tiJRdPzcXqrzH~U Q k U j`+S«F V k JRvUdPe%ukJMj`L(z«_`q2OPxkJmj`L(z}JRzHL(ucψ£Rq(x,F £RJRU t)dj`JR= aIT|(t)£HáutG(x)Jmj`|Xq E LS;_pj`U zIQ e U vd~JMUczHj`ejpjYcXqc»¢(wW¤£RkJRvU dPeI£%UjYaIU Q j`eXf H = − + V (x) = + V (x) F n zy
T (t) =
− ~i Et
p2 2m
~ 2 d2 2m dx2
H (uE (x))
= EuE (x)
Yïhþ ü ñDðhý íìê høP÷ù DïhðïhøP÷Iî5ïhêMþ ü øìï ü ð+ùPí E < V ü ùý .ïhþ ü ñDð ûAó :ó¡û kvU~kJMUyej2UqcXdHL:wDkkvU~q2kJRdPQ L:cNiL(yk
C
4{
*S
$#
00
u + q2u = 0 2m (E − V0 ) q2 = <0 ~2 u = e|q|x + e−|q|x
W¡zHj`U zI|XkLf2_pj`U zIQxe%L#_YwDL;jS j`JMUJML(JR+UvaIdmJMee%L
e|q|x
UcXe!w
u = e−|q|x
F |XQ e!zHqtGU OPkzIJbcXqqkJMNGdj`Q L#Jbw pR
k − i |q| 2 =1 = k + i |q|
JT = 0
zHj`U zI|XkktGU O
ùýîxï ü êMýú í +ý ùùéýí ùùëhî;ðéùìùùúðí ùð ùýîTíìê høP÷ù ý ü þ[øêRñú»éìùùúð U vdPJM~UczHe%jpjYcXq S
4S }|
2m d2 + (E − V ) u (x) dx2 ~2
~2 ∂ 2 d2 − dx2 c2 ∂t2
ε (x, t)
ε (x, t) 2 2 ~ d − 2 ω 2 E (x) dx2 c
~S
= E (x) e−iωt
18
= 0
= 0
= 0
C
Ljpj`|XNGqzHe%jpjYcXq
L(e%JRdmaHj`Q5Uj`.ã EUj`JRe
Rü ùïhøð 2ê ùë5ÿùë ð+ùGíìê høP÷ù ü ùý ûAó :ó¡ô W¡EUj`JReXfWhLj`vU zIU zIQ JRJ
fL(e%JRdmaHj`Q5Uj`+
T
2
|T |
= e−2ika
2kq 2kq cos 2qa − i (q 2 + k 2 ) sin 2qa
q
=
k
=
8l
L(+kSj`+N
C
$#
2ka
UcXe!w
p
2m (E + V0 ) ~ √ 2mE ~
K
=
(q = ik) ⇒ k
=
JMQj`|tgj`|Xyhq
√
2mE p~ 2m (V0 − E) ~ 2
(2Kk) 2K 2 cosh2 (2ka) + (K 2 − k 2 ) sinh2 (2ka)
=
|T |2
≈
4kK K 2 + k2
2
2
2
+ý ù ü êî OPe ka 1 U j`+S}tij`|Xyq2k+j`U JRN
Wentzed-Kramers-Brillin WKB
e−4ka 1
JMOPe}W¡L(U vaIdPJRe%L#_`qJRU5tijYwD|gwfzIJRL(q2JR|XJMQdPJMeKj`zHj`evU~djj`kcXL:wtgj`|XyhqKyhNiJRd |T |
ln |T |
2 2
i
2
|T |2
p
2m (V (x) − E) Z ~ p 2 = − dx 2m (V (x) − E) ~ V (x)>E √ R 2 = e− ~ V (x)>E dx 2m(V (x)−E)
k (xi ) = ln |T |
2
= |T1 | |T2 | |T3 | X 2 = ln |Ti | = −2k (xi ) ∆xi
V[Z
IFFG IIHG DJJKL -N),O+.-N
hý ù ü êî;íuéùìðhþ[ùñ JRLqcXy.k~czIL(SQ kJm£RSTzwDzIq2qtGJMdj`U;aINiL(eL(ckaIJML(QF V F owlen − N ordheim W KB
|T |
2
2
= e~ = e
Ra√ 0
2m(w−eεx)dx
√ 3 −4 2m 2 3~eε w
cXJi_`JMS;U vkq§e%Dj`J α NGJMNGL(yUcXe!wF L(e%JRdmaHj`QUj`tGJMDcj`JGtiJRdj`UaHj`JRdgJMdMcjtiJRdjYaHj`U QJMdMc α Ngj`U QF n L(e%JRdmaHj`Q k~DJRU J%cXJIL(e%JRdmaHj`QuU j`+LÙ;j`yqU q!j`L:wF NiJRNiL(yLT_`JRSU vk_`JRtiJM~vj`dPqtiJRdPS;aIqL:ckJRJRy~ e%JRk W KB JRQ L#ke%Dj`zIkF Ùj`yk_`JML Uj`k_`JR tunneling cXJ!U q!j`L:wF JRQ L
1 r
2
2
= e− ~
|T |
= e
Rb
R
dx
√
(V (x)−E)2m
2πz1 z2 e2 − ~v
U q!j`L:w b R U;cXe!w ÊoÔ]Ñ XÕIÖÓ!Í XÔ[ËÓÓ%æ XÔÎ]Ôæ ÔÃËoÕ!Ô Î[Ë
Ï»Ë àiài× IçÛÑ2Ô ßØbÉ ( 0 −a < x < a L(e%JRdmaHj`Q5Uj`_pj`zId V (x) = ∞ |x| ≥ a U vdPJM~UczHe%jpjYcXq 1 2 2 mv
P2 +V 2m ∂ψ (x, t) i~ ∂t
H=
=E
f
= −
z 1 z 2 e2 R
.
~2 d 2 + V (x) 2m dx2
= Hψ (x, t)
tGJMdPzcXqzH~U Q k
ψ (x, t) = T (t) u (x)
HuE (x)
JROPe
= EuE (x) i
T (t) = e− ~ Et
ψ (x, t) =
X
JRL(L:w_pj`U zIQ5OPe
i
cE e− ~ Et uE (x)
E
F E Uj`SJMU dPj`JM aI|Xktg~Niqk
L#e%U NGdj Uj`LTÙj`yq Rù ü é |x| ≥ a i
e− ~ Et
−
~2 00 u + V (x) u = Eu 2m ⇐⇒ u = 0
20
IEHG IIHG DJJKML
-N),O+.-
E =V +T >0
kU~vkkQD£bS5Ome
V = 0 −a < x < a
Uj`k¢j`zI
~ 00 = Eu u 2m 00 2mE u + 2 u = 0 ~ −
_pj`U zIQ e!L OPe LL(v_Ywj`qwW¡zHj`Q JMUµL(+NGLJm~ wf kQcJMe%dmztie S£bSTNiU cgJ!uzI=JMUAeL;j`vUL(+JM+Bej`JRLµtGUjYac«EzI>JMJRS0L:c«e%JMk eU£M~qj`ey£R~Dq~DqL:cu JM(±a) qLµ;|=j`d0U |XkGfF JRUcXQ e W¡tiJRJRLJRL:clPJMe W¡\S£bS5U j`+Shf u = 0 JRLe!Jmjpj`UaIk_pj`U zIQ kej`k_pjYcXe!U k_pj`U zIQ k zHj`dj`U zIQ kU e!c −qx
qx
u = A sin
√
2mE x ~
!
√
+ B cos
WâF tikJRdmczIeNgjp~dH_YwDLT tGJML(NizIqzHj`dj`U zIQ kJRdmc
±a
2mE x ~
!
+JR|kL:wDJRU~JMe!dPzIy£M~qJRU JRNgj`qL+f tiJRJMvj`OlPJRe%kzHj`dj`UzHQkÛF V
u (±a) = A sin (kx) = 0 ak = nπ ~2 k 2 ~2 π 2 2 n E1,n = = 2m2 2 2m a ~ π n2 = 2ma2
tGJMJRvj`OPkzHj`dj`UzHQkÛF n
u (±a) = B cos (kx) = 0 1 ak = n− π 2 ~2 π 2 E2,n = (n − 1)2 2ma2
W¡zILqUj`dPqzHj`U zI|XkJMe%dmzHL tiJRe%zIqcÃfzHj`dj`U zIQ kq§~ye§L:wDLTLj`qU dGJRe%dPzKcXJ Z
∞ −∞
|u (x)| dx =
1 = = = ⇒A=B
=
Z
Z
a −a
∞
|u (x)| dx = 1
A2 sin2 x
−∞ Z a
1 A2 x 2 −a
A2 (2a) = A2 a = 1 2 1 √ a
21
_YwDLj
kU S;k
tijYcXU dHOPe
l ∈ N; El
=
E2,n
=
E1,n
=
~2 π 2 (l − 1) 2ma2 4 ~2 π 2 l 2 2ma2 4
~2 π 2 2 l 2ma2
_`q2|XdIzHj`yj`di¢;Uj`L
l = 2n
2
w+£bk|
(E1 = E1,1 , E2 = E2,1 , ...)
F L(aIzIq
JML(e%JMjpj`UaIk_pj`U zIQ ktivj ü ùýïéùøù ü é 5í úÞéùøù Dé vo£ReKtikzGj`dPjYc zHj`JMvU dme%L#zHjYwDJMJbcXkL(vgzHj`JRNidj`QF V u=0
o
∀n, m ∈ N;
Z
b
u∗n um dx
δ=
= δn,m
a
(
1 m=n 0 m= 6 n
! cn
Z
a −a
u∗m (x) ψ (x, t) dx
⇒ cm |cm |
1=
Z
a −a
|ψ (x, t)| dx =
Z
=
Z
2
⇒
X n
|cn | = 1
2
a −a a
Z
=
a
u∗m (x)
−a
= cm e Ra Z =
X
−a n
i
cn e− ~ En t un (x) dx
u∗m (x) ψ (x, t) dx
a
−a
i
e − ~ Em t 2 u∗m (x) ψ (x, t) dx
i c∗n e ~ En t u∗m (x)
n
X
tiJRq2~DNGq+jYcXJMyÞF n
n
− ~i Em t
−a
=
X
{
2
|cn | |un | dx =
!
X n
X
cl e
éêRíî;ê ê ïéù ðúðï zIL(q2Uj`dmq ψ (x, t) F V
− ~i El t
l
S
!
ul (x) dx
|cn |
kJRvUdPeL(czIJMQ zr¢;U S«F n hHi =
Z
U vdPJM~UczHe%jpjYcXq Hun (x)
ψ ∗ Hψdx 2
2
~ d H = − 2m dx2 + V (x)
= En un (x) 22
kJMvU dme%kL:cU jYaIU Qj`e%k
F S £RS hHi =
Z
=
Z
a
dx −a
dx −a
n
X
⇒ hHi =
n
i c∗n e ~ En t u∗m
X
i ~ En t
!
c∗n e
u∗m (x)
n
2
zHj`JMqSzGj`JRNidPj`Quj`e%UNiJ u Ucge!w zIJMQzHk¢U SzIe§yzIQ d n
X
(x) H
n
a
X
=
X
En
cl e
− ~i El t
ul (x)
l
!
X
cl e
− ~i El t
En ul (x)
l
|cn | En
! !
2
|cn | En
+ q E kJMvU dme§~Djp~qLTzGj`U+zI|Xkke%JRk |c | kU Sk F tiJRdjYcXk ψ tik u (x) U q2j`L:w~Dj`|XJRkJMqL#zI|XUj`N«e%JMkzwDU SqkzIe§tGJm~D~Dj`qUcXe!w kU S;k ä ËÌ6Î]ÔÔAÒÖ Ñ2Ô gÓrËÌ6à Xà Ò!Ñ ßØ OPe P : x 7→ −x zHj`JMvj`OPkUjYaIU Qj`e P =1 ψ (x, t)
n
n
2
n
2
=
ce
P u (x) = λu (x) u (x) = P 2 (x) = P λu (x) = λP u (x) = λ2 u (x) ⇒ λP = ±1
JML(UaINGQ |XkNij`U JRQ kaIQcgq
ψ (x)
= +
1 [ψ (x) + ψ (−x)] 2 1 [ψ (x) − ψ (−x)] 2
S £RS;L#kq2JRe%zIqzIJMvj`OPkkJRNidPj`Q k u (x) = [ψ (x) + ψ (−x)] UcXe2w S £RSLTkqJMe!zHqzIJRvj`OlPJMe%kkJMNGdj`Q k j`L(JRy|XyhJtiJRJMNGzHq2jF L:czGj`JRqSxzHj`JRNidj`Q5tivi_`k§W u (x)uf H(x)L(c=zHj`JMq[ψ(x) SkzH−j`JRψNi(−x)] dj`Qk λ=1 λ = −1 P
1 2
+
1 2
−
n
[H, P ] = 0
zHj`JRvj`OPkUjYaIU Q j`e§zIeKLJRSQd ψ (x, t) , i~ PH
= HP
∂ψ ∂t
= Hψ
UvdmJm~UczIejpjYcXqKUcXe!w
∂ (P ψ (x, t)) = P Hψ (x, t) ∂t = (P H) ψ (x, t) ~2 ∂ 2 H (−x) = − + V (−x) 2m ∂x2 ~2 ∂ 2 V (x) = V (−x) ⇒ = − + V (x) = H (x) 2m ∂x2 ∂ ⇒ i~ (P ψ (x, t)) = HP ψ (x, t) ∂t i~
zHj`JMU e!JMdPJRL(kqF _pj`U zIQ
(1 ± p) ψ
= ψ (x) ± ψ (−x)
P ψ (x, t)
U q2j`L(w
F tiJRJMvj`OlPJRejtGJMJRvj`OzHj`dj`U zIQ DDG IIHG DJJKML
noE
-N),O+.-Q
F zIU qcXdzHj`JMvj`OPk._YwDL t L:wDzGj`JRvj`O%kzHj`ekLcXJ t = 0 Uj`S zIqJmj`|Xq.zHj`JMvj`O2cgJ2L(vzIJMJRNidPj`Q LÃtie kdPNG|Xq zHj`U S;k UjYaIU Q j`eUj`SOPe H = JbcXQj`y.NiJRNiL(y»F V H p2 2m
00
u +
2mE u = 0 ~2 ~2 k 2 E = >0 2m
F k L(cJRU5¢;U SL:wL(NiL kLjYwDJIkJMvU dPe!k W¡S;dPzf p U jYaIU Qj`eU j`+S«F n
~ ∂ = p ⇒ p eikx = ~k, p e−ikx = −~k i ∂x
F _pjpj`dPqe!U NidISdmzrJRwDUS5JRdmc«cXJbc cos (x) = j`qwkOmwu+q _pjpj`dmq+qke%UNidIS£bSxj`zHj`eKcXJzHj`JMqSzGj`JRNidPj`Q.nL:c+qL kU S;k kJRvU dPe%_pjpj`dG_`JRezHj`Jm~qq%l~yL(e%JRdmaHj`Q5zGj`JRSL aIQcXq kzGj`e§tiS u (x) zHj`dj`U zIQn kyhwj`k E eikx +e−ikx 2
E
2m (−V + E) u1 ~2 00 2m u2 + 2 (V − E) u2 ~ 00 u1 u1
00
u1 +
00
00
u1 u2 − u 2 u1 0 d 0 u1 u2 − u 2 u1 dx 0 0 u1 u2 − u 2 u1 x→∞ u1 , u2 −−−−→ 0 ⇒ 0
u1 u1 ⇒ ln u1 u1
= 0 = 0 00
=
2m u (V − E) = 2 ~2 u2
= 0 = 0 = const = 0 0
u2 u2 = ln u2 + ln c = cu2 =
F tiJRdjYczHj`dj`U zIQue%L#_YwDL;jzIJMU e!JMdPJRL JMj`L(z}_YwDLj SdPzIkU jYaIU Qj`eL:czHj`JMqSxzHj`JRNidj`Q ~ ∂up (x) i ∂x p ∈ R; up (x)
= pup (x) = ce
ipx ~
zGj`JRL(dj`vj`zIUj`e Z
dxu∗p0 (x) up (x) = |c|
2
Z
i
“
p−p
0
”
x
dxe ~ 0 2 = 2π~ |c| δ p − p 24
_YwDLj u Z
p
=
p
√ 1 ei ~ x 2π~
L(q2UdPdGJROPe
0 dxu∗p (x) up (x) = δ p − p
:L c δ p − p LµkwDQkU NidPj`U NrL:c δ zHj`JRq2SzHj`JMNGdj`QL:c;U5zIqDj`SLSTUq!j`L:wf W¡NiU JM~ zHj`U zH|Xkk zHj`Q JRQ Ke%JRk |φ (p)| U;cXe!w φ (p) tiJRq!~Niqk ψ (x) = R dpφ (p) yj`zHJRQaIQcXq ~Djp~DqL lP+zI|Xkk |c | F L(e%JRdmaHj`Q kUj` ψ (x, t) = P c e u (x) tiJbaIU NG|XJm~ºtGJRwDpUS6Uj`Sf F JRaIU NG|XJm~5+q~jp~qLTzHj`U zHj`JMqSzHj`JMNGdj`Q X lPL#tij`NiqkUjYaIU Q j`eÚF E 0
n,m
i
e ~ px √ 2π~
2
n
2
n n
xωx0 (x) ⇒ ωx0 (x) ψ (x)
|ψ (x0 )|
2
− ~i En t
n
= x0 ωx0 (x) = δ (x − x0 ) Z = dx0 ψ (x0 ) δ (x − x0 )
U;cXe!w X UjYaIU Qj`e0L:czHj`JRq2SzGj`JRNidPj`QzGj`S;q2e!
L:w§L:cÛyj`zHJRQaIQcXqj`dPL(JMN F D~ jp~qLTzGj`U+zI|XkkzHj`Q JMQ î ü êRñ bùðhêRëDý.ÿDê ü ùP÷î;ùùGÿDêMý ü ð _`q!j`|XJ UjYaINgjpj |ψi zHJRU L(Ni|kLQ;wDqLJRSQqc L(dj`JRNidj`Q k hϕ| zHj`U~vk OPeF V ψ (x) x0
Ml
:
hϕ|ψi = (hϕ| , |ψi)
Q£RqkL:czHj`JbaIJMqU kÝF n _`q|XdF E hϕ|T |ψi = (hϕ| , T |ψi) zIU~vkÝF s T
hϕ|ψi∗ = hψ|ϕi
†
hϕ|T |ψi = hψ|T |ϕi
∗
JRaIJRq2UkUjYaIU Q j`eÚF ^ ∗
hψ|T |ϕi
= hϕ|T |ψi
UjYaIU Qj`e§L(czIJMJRUaIqkvkzIzIL_`zIJMdF Tmn
= hun |T |un i DHFG IIHG DJJKML
25
-N),O+.- $
|aψi = a |ψi , haϕ| = hϕ| a∗
F
tivj |T ψi = T |ψi F FZ (T T ) = T T lItiL:c|XJR|X F V\ {|u i}
hT ψ| = hψ| T †
†
1 2
† † 2 1
n
X n
X
=
|ϕi
=
hϕ|ψi
n
=
X n
0
X n0
= ⇒
X
*
hun0 |ϕi |un0 i ⇒ hϕ| =
∞ −∞
X n
n
0
hψ|un0 i hun0 |
|un i hun | |ψ
+
|XJR|XkzHj`qL(c xˆ UjYaIU Q j`eL:ctGJMJbwDU q2L
|xi hx| dx = 1
hϕ|ψi = =
=
X
hϕ|un i hun |ψi hun |un i
|xi
|ψi
= |ψi
hun |ψi |un i
ϕ|
|un i hun | = 1
Z
_YwDL kq2vjp~L
X n
= 1
|un i hun |ψi
n
|ψi
|un i hun |
Z Z Z
kU S;k
_YwDL
hϕ|xi hx|ψi dx ϕ∗ (x) ψ (x) dx
∞ −∞
UcXe!w
hx|ψi |xi dx
êR÷êRð ü ï ü ùP÷ ü ùìí ÿDêb÷ ú6ð F tiJRJbcXq2qJRaIJRq2UkUjYaIU Q j`e§L:c S £RS«F V vo£ReKtiktiJRdjYcS £RS;L#tiJRq2JRe%zIqkS£Rj F n kyhwj`k
26
A† = A
4S
A |ψi = a |ψi
tGkS£Rj A = A yhJMdPdF V †
hAψ|ψi = hψ|A|ψi = hψ|a|ψi
haψ|ψi = a∗ hψ|ψi = hψ|ψi a ⇒ a = a∗
vo£ReKtiktiJRdjYcS £RS;L#tiJRq2JRe%zIqkS£Rj F n hϕ|A|ψi ⇒ ab hϕ|ψi ⇒ hϕ|ψi
= hη|aψi = hϕ|ψi a = hAϕ|ψi = b hϕ|ψi
= 0 = 0
W¡S£RS;LTS£Rj2JRdmccgJ
f~yeKJMqSUjYaINgjpj`qU zHj`J%cXJ a tGJmj`|XqJMqS¢;U S;L:c yJRdPd A |ψ1 i = a |ψ1 i A |ψ2 i = a |ψ2 i
_pjpj`d
v
£be§|XJR|XuUJMJRdIOPe
F a S£bSkL:cS£MjJm£RSTcXU Q dmk+yhU q2kzIvU ~j`e§JRU vLeJMj`+JRUU~vj`JI_pjpj`JMdPkzIvU ~ F tGJMqkyU qL#|XJM|XutiJMjpj`kqS £Mj2F ~DJM~qL~j`viL(wuvJMJRqJbaIJMqU k.UjYaIU Qj`e kU Sk ÿDêRê ùPí ê ÿDêRñêRñDð ÿDê ü ùP÷ ü ùì W¡L(QwDTtiJRQ L(yzIqGfF tGJm~JM~qtik [A, B] = AB −BA = 0 j`L(JMyhk|XyJzIetGJMqJMNGqcKtGJMUjYaIUQj`e kU ~Dvk W¡L(QwDtiJRQ L(yzIqGf2F tGJMJRQj`L(JMytGk ⇐⇒ tiJRQ zHjYcXqtiJRJRq2STtGJMq2k.tiJM~Jm~qtGJMU jYaIU Qj`eJRdmcXL aIQcgq kyhwj`k JMOmeKtGJMQzGjYcgqKtGJMJRqSTtiJR+qtieKL£bF V [A, B] _pj`zIdPkU q2j`L:w A (α1 |ψ1 i + α2 |ψ2 i) = a (α1 |ψ1 i + α2 |ψ2 i)
l
A |ψa i = a |ψa i B |ψa i = b |ψa i ⇒ BA |ψa i
⇒ AB |ψa i
= Ba |ψa i = aB |ψa i = ab |ψa i = Ab |ψa i = bA |ψa i = ab |ψa i
∀ψ; (AB − BA) |ψi = 0 ⇒ (AB − BA) = O
27
_YwDL
F tGJMQzGjYcgqtiJR+qkL;£Ru_pjpj`JMdG_`JRe!c A |ψa i
yJMdmdF n U yh+d
[A, B] = 0
= a |ψa i
OPe
A (B |ψa i) = BA |ψa i = Ba |ψa i = a (B |ψa i)
_pjpj`JRdcXJ%tie
A ψa1
⇒ B |ψa i = b |ψa i
_pjpj`JRdH_`JMetieOPe
= a ψa1
F yJbwj`di_`Q j`ej`zHj`e%+j UcXQetiJRdjpj`dPqtidPJRe«tie |ψ i W¡JRq2SqifIS£bq A cXJbcyhJMdPd ÿDêRñêRñDðÿê ü ùP÷ ü ùìíúïhð+í úÚé ü ð F zHJRL(NiJROPJRQ kzwDU S;q2kzIe Jm£RSU e!zHL JR|j`dXtiJRdjpj`JRdXL:cÜU ~D|»L:wDLxw+£bk| F [B, A] = 0 |j`dXU jYaIU Qj`etiJRJMNij |ψ i |j`dXU jYaIU Qj`e}cX|ψJX_pijpj`JRdgcXJitGe F tGJMJRQj`L(JRy.tGJMU jYaIU Qj`e 748 9BBD¾ CÂBDC ½ 8{½ 5Â6BÀ B 8:9 ÿDêMøùð+êMë NiU JM~xL:c P_pj`q2JR|XkÝF V U jYaINgjpj |ψi ∈ F JbaIJMqU k.ej`k F yU qJRU e%JRdPJML4UjYaIU Q j`e A F n yU qL |XJR|XtiJMjpj`kqrW¡tiJRq2STtGJMqifS £RqÛF E F Å ÔàiÔ[Ë iÒ!ÏÐ ä ËÌ6Î]ÔÔAÒÖ Ñ2Ô ÞÓ!Í Ô[ËÓGÒË <ËÕHÖ XÔ]çÎ<Ö èDØÆ tGJML(qUj`dPq |ψi , |ai tiJR+qkL:wF |ψi ∈ F UjYaINijpjIázIJRL(NiJROPJMQTzwDU S;q+qF V
o{
S
a
a
a
=T
U
XV
0W
Z[
,]
F
@
=
1 = ha|ai = hψ|ψi
JbaIJRq2U kUjYaIU Qj`eKJm£RS5_`zIJMdG£M~JM~q%£%JRLNGJMOmJMQTL~Dj`vF n kJMOmaIdPjpj`N F A L:c a S£RSNGUx_`k A zH~DJM~q2LTzHj`JRUcXQ e!kzGj`e!Dj`zHkF E A
A |ai
|ha|ψi|2
= a |ai
_pjpj`JRdG_`JMeUcge!w a qP~Djp~DqLTzHj`U zH|Xkk |ψi q2 A tiJM~~Dj`qU;cXe!w0F s tGJm~D~Dj`q n U ~D|Xq_pjpj`JRdcXJ%Ucge!w |ha |ψi| L#|XU j`N}+qk a +qkzIe |ψi tiJM~D~Dj`qUcXe!w F ^ |ψi → |ai n j=1
j
2
DG IIHG DJJKML
n
-N),O+.-
|ψi i~
d |ψi dt
H (r, P ) = =
L#_`q2OPxzHj`yzIQ zIklHU vdPJm~UczIejpjYcXqF
= H |ψi
W¡kJRvU dPe%L JM|XL(NikJmjYaIJRkGf_`e!JMdjYaIL(JRq2k H Ucge!w
P2 + V (r) 2m ~ 2 − ∇ + V (r) 2m
W¡tGJMU jYaIU Qj`eKL(cfj`LJRy.|XyJ%tiJRJRNizIqÝF − [x, P ] = P X − XP = −i~ = [P, x] =
F |ψ i , |ψ i W¡S £RqGfGzHj`JRUcXQ eJMdmcÜcXJxF |hψ |ψ i| 1
2
x
s
2
F zHj`e~DjblPJRe}_pj`U NiS ⇐ tGJMQj`L(JRyJMzIL(tiJRUjYaIU Qj`e NGJMNGL(y§~Djp~qL.zHj`U zI|Xk ÿêî;ñDëêMøúÛêRùëêMøïhðhþ[ùñ x zHj`q2L:cXkQD£bS
|ψ1 i hψ1 | + |ψ2 i hψ2 | = 1
|hψx |1|ψs i|
2
~ i
UjYaIQj`e%kzIe§¢;JRL(cgdiF UjYaIUQj`erj`dPL(JMN
= |hψx |ψ1 i hψ2 |ψs i + hψx |ψ2 i hψ2 |ψs i|
2
F S £RqkqK~ye%LT|j`UNiJ%q2kF tiJRNiJRNiL(ykj`U +StGkqctiJRNg~|XkzIe§~jp~qdGtGe ÖHË HË AÔ[Õ%ÑÕ%Ô èDØbß e!JMk .u
Pa (ψ)
= |ha|ψi|
?
2
= |α1 ha|ψ1 i + α2 ha|ψ2 i|2
= α21 ha|ψ1 i2 + α22 ha|ψ2 i2 + 2Reα1 α1 ha|ψ1 i ha|ψ2 i∗
JRwDU#cXJ% zIJMUe%JMdmJML4zIqwDzI|Xqe%LµzHj`U +zI|Xkk§W¡k~JM~Dqe%L(L tiJRqU Q |XqL:cÃfzGjYwDe%zIkL:cq2xU q!j`L:w zHjYwDe%zIk 2Reα1 α1 ha|ψ1 i ha|ψ2 i∗
Ê à Ë
ÔÓ ÞË iÓ H èDØRè OPeKtiJRdPzcXqzH~U Q kkSLT_`zIJRdGF _`qOPucgUj`Q qJmj`L(zrJRzIL H JMkJ ga
JRLL:wTqcj`U QLµ_`zIJRd2Ome
?
H |En i = En |En i
|ψ (t)i ∈ F
yU qL|XJM|XDcUye%qU q2j`L(wF _`q2OmTtiJRJmj`L(zJRzIL(5tGJMq |ψ (t)i =
X 29
cn (t) |En i
|En i
U q!j`L:w JP£bS
UvdmJm~UczIejpjYcXq.JRd i~
X
i~
d hEm |ψ (t)i dt dcm (t) i~ dt ⇒ cn
dcn (t) |En i dt X cn (t) H |En i
d |ψ (t)i = dt H |ψi =
X
dcn (t) |En i dt
=
i~
Wâ_pj`qJR|L(QwlIS£bS
= i~
i~
X
_YwDL
cn (t) H |En i
Em = H
JRwxU JbwDOPd[f%Wâ_`qOPuJMj`L(zre%Lf hE | L(Sx¢;JRL:cXd n
dcm (t) X = cn (t) hEm | H |En i = Em cm (t) dt
= Em cm (t) i
= ce− ~ Em t
Ô]Ï ÔÔ<Öi×
ËÏ0Ê
Ô]ÑÒ èDØ zH~Jm~qzGj`e%~j_`JRerF tGJMQzGjYcgq§S £RqL:c |XJR|XtiJRJMN ⇐ tGJMQ j`LJRytGJMU jYaIU Qj`eKU q!j`L:w [A, B] = 0 yJMdmd • a, b Jm£RSTzHj`e~DjpjblPJMeU Jm~vd [A, B] 6= 0 JMkJ •
q
∆A =
∆A∆B
2
hψ| (A − hψ| A |ψi) |ψi
=
1 |hψ| [A, B] |ψi| 2
e
Wâ_`Niz§zIJRaI|Ãf JROPe tiJbaIJRq2U k
U;cXe!w ï ùï UJm~vd
A, B
Mlo{
λ ∈ R; |ψi = (A + iλB) |ψi
JROPe
0 ≤ hψ|ψi
= hψ| (A − iλB) (A + iλB) |ψi
A
2
+ iλ h[A, B]i + λ
2
B
2
hψ| A2 |ψi
= hψ| A2 + iλ [A, B] + λ2 B 2 |ψi ≥ 0
JbaIJRq2U kUjYaIU Qj`eKUj`S
= hψ| A · A |ψi ≥ 0 30
"!
JROPe
A2
B
2
h[A, B]i
≥ 0
≥ 0
= hψ| [A, B] |ψi = hψ| BA − AB |ψi
= hψ| BA |ψi − hψ| AB |ψi = hψ| BA |ψi − hψ| BA |ψi∗ = 2Im (hψ| BA |ψi)
zIJMSj`+JRUtgj`dPJRLj`QxL:ckaIdmdPJMqU NG|XJm~k.zHeKNgjp~d
2
(iλ h[A, B]i) − 4 hψ| A |ψi λ hψ| B |ψi
≤ 0
+JRdI_YwDLj! j`L(JRy|XyJ!tiJRq2JRJMNGqe%L:ctiJbaIJMqU k
A, B
L:wDL_pjYwDd
0
A → A = A − hψ| A |ψi
B
0
→ B = B − hψ| B |ψi λ=1
+JRdIJMOmeKkaIdPdmJMqU Ni|~x+JRd
(i h[A, B]i)2 − 4 hψ| A |ψi hψ| B |ψi ≤ 0 D 0E D 0E 1 2 ≥ B ⇒ A (i h[A, B]i) 4 1 ∆A∆B ≥ |h[A, B]i| 2 0
0
U U j`v [x, P ] = tiJbaIdjpj`NikzIUj`z}L:c kq!j`JR|XNie!kUj`S kdPNi|Xq ~ i
∆x∆P
≥
~ 2
%Ë à»ËÓHÒ2Ë <ËÕ}Ó Ô[åxÓ!Í iÔàiàÓ!Í Êoà Ô]ç XÕ ºÖ Dè ØbÉ _`q2OPuSDj`qq2kzIU OmvdmL#JmjYaIJR e%q d
evu
va
b
R %
d hψ (t) |A|ψ (t)i = dt
d d d ψ (t) |A|ψ (t) + ψ (t) | A|ψ (t) + ψ (t) |A| ψ (t) dt dt dt
U vdPJM~DU;czIejpjYcXqQD£bS
d 1 |ψi = H |ψi dt i~ 1 d ψ = − hψ| H dt i~ (9) ⇒
(9)
d hψ (t) |A|ψ (t)i = dt
d dt
ψ (t) |
kejpjYcXqkUOPyJRd
1 d A|ψ (t) + hψ (t) | [A, H] |ψ (t)i dt i~ DG I DG DJJKoL -N),O+.- ;
31
Hz j`dPNi|Xq j`L(JMy.|XyJ%tGJMJRNiq A Uj`STUcXe!w F V [A, H] = 0 d hψ|A|ψi dt
⇒
A
= 0
L:c JRqST+qU j`+STaIU Q uS j`NlG+qL(wD A L(czIJMQzHk¢;U S5_YwDL A |ai
= a |ai
ha|A|ai
= a
U j`+zHj`JRvj`OPk P kq2vjp~ S j`Ná%f`F a, E Jm£RS.tiJRq2krzIe0_`JRJRQ e%LUcXQe F H lPLj AlPLtiJRQ zHjYcXqS£Rq |a, Ei cXJOPe [A, H] = 0 F n W¡kSj`dPz Ë !ÓHÒrÊÕ%Ô]Ï Ôàiæ ä Ëoå ÖGÎ à P ×Ô x Ó!Í XËÕ ÞËoæ%Ñ èDØ JRwuke!U d [H, P ] = 0 ∞
d hxi dt
d hpi = dt
x, P 2
P, xn+1
=
=
>
hP i m
1 h[P, H]i i~
= xp2 − p2 x = [x, p] p + p [x, p] = 2i~p ~ ~ = [p, xxn ] = [p, x] xn + x [p, xn ] = nxn + xn i i ~ n = (n + 1) x i
d hxi dt
H
=
[x, H] = = = =
1 h[x, H]i i~
=
P2 + V (x) 2m 2 P x, + V (x) 2m P2 + [x, v (x)] x, 2m 1 2i~p + 0 2m ~ip m 32
u
e
U vdPJm~UczIejpjYcXqq L(e
tivj (10)
UcXe!w
(10) ⇒
d hxi dt
1 ~ip i~ m hpi m
= =
tij`NiJRq2xSDj`qq2LTS;dPzIkSDj`qqc _`JMxUcXN}cXJj`dmLJRN}U q!j`L:w d hpi = dt = = = =
1 h[P, H]i i~ P2 1 P, + V (x) i~ 2m P2 1 P, + [P, V (x)] i~ 2m 1 h0 + [P, V (x)]i i~ d (V (x)) − dx
L(e%JRdmaHj`Q kzIU OPvdISDj`qqLTSdPzIkS;Dj`q2q_`JRUcXN«j`dmLJRN}U q!j`L:w _pjYaHj`JRdHL:cJMdMcXkNij`ykzIe§aIS;qwuj`dPL(+JRN}tivGJMOme
⇒m
d2 hxi dt2
d (V (x)) dx dV (hxi) d hxi
= 6=
;å Ñ GÎ {ËÏ0Ó%Í ÖHå ÖXÖ èDØ JRzHL( H yJRdPd_`qOP tGJMJMj`L(zJRzIL H, P, X tiJRUjYaIU Q j`eF _`q2OPµtiJRJmj`L(z |ψ (t)i UvdmJm~UcKzIvkj`d~qL kq!~NGk lPJMj`Lz t
u
i
|ψ (t)i = e− ~ H(t−t0 ) |ψ (t0 )i i
JROPe
U (t − t0 ) = e− ~ H(t−t0 )
F JbaIJMqU k H Uj`SJMUaIJRdj`J2UjYaIU Qj`e L:cS£Rq |ψ (t )i yJRdPd H 0
H |En i
= En |En i i
|ψ (t0 )i = e− ~ H(t−t0 ) |En i
vU dPOPJReL(ckvkk |ψS i = |ψ (t)i
= U (t − t0 ) |ψ (t0 )i
33
F kvktiJRJMj`Lz§JMzIL(zIJMQzrJRwDUS;ckcgJMU~5cXJgW¡vU +dmOPJMezIvk!ftGJMU jYaIU Qj`e hψS |AS |ψS i
= hψH |AH |ψH i
L(e
† hψS |AS |ψS i = ψH U † AS U ψH
⇒ AH
= U † AS U i i = e ~ H(t−t0 ) AS e− ~ H(t−t0 )
dXH dt dPH dT dAH dt d ⇒ AH dt dAH ⇒ dt
= = =
JbwuzHj`e%U L_`zIJRdIOPe
PH m dV (xH ) = − dXH =
i i i i H(t−t0 ) i i e~ HAS e− ~ H(t−t0 ) − e ~ H(t−t0 ) AS He− ~ H(t−t0 ) ~ ~ i [H, AH ] ~ 1 [AH , H] i~
UvdmJm~UczIvkUj`S5zHj`S~jpj`k2lPJRe}_pj`U NiJRSTJbwtivHL tiJbcXd B
d AS dt
=
1 h[AS , H]i i~
Ê
à Ô]Ï ÔÔ<Öi×
ËÏ0Ê
Ô]ÑÒ èDØ F _`q2OP5cXUj`Q qJmj`L(zrJRzIL( (H, P, X) ~JM~q A UjYaIU Qj`e§UcXe!w U vdPJM~UczHj`ejpjYcgq2qKS+j`d ga
d hψ|A|ψi dt
1 hψ| [A, H] |ψi i~
=
e
j`L(JMy.|XyJtGJMJRNizIqtGe
d hψ|A|ψi = 0 dt
F U qcXd aIUQ JML(L:wDkzHj`e~Djpj`k2lJRe}_pj`U NGJMSTOme§j`L|ψiJRy.|X=y|aiJ_`JReKtGe
[A, B] 6= 0 ⇒ ∆A∆B
≥
1 |hψ| [A, B] |ψi| 2 H
∆A∆E
≥ =
tiSJMQ j`LJRy.j`dPJRe!cU jYaIU Qj`e A yhNiJRd
1 |hψ| [A, H] |ψi| 2 ~ d hψ| [A, H] |ψi 2 dt
Es
G I DG DJJKoL -N),O+.- 6P
U JM~vd ∆A d hψ| [A, H] |ψi dt ~ 2
∆t = ⇒ ∆t∆E
≥
F zwDU S;q2JMj`dPJbcXkzIe§_`JMJRQ e%qk
S;aIN}JRdPQLS;L;j`ySDj`qq2kj`Dc_`q2Omk ∆t U +|Xk >
∆A
QT
i~
d |ψi dt
ψ (t) =
aV
¡
= H |ψi
F [X, P ] = i~, X, P zHj`Sqe%._pj`zIdGUjYaIUQj`e H L:c S £RS5~Djp~q2L~Dj`e%q+jYcXy H
X n
i
cn e− ~ En t |ψi
bù ü é íuéùP÷êMú éù
î;êRùñDð.éùP÷êMú zHJRJRUaIqkaIJRcÁF V zIJRUjYaIU Qj`eKkaIJRcÁF n zIJML(e%JRdPU QJm~5ke%jYcXqL(ckaIJRcÁF E éùý ü ù
î;ð.éùP÷êMú _`qOPzHj`JMj`L(z}JMzIL(+kzGj`S;U Q kkzIUj`z F V zGj`JRe%JRUjpj`kzaIJRcÁF n XË GË
ÑÌ6à gÌËoÍ +ØÆ JRQj`|tiJR+qUQ |XqcXJUcge!wk+jYarzIJMJRUaIqkaIJbc kU Sk ÿDêmý hðûÿ .é ü ð :óRò
óRò zHj`e%qvjp~ cgQj`yzHj`vU~uJRzc0li_pj`U;aINiL(e§L:c_`JMQ|ÁF V ↑↓ tikJRdPSdH~ye§_pj`UaINiL(ej2tiJRdPq2JRqJRdmcL:ckLj`NiLj`qU q2j`L:w.lG_`qJMq_pj`J H F n kJMdPj`q2e%kzHLj`NGL;j`qF E H N tGJMqJRdmctiJRdj`zId kL(e!c
u
*C
<S
+ 2
3
H0 |ψ1 i = E1 |ψ1 i H0 |ψ2 i = E2 |ψ2 i 35
o
o{
S
!
#
S jp~JRcyJRdPd W e%UNiJbc H lPL#zIQ |j`zrcXJ!zGj`yhdPOPkL(L(v hψ1 |W |ψ1 i = w11 hψ2 |W |ψ2 i = w22
hψ2 |W |ψ1 i = w21 hψ1 |W |ψ2 i = w12
=
H0
=
W
E1 0
w11 w21
OPe
0 E2
w12 w22
Ome§JbcXqq ww = ww 12
∗ 21
11
tivjtGJRcgq2q
E1 , E2
tGviyJRdPd
w11 , w22 = 0, w22 = 0
= H0 + W E1 w12 = w12 E2
H
E±
|XJR|X+uU q!j`L:w
F tiJbcXqq 12
Uq!j`L:w
|ψ1 i , |ψ2 i
S £RS5_`q2|XdHF H L(ctiJRJRq2S;ktiJR+q2jzIwDUSqkkJMvU dPee%qd H |ψ± i = E± |ψ± i
=
H
0 E−
E+ 0
kvkUcXe!w
kJMU;aIq2LzIJRUaIJMdPj`JkJRUaIqJm£RSµ_pj`|gwDL(L4zIdPzIJRd2zIJbaIJMqU kkJRUaIqL:wTL(+eU +S;qzHJRUaIqe%qd tiJRdj`|gwDL(e U † HU
= D
Wâ~ye§U JRk j`NGJRcL(LjYwe%LfzHJRL(L:wDkkU j`kU q2j`L(wv
£be U j`dPL:ckU NGq2 U
=
U HU
†
=
cos θ − sin θ
sin θ cos θ
0 E−
E+ 0
_pj`|gwDL(kzIcgJMU~ zHj`Sqe% ej`qL#kUaIq2k
θ E1 , E2 , w12 cos θ sin θ E1 w12 cos θ − sin θ E+ 0 = − sin θ cos θ w12 E2 sin θ cos θ 0 E− cos θ sin θ −E1 sin θ + w12 cos θ ⇒ = 0 − sin θ cos θ −w12 sin θ + E2 cos θ 1 sin 2θ (E2 − E1 ) + w12 cos 2θ = 0 2 2w12 tan 2θ = E1 − E 2 36
w+£Rk| |ψ± i =
det
E1 − E w12
tan 2θ
=
w12 E2 − E
2 E 2 − E (E1 + E2 ) + E1 E2 − w12
E±
cos θ − sin θ 2w12 E1 − E 2
sin θ cos θ
S£RSe%qd
2 = (E1 − E) (E2 − E) − w12 =0
= 0 q 1 1 2 (E1 − E2 ) + 4w12 = (E1 + E2 ) ± 2 2
tiJRJMdPj`JMNrtGJMqnXcXJ |2w12
tan 2θ |θ| 1, cos 2θ
≈ sin 2θ ≈ ≈ 1
|ψ+ i ≈ |ψ− i +
OPe%j E
1
k U Sk U j`+S«F V | |E − E |
θ
|ψ± i =
2
2w12 E1 − E 2
w12 |ψ2 i E1 − E 2
kJMvU dme%JRzHL(yzIk_pjpj`JRdIL(ckU Niqkqvojp~L |2w
= E2
1
12 |
|E1 − E2 |
π 4
'
Fn
OPe%j
1 √ (|ψ1 i ± |ψ2 i) 2
_`qOP_pj`UaINiL(e%kzIe§ej`q2LzHj`U zI|Xkkkq§ |ψ i ej`kq2k 1
t=0
_`q2OPDc yJRdPd bð oýý hðéù é é2ï +q t |ψ i _pj`U zIQ k ¢ i
*
*C
l
£
2
|ψ1 i = cos θ |ψ+ i − sin θ |ψ− i
|ψ2 i = cos θ |ψ+ i + sin θ |ψ− i
i
JML(L:wDkq2k
i
|ψ (t)i = a+ e− ~ E+ t |ψ+ i + a− e− ~ En t |ψ− i
|ψ1 (t = 0)i
⇒ |ψ1 (t)i
= cos θ |ψ+ i − sin θ |ψ− i i
i
= cos θe− ~ E+ t |ψ+ i − sin θe− ~ En t |ψ− i
37
kL(yzIkJRe%dPz§UcXe!w ¤ G I DG DJJKhL -N),O+.- $¥
JROPe P1→2 (t) hψ2 |ψ+ i hψ2 |ψ− i P1→2 (t)
−α e ! − e−α2 2
= |hψ2 |ψ (t)i|
2
= sin θ = cos θ i 2 1 i = sin2 2θ e− ~ E+ t − e− ~ E− t 4
L(JMvU z
2 α +α 2 (α! −α2 ) (α1 −α2 ) −i 1 2 2 −i 2 − ei 2 e e
=
2 α1 − α2 2 α1 − α 2 = 1 · 2i sin = 4 sin 2 2
ã t _`qOP
2
P1→2 (t) = sin 2θ sin
2
E+ − E − t 2~
1→2
qqU SqL
(Rabi)
zHyh|j`d
Ë
ÎÔàgÑ%ÖÞÑÔ[ÌÓ2Ë Ô]Ï +Øbß êMñDð+ð.ñ .êMøùð ü ï ü ùP÷íêMëùì :ó¡ûAóRò F zIJR|XL(NikzHj`U JM~zHk ω UcXe2w V = mω x
!
#
1 2
=
H
2 2
P2 1 + mω 2 x2 2m 2
L;£R En
1 = ~ω n + 2
_`qOPkJMj`L(zre%L(kU vdPJM~UczIejpjYcgqKzIeKtgjYcXUdg_`zIJMdf kyhwj`k −
~2 d2 uE (x) 1 + mω 2 x2 uE (x) 2m dx2 2
= EuE (x)
W¡zIJML(e%JRdPU QJm~ukUj`kzHj`eU j`zHQL;j zIJMU jYaIU Qj`ekaIJbcJP£bSTUjYaIQ d JRwxtiJRS ~Dj`Jj`dPe [p, x] = −i~
H |Ei = E |Ei
H
=
~ω X2 + P 2 2 38
tijYcXU d
F tGJm~qqU |Xy X
=
P
=
mω x ~ 1 √ p mω~
£bcX~Dy£U jYaIU Qj`eUJm~vdXW¡tiJbaIJMqU k
_YwDL
X, P
U;cXe!wf A =
[H, A]
j`LJRyk|XyhJUcXe!w j`L(JMyk|XyhJ%zIe§Nijp~Dd
~ω ,A ~ωA† A + 2 † = ~ω A A, A = ~ω A† , A A = −~ωA
[H, A] =
H, A†
U Jm~vd
= ~ωA† A +
A, A† = 1
(X + iP )
_`e%JMdPjYaILJRqkk_YwDL
~ω i [P, X] 2 ~ω ([P, X] = −i) ⇒ = ~ωA† A + 2 H
√1 2
1 √ (X − iP ) 2
=
UcXe!w
r
[P, X] = −i
A†
X, P
= . . . = ~ωA†
lP L:cS £RS5~JMU j`q kdPS;a lP HH L(cS£bSkL(S;q AA ky+wj`k JbwxyJRwj`dPj H |Ei = E |Ei yJRdPdF V ~ω ~ω
H (A |Ei) = (E − ~ω) (A |Ei)
HA |Ei
†
Le
([H, A] = −~ωA ⇒ HA − AH = −~ωA) ⇒ = AH |Ei − ~ωA |Ei = AE |Ei − ~ωA |Ei = (E − ~ω) (A |Ei)
E{Z
JbwuyJbwj`d5F n H A† |Ei
H, A
†
= (E − ~ω) A† |Ei
= ~ωA† ⇒ HA† − A† H = ~ωA
†
Le
HA† |Ei ⇒ = A† H |Ei + ~ωA† |Ei = A† E |Ei + ~ωA† |Ei = (E + ~ω) A† |Ei
tikqNgjp~d c L(Lv E ≥ 0 F V £
H
=
1 P2 + mωx2 2m 2
E
F tGJM+j`JMyS £RS5_YwDLj2tiJbaIJRq2U ktiJRUjYaIU Qj`eKJRS j`JMUL:ctijYwD|U q2j`L:w Uj`SJbcX E ~DJRUj`q A F n ~ω W |Ei = 0 LS;q~ye§Uq!j`L:wf`F UzGj`JR¢j`qdH+q A |E i = 0 F E j`kqF s E 0
0
1 H |E0 i = ~ωA† A |E0 i + ~ω |E0 i 2 1 = ~ω |E0 i 2
n ∈ N ∪ {0} ; En
|En i =
=
1 n+ 2
OPe
E0 = 21 ~ω
U q2j`L:w
~ω
L;£R
n 1 √ A† |E0 i n!
yJbwj`d kyhwj`k LqU dPL#¢;JRU Dj |E i|E= bi =A |EA |Ei tGJMSi~Dj`Jj`dPe n
n
n
hEn |En i = b2n En−1 |AA† |En−1
A, A† = 1 ⇒ = b2n En−1 |A† A + 1|En−1 H
1 = ~ω A A + 2
⇒ bn
†
= b2n n = 1 1 = √ n
40
√1 n †
†
n−1
n−1
L(e Lj`q2U dmkq_YwDL
Hz j`U S;k tieKUj`zIQ LTkJMk_`zIJMdF V −
r
~2 d 2 1 uE (x) + mω 2 x2 uE (x) 2 2m dx 2
= EuE (x)
F zIJbaHjYaIQ q2JR|XeKzGj`vkdPzIkj JP£bSTUj`zIQ L_`zIJMdH_Ywj`qw F n
A |E0 i = 0
i mω ~ d uE0 (x) = 0 x+ √ 2~ 2mω~ i dx ! r r mω ~ d uE0 (x) x+ 2~ 2mω dx
uE0 (x) = ce− 2~
x2
1 uEn (x) = c √ n!
r
mω
1 = c√ n!
n mω ~ d i mω 2 x− √ e− 2~ x 2~ i dx 2mω~ !n r r mω 2 mω ~ d e− 2~ x x− 2~ 2mω dx
XËÌ6Î]ÔÔAÒ«ÖÒ2Ë <ËÕ 0Ë gË
ÔÔ iÎ »Ó!Í ä Ë ià +ØRè F U qcXdGJRzIJmjpj`OHSdmzrOPe V (~r) = V (r) tikczHj`JRS~Dj`e%qhjYcXy.JRzHJMjpj`O SPd z k U Sk
?
?ne =
.vu
!
:m
~ = ~r × p L ~
j`L(JMy.JR|XyJMktiJRdj`zId
yj`zHJRQ
[x, px ] = i~ [y, py ] = i~ [z, pz ] = i~
Wâ¢hj`|XqU jYaIU Qj`eKej`k L~ _YwDLf j`L(JMy.|XyJ%ke%U d5F V
[Lx , Ly ] = i~Lz [Ly , Lz ] = i~Lx [Lz , Lx ] = i~Ly
kyhwj`k [Lx , Ly ]
= [ypz − zpy , zpx − xpz ] = [ypz , zpx ] − [zpy , zpx ] − [ypz , xpz ] + [zpy , xpz ]
= y [pz , z] px − 0 − 0 + [z, pz ] py x = i~ (xpy − ypx ) = i~Lz IH¦G I DG DJJKML
41
-N),O+.- 6p
~2 L L2 , Lx
p
~ 2 = L ~ L
L:cL~j`vie%q2d5F n
= L2x + L2y + L2z = L2x + L2y + L2z , Lx = L2y , Lx + L2z , Lx = Ly [Ly , Lx ] + [Ly , Lx ] Ly + Lz [Lz , Lx ] + [Lz , Lx ] Lz = −i~Lz Ly − −i~Lz Ly + i~Lz Ly + i~Ly Lz = 0
_`q|Xd L~ , L L:ctGJMJRq2STtGJMqtGkJRzHJMjpj`OISdPzL(ctiJR+q_YwDLrF E 2
~2
L |λ, mi
Lz |λ, mi
z
= λ~2 |λ, mi
= m~ |λ, mi
m, λ
S£bSej`q2LTkU d kdPSa
o n n ` ∈ l|l = , n ∈ N ∪ {0} ; λ = ` (` + 1) 2 n o n m ∈ l|l = , n ∈ N, −` ≤ l ≤ ` 2
_`q2|Xd kyhwj`k
= Lx + iLy = Lx − iLy
L+ L−
kqe%zIk~DJRUj`q2j2kL(SqUjYaIU Q j`e
Lz |λ, mi Lz (L+ |λ, mi) ~ 2 (L+ |λ, mi) L
Lz (L− |λ, mi) ~ 2 (L− |λ, mi) L
= m~ |λ, mi = (m + 1) ~ |λ, mi
= λ~2 (L+ |λ, mi) = (m − 1) ~ |λ, mi
= λ~2 (L− |λ, mi)
[Lz , L+ ] = ~L+ [Lz , L− ] = −~L−
= i~Ly + i (−i~Lx ) ~ 2 , L+ L
i
= ~ (Lx + iLy ) = ~L+ h i ~ 2 , Lx + iLy = 0 = L
[Lz , L− ] = [Lz , Lx − iLy ]
= i~Ly + i (i~Lx )
h
~2
L , L−
i
ke%U d íýhì
[Lz , L+ ] = [Lz , Lx + iLy ]
h
L£b
= −~ (Lx − iLy ) = −~L− h i ~ 2 , Lx − iLy = 0 = L 42
JbwuL tGJRcXdH_Ywj`qw L+ L−
= (Lx + iLy ) (Lx − iLy ) = L2x + L2y − i [Lx , Ly ] = L2x + L2y + ~Lz
⇒ L + L−
L− L+
~ 2 − L2z + ~Lz = L ~ 2 − L2z − ~Lz = L
tiJbaIJRq2U k.tiJRUjYaIU Q j`e§L:cJMdmcU~|XqzIJMSj`+JRUzIJMdPzL:cS£bS;c Uye%q ~2 L
éùø D÷ S
λ≥0 •
= L2x + L2y + L2z λ
JP£bS5tij`|Xy
m •
L+ L− = L†− L− ⇒ hλm|L+ L− |λmi ≥ 0 D E ~ 2 − L2z + ~Lz |λm hλm|L+ L− |λmi = λm|L ⇒ ~2 λ − m 2 + m ≥ 0 ⇒ λ − m (m − 1) ≥ 0 λ − m (m + 1) ≥ 0
`≥0
NGUu_`yh+dtHwD|XkF λ = ` (` + 1) U JM~vd
λ = ` (` + 1) ≥ 0
` (` + 1) ≥ m (m − 1) ` (` + 1) ≥ m (m + 1) ⇒m ≤ ` m ≥ −`
¢j`qdPk
m2
UzGj`JRkj`+vk
m1
U j`⇒+S−`F tij`q2≤JR|XmNi≤qcX` JU q2j`L:wV]lP m kL(S;q
L(e F U zHj`JM
L+
L+ |m1 i = 0 L− |m2 i = 0
tivj Y
ô :óRòû<óâû µý.ïì ü ï tGvgj`dPL zGj`Sjp~JGF H, L~ , L lL tiJRq2JRe%zIqc |n, l, mi NGJmjp~qj`dPU zIQ bðhêRðÿDùP÷2ì (θ, ϕ) ?§
l,m
2
Z
oC
z
∗ dΩYl,m Yl 0 m0
En
?§§¨#
= δll0 δmm0
= − (13.6ev) 43
1 n2
zIJML(e%JM~U kkejpjYcXqkq
S jp~JUcge!wF Wâ_`qJMqtijYaIe%L#NGUf llP_pjpj`JRdj mlP_pjpj`JRdHcXJ!UcXe!w
u = rR;
−
Z
∞ 0
Rn,l (r)
= ...
u2n,l dv =
Z
∞ 0
UcXe!w
2 2 Rnl r dr
= 1
vo£Re
~2 d2 u ` (` + 1) + u + v (r) = Hr 2µ dr2 2µr2 Hr u = Eu
Z
Z
0 ∞
0
∞
un,l un0 ,l dr
= δnn0
Rnl Rn0 l r2 dr
= δnn0
F vo£ReKzHj`JMNGdj`QxtGJML(Niqj`dPe
_YwDLj2JbaIJMqU k
l=l
|Yl,m (θ, ϕ)| = |Yl,m (θ)|
|Y0,0 | = const
0
Hr
Rn,l
tie%k
tivj
Uj`STNiU5U q!j`L:w
zHj`U zH|Xk
Uj`STL:cXqL zHJRUjp~ wkJRUaIq2JR|U q!j`L:w Uj`S
|Y10 | = c |cos θ|
> T¿ 8:B(½4C 8;C½ CxB;=ÂÀ CÂ6BC Sjp~JMk_pj`UzHQkJMOPeKF H L:time czHj`−JMvU independent dPe!k2jtiJR+qkperturbation zIe§j`dPU zIQcythoery JMdmd =W
M©ªU
«©U
¬UU
0
H0 |ϕn i = En0 |ϕn i
H
= H0 + W
hϕn |H0 |ϕn i
hϕn |W |ϕn i
s]s
=
En0
En0
F kSUQ kzIQ |j`z W lPL#e%U NGd U q2j`L:wkcXL(ykSU QkkcyJMdmd
tiJM~q2qU |XyS j`Nrej`k W lj H _`JMcXU Q kkU q!j`L:w
H0
0
L~Dj`viU~|X
H1
cj`U ~DdIUcge!w
zIe§U j`zHQLTtiJRDj`Uxj`dme§U q2j`L:w
= H0 + λH1
H
H |ψn i (H0 + λH1 ) |ψn i
_`q|Xd _YwDLTF λ 1
W = λH1
= En |ψn i = En |ψn i
É ØÆ F λlPUjYaw |ψ i l j E zIeKyzIQ d
®"¯"¯"°:±²³³´}¯µX¶·¬¸¸´¶¯:´ n
∞ X
= En0 + λEn1 + λ2 En2 + . . . =
En (λ)
Lj`q2UdGtGUj`vw
Enk λk
_`q|XdItie§ |ψ i zIeKyzIQ d
k=0
|ψn (λ)i = N (λ) |ϕn i +
(H0 + λH1 ) |ϕn i + λ
(1)
X
(1)
k6=n
k6=n
X
k6=n
(2) cnk
λ0 ; H0 |ϕn i
(1)
cnk |ϕk i + H1 |ϕn i
|ϕk i + H1
X
(1) cnk
k6=n
n
cnk (λ) |ϕk i
tiJRq!~NGq2kUjYa}_YwDL
(2)
|ϕk i
k6=n
X
k6=n
JMdH_YwDL
(2)
X
cnk |ϕk i + λ2
En0 + λEn1 + λ2 En2 + . . . |ϕn i + λ
λ1 ; H0 λ2 : H0
X
=
k6=n
N (λ)
= λcck + λ2 cnk + . . .
cnk (λ)
X
cnk |ϕk i + . . .
(1)
cnk |ϕk i + λ2
X
hϕn | · En0
X
k6=n
(1)
(2)
cnk |ϕk i + . . .
U~|L(wDutiJRJMNGzHz§kejpjYcXkc0tiJRDj`Uxj`dPe k6=n
= En0 |ϕn i X (1) = En0 cn,k |ϕk i + En1 |ϕn i k6=n
= En0
X
k6=n
(2)
cn,k |ϕk i + En1
X
k6=n
(1)
cn,k |ϕk i + En2 |ϕn i
Rùú6ì üxü ñëDýéù ü ïïé ü ùé :óRò
óRò F kejpjYcXqtGJm~D~x¢j`Q kd
n
0
cn,k |ϕk i + En |ϕn i ⇒ ∆En1 = λEn1
45
= En1 = hϕn |W |ϕn i = hϕn |λH1 |ϕn i
S
A
F S;U Qj`qJRzHL(q2xkSU Q kkL:czHJRQ zIk¢;USL = _pjYcXe%U5U~|Xq E kJMvU dme%L#_pj`NGJMzIk_YwDL _pjYcge%UuU~|XqkJRvUdPe%L#_pj`NGJMzIk n
= En0 + hϕn |W |ϕn i
En
|ϕk i
hϕk | · En0
X
(1) cn,k
k6=n
0
|ϕk i + En |ϕn i
L(SkL:aIkkzHeKNgjp~d
(1)
= Ek0 cn,k + hϕk |H1 |ϕn i (1)
= En0 cn,k
hϕk |λH1 |ϕn i En0 − Ek0 X hϕk |W |ϕn i ⇒ |ψn i = |ϕn i + |ϕk i En0 − Ek0 (1)
⇒ λcn,k
=
k6=n
|hϕk |W |ϕn i|
0 En − Ek0
= 1 + o λ2
N (λ)
cj`U~dHzGj`S;U Q kkzIUj`z«¢;Uj`L
ej`kLj`qU dPkrW¡zIJMuLJRvU zfkOHq2
êMøú ü ñDëðéù ü ïïé ü ùé :óRò
ó¡û LS ¢;JRL:Xc d hϕ | S
A
n
hϕn | H0
X
k6=n
(2)
cnk |ϕk i + H1
X
k6=n
(1)
cnk |ϕk i
= hψn | H1
X
k6=n
= hϕn | En0
= ⇒λ
2
En2
=
(1)
cnk |ϕk i
X
k6=n
(2)
cn,k |ϕk i + En1
hϕn | En2 |ϕn i X (1) λcnk hψn | λH1 k6=n
=
:q
X
k6=n
(1)
cn,k |ϕk i + En2 |ϕn i
|ϕk i
X hϕk |λH1 |ϕn i hψn | λH1 |ϕk i En0 − Ek0
k6=n
=
X |hϕk |W |ϕn i|2 En0 − Ek0
k6=n
WE
0 n
U jYaIJbwf~Dj`|XJRkzIq2U5zIe§k~JRUj`qkSU Q kkÛF V W¤£Mj`OHzHe§j`OHzGj`yjp~zGj`qUD£fµF n F _YaIN}kJMvU dme%kcXUQ kc L:wwkL~vgkdmwckqUxzIS;QcXkÛF E
zHj`U S;k
− Ek0 < 0
¦G IHG DJJ ML
46
-N),O+.- 6t
λ2 En2 ≤
2 2 (∆W ) = ϕn |W 2 |ϕn − (hϕn |W |ϕn i)
(∆W )2n ∆E
F U zHj`JRk+j`U NGkkJMvU dPe!L NiyhU q2k
λ2 En2
≤ = = =
∆E
L(JRvU z F V Ucge!w
1 X 2 |hϕk |W |ϕn i| ∆E k6=n
1 X hϕn |W |ϕk i hϕk |W |ϕn i − (hϕn |W |ϕn i)2 ∆E k i 1 h
ϕn |W 2 |ϕn − (hϕn |W |ϕn i)2 ∆E 2 (∆W ) ∆E
£pcXL(y£IJRL(qcgyk~ cX_`qJMqtgjYaIe kJRvU dPeL(S~yeK+qNGUTcXJ%U q2j`L:w. n = 1, l = m = 0 ~Dj`|XJMkzIqU E10
OPe
= −13.6eV 1 = − µc2 α2 2
F _pjpj`JRwDJRL(qcXyhkk~cgkL(c_pjpj`JbwDkzIe§U yh+d
~ = Ez z E
e2 p~2 − 2µ r W = eEz hz1 i ∼ r1 ∼ 10−8 cm =
H0
_pjYcge%UxU ~D|X~j`|XJRkzIJRvUdPe%LT_pj`NGJMz
∆E11
= λE11 = hϕ1 |W |ϕ1 i
= h1, 0, 0|eEz|1, 0, 0i = eE h1, 0, 0|z|1, 0, 0i Z = eE d3 rϕ∗1,0,0 (~r) zϕ1,0,0 (~r) = ∗
ϕn,l,m (~r) = Rn,l (~r) Yl,m (θ, ϕ)
ϕn,l,m (~r)
kJRNidj`QkL:c zHj`JRvoj`OmL#+LµtiJbcXd
l
ϕn,l,m (−~r) = (−1) ϕn,l,m (~r) ~r → ~r r θ
→ r → π − θ, ϕ → π + ϕ
∗ = 0 47
_YwDL
kqvojp~
JRdmcU~|Ngjp~d ∆E12
E10 − En0
= e2 E 2
Z
Z
Rn =
r
3
∗ drR10
(r) Rn,1 (r)
r
2
∗ drR10
(r) Rn,l (r)
⇒ |h1, 0, 0|z|n, l, mi|2
∗ r3 drR10 (r) Rn,l (r)
Z
∗ dΩY00 Yl,m (r cos θ)
Z
∗ dΩY00 Yl,m cos θ r Z Z 4π 1 ∗ ∗ Y10 = r3 drR10 (r) Rn,l (r) dΩ √ Yl,m 3 4π Z Z 1 ∗ ∗ dΩYlm Y10 = r3 drR10 (r) Rn,l (r) √ 3 Z 1 ∗ = r3 drR10 (r) Rn,l (r) √ δl,1 δm,0 3 1 = √ Rn δl,1 δm,0 3
(dΩ = sin θdθdϕ) ⇒ =
Z
2
n 6= 1 l, m 1 = −13.6 1 − 2 n 2 e 1 e 2 n2 − 1 = − 1− 2 =− 2r1 n 2r1 n2
h1, 0, 0|z|n, l, mi =
|h1, 0, 0|z|n, l, mi| E10 − En0
X
=
f (n) = ∆E12
X
n 6= 1 l, m
1 2 R = f (n) r12 3 n 2n−5 28 n7 (n − 1) 3 (n + 1)
= −2e2 E 2 r13
2n+5
X
n 6= 1 l, m
n2 f (n) n2 − 1
= 1.125
⇒ ∆E12
= −2.25e2E 2 r13
n2 f (n) n2 − 1
JMUq!j`dI+jYcXJMyhq
F JMSj`+JRU kNGUaI|«aINiQ ezIej`dmLJRN zHj`e%U kL _`zIJMdTzIJRL(JMvU z :y
∆E12 ≤ 1 2 r 3 1 3r12 ⇒ 3
e2 E
2
100|Z 2|100 |E10 − E20 |
lPJmj`L(zrJRzIL
q2kF tiJR+qkzHj`qL:c0JMQL
|100i θ, ϕ
2 2 2 = z = x = y = r12
G IHG DJJ ML
48
-N),O+.- $
U q2j`L:w E
0 1
− E20 =
3 e2 8 r1
|j`dPF Y
00
=
√1 4π
Sjp~Jmj
8 3 2 r E 3 1
∆E12 ≤
ÊoÔ]ÔÎ ä Ï XÔ iÑÕIÖXÖ Ñ2Ô ÉØbß tGJMq2k L:cXqL _pjpj`JRdPk0|XNg~dPJRe = i _`q|Xd»F E kJRvUdPe%«_pjpj`dPq |ϕ li=0,q2mk=F N0, l == 1,4 mã n=+0,q»±1L:c _pjpj`JRdPk0zInv=U~2LkUNid OPe (i = 1, 2, 3, 4) w
0 2
n
?e
=
n
E = En0 ϕ(i) n
E H0 ϕ(i) n
cXJU q2j`L(wF H tiSj2tGq2S5_`JR+L4tidPJRutGJMQ j`LJRyktGJMUye§tGJMU jYaIU Qj`e%L#U jYcXN_pjpj`JMdPk|XNg~dPJRe c¢w I tGJMU jYaIU Qj`eKUj`yLT_`zIJMdHF hϕ |ϕ [I, H0 ] = 0
n
ϕin |ϕjm
mi
= δnm
_pjpj`JRdGkJRke%L UcXe!w
_YwDL S £Mj%j`qSej`kzHJRQ z}¢U Skj`eKS£bSkyU qUjYaINij2L:wtGvg_YwDL
H0
Nn X i=1
|ψn i = N
Nn X i=1
(H0 + λH1 ) =
λ1 : H0
k6=n
Nk X (1)
cnk
i=1
= En0
Nn X i=1
E αi ϕ(i) n
JROPe
i=1
k6=n
Nn X i=1
Nk E E X (1) X (i) (i) βi ϕk cnk αi ϕn + λ k6=n
i=1
Nn Nk E E X X X (i) (1) E0 + λEn1 + . . . αi ϕ(i) +λ c βi ϕ n ⇒ λ 0 : H0
X
= δnm δij
Nk E E X (1) X (i) (i) αi ϕn + λ cnk βi ϕk + λ2 . . .
E αi ϕ(i) n
Nn X i=1
nk
i=1
k
i=1
k6=n
Nn E E X αi ϕn(i) αi ϕ(i) = E0 n i=1
Nk Nn Nn E E E E X X (1) X X (i) (i) (i) 1 αi ϕ(i) βi ϕk + En cnk = E0 αi ϕn βi ϕk + H1 n i=1
0 + H1
Nn X i=1
D
k6=n
Nn X E (i) ϕ α ϕ(j) W i n n
Nn X i=1
i=1
=
i=1
αi
D
i=1
Nn E E X = En1 αi ϕn(i) αi ϕ(i) n
E (i) ϕ(j) n W ϕn
D
Nn E X (i) 1 ϕ α ϕ(j) λE i n n n
= λEn1 αj
49
i=1
i=1
L(+NGdj Dϕ Pl L(JRQwDd (j) n
_YwDL
Nn × N n
U~|XqkJRUaIqk
E D (i) (j) hji = ϕn W ϕn Nn X
(n)
tGJMdjpj`dmq2ktiJR+qkL:c+yUq2kS;U Q kkzIJMUaIq
= ∆En1 αj
hji αi
i=1
h i ⇒ h(n) α ~k
1 = ∆En,k α ~k
tiJRq2k_YwDLrF _pjpj`dPqkryU qkSU Q kkrzIJRUaIq}L:cS £RS;L = _pjYcge%U.U~|Xq}kJRvU dPe%Lu_pj`NiJRzIkcÜj`dPL(JMN»_YwDL F h L:cS£Rj`k = kS;U Q kkU ye!L zIdjpj`dmq2kzHj`SUQ kkzHU j`z tgjYwDJR| D
E (j) ϕ(i) n |W |ϕn k = 1 . . . k; h(n) (α)k
(n)
= hi,j
0
= ∆En (k) (α)k
det h − ∆En1 (K) I
kdjYcJRzIwD
= 0
_YwDL#F kS;U Q kkU ye!LT_pjpj`di_`JRew+£RU~ N ej`kzHj`dj`U zIQ kU Q|Xq |ψn i =
Nn X i=1
n
E αi (k) ϕ(i) n
F ϕ |XJM|XuzIJRdj`|gwDL(e H JRzIqNgjp~LT¢;JRU âW _pjpj`JRdPkL:c CSCO UjYaIU Q j`e I fF [H , I] = 0 tie khjYcgz tiJRq 4 cXJ n = 2 Uj`+SKF yU qJRdPvj`q!j`kjIS j`NJRL(qcgyKk~ cX_`q2JRq§tijYaIelNGUaI| aINGQ e tiJRdjpj`dPq i n
i
1
|0, 0i , |1, 0i , |1, 1i , |1, −1i W
k U Sk kqvojp~
OPe W = eE~~ r kSUQ kU yd
h0, 0|W |0, 0i h0, 0|W |1, 0i 0 0 h1, 0|W |0, 0i h1, 0|W |1, 0i 0 0 0 0 h1, 1|W |1, 1i 0 0 0 0 h1, −1|W |1, −1i £
U ye!qr l − l 2
Fm
1
tiSTtiJRQj`L(JRy
[Lz , z] = 0 2 L , z 6= 0
L z , L2
tie%k
e%j`W¡Ngj`L(!fNiL(yuNiUtiJRdj`|gwDL(e§e!L#OPe§F tGe§NGU5JRQj`L(JRy_YwDL Uj`SuNGU hn, l , m|z|n, l , mi 6= 0 cLNid z LJRvoj`OlJReKUjYaIU Qj`erU j`+S F (−1) Jm£RSTzIU~vj`qzHj`JMvj`OPkc kqvjp~
= m2 = uneven 1
W
1
z
2
l
h2, 0, 0|z|2, 1, 0i =
Z
∞
3
r drR20 (r) R21 (r)
0
= −3r1
Z
∗ dΩ cos θY0,0 (θ, ϕ) Y (θ, ϕ)
IHJG IHG DJJ ML
50
-N),O+.-
w+£Rk|
tiviL(NidIF ∆E
1 n=2
0 −3eEr1 0 0
0 0 0 0
0 0 0 0
S£bSkqtiJRdmcF kJMUaIqkzIe§_`|gwDLdG_pj`NiJRze%j`q2LTJM~ w
(k = 3, 4) = 0 −∆E21 −3eEr1
3eEr1
kj`+vIkq2Uk
−3eEr1 0 0 0
−3eEr1 = 0 −∆E21
L(+NGd F JMUe%JMdmJML(kNGUaI|«aINiQ ekO tiJRq2JRe%zIq2ktiJRq2S;ktiJRq2k
1 ∆En=2 (k = 1, 2) = ±3eEr1
∓1 −1 −1 ∓1
α1 α2
S£bq2k_YwDL
1 1 √ (|2, 0, 0i − |2, 1, 0i) , √ (|2, 0, 0i + |2, 1, 0i) , |2, 1, 1i , |2, 1, −1i 2 2 √1 2
F
U j`+SF kJRvUdPe%5_pj`NiJRzK_`JMe |2, 1, 1i , |2, 1, −1iLw+£Rk|«_YwDL k~Uj`kj`dPL(+JRN (|2, 0, 0i + |2, 1, 0i) Uj`+Sj 3eEr _`e%JRdjYaIL(JMqkcXJbcyJMdmd ÿDêMý hðêRøúÜéêRê +ý
(|2, 0, 0i − |2, 1, 0i) 3eEr1
√1 2
1
MC
S
H0 |ϕ1 i = E1 |ϕ1 i
e%j`q2LTkU d H = H + W tGcyJRdPdHF S£RqJRdmcJm£RStiJR|XU Q dItiJRq2kcj H0 |ϕ2 i = E2 |ϕ2 i 0
H |ψ+ i = E+ |ψ+ i H |ψ− i = E− |ψ− i |ϕ1 i , |ϕ2 i W
=
w11 w21
w12 w22
j`dPe!q§F JbcXqq
|XJR|X++j`zwDd
w21 w11 = w22 = 0
j`dPydmk
|ψ+ i = cos θ |ϕ1 i + sin θ |ϕ2 i
|ψ− i = sin θ |ϕ1 i + cos θ |ϕ2 i 2W12 tan 2θ = E1 − E 2 q 1 2 (E1 + E2 ) ± (E1 − E2 )2 + 4w12 E± = 2 sin θ cos θ
w12 E1 − E 2 ≈ 1 ≈
W12 |ϕ2 i E1 − E 2 w12 |ϕ1 i |ψ− i = |ϕ2 i + E1 − E 2
⇒ |ψ+ i = |ϕ1 i +
51
OPekcXL(ykSU QkyJMdmd
F zHj`SU Q kkzIUj`z}zIe§kU Omyj`dPL(JMN OPeKF |XQ e!zHqK_pjYcXe!UxU~|j`dPydPkOme w = w = 0 kyhdPkk 11
E+
= E1 +
22
2 w12
E1 − E 2
47 8AÀ B;9K748 »B9 +ùýî#êR÷øþ[ðïhñúºý bðhêRðÿùP÷2ì Aó :óRò WpntiJbaIdjpj`N}|XUj`NGe%qJMzrzINGJmjp~qk kyhwj`kkHf _`q2JRqtgjYaIe!Lr_`qJMO%aINGQ e «]
S
QYnV
R
º $§
»
H
=
¹
e2 P~ 2 − 2m r
S j`N}JRaIdmvqk~c¢j`zItgjYaIe!kcyJRdPdHF L~ JRzHJMjpj`OHSdPzcgJ_pj`UaINiL(e%L ~ B
= B zˆ
F
kJRvUdPe%kU;cXe!w M~ Lj`Q Jm~uaIdmq!j`qcgJOPe O£RdPzrj`L cXJ r |j`Jm~U5LSS;d e yJRdPd
~ ·B ~ W = −M L = µrv 1 ~ ML = iπr2 c v i = e 2πr erv ~ M L = 2c e ~ ⇒ M L = − L 2µc ~ ~L = − e L M 2µc
L
W¡Uj`NGqifF JR|XLNGkUcgNikkOHU q!j`L:w F kJRvUdPe%LT_pj`NGJMzIk_YwDL
W
= H1 =
eB Lz 2µc
zIJR|XL(NikzHj`U JM~zIkrW¡Uj`q2ULTzGj`UJm~z}e%U NGd w f
= ω L Lz
L
ωc
En0 |ϕn i
eB µc
=
JRaIdmvqk~cJRL
1 e2 2r1 n2 = |n, l, mi = −
Uj`SzGj`S;U Q kkzIUj`z}tieKNgjp~dIOPe
H = H 0 + ω L Lz [H0 , Lz ] = 0 IH¦G IHG DJJ ML
52
-N),O+.- 6
OPe
[Lz , H] = 0
JbwuzHj`S;U Q kkzHU j`zHk¢Uj`_`JRe
H |n, l, mi = (H0 + ωL Lz ) |n, l, mi = En0 + ~ωL m |n, l, mi
ÊoËÕ GÖ ØÆ _`JRQ |Xkyj`zHJRQ WYVZ:nV:f!¢L(U vg_`UacÁF V _`q2JRqktijYaIe§zHj`qUuL:cÜWâ_`JM~SfNg~kkdPqkF n WYV[Z(n^(f!F JRLq2j`dPe%k_`q2JROaINiQ eF E F _`JRQ |XkL:c yj`|XJMdXWYV[Z(n fJMLj`e%QF s F zIJbaIU Q kzHj`|XyJRkzIUj`z}tietiJbaIdjpj`NGkzIUj`z}zIe~ye!q«WYV[Z:nZfNGU JM~F ^ ;í ü þ ü ÷2ú0êRùëêMø AóRò
óRò U Dwj`dPe!q zIUjYwDOPz
|
X
~ = ~r × p L ~
tGvgj`dPe%q
h l
~ 2 , Lz L
i
[rx , px ] = i~ ⇒ [Lx , Ly ] = i~Lz
= 0
UcXe!w
l (l + 1) ~2
¼º
UcXe!w
tik L~ :L cS £RS;kUcXe!w
3 1 = 0, , 1, , . . . 2 2
F zHj`Q JRUuJRL;j`NGJRcL(L(vtiJRq2L:ce%L(ktiJbwDU S;kj`dPqLS;zIk L(czHj`dj`U zIQ kKF −l ≤ m ≤ l UcXe!w m~ L L(cS£bS z
~ ∂ Yl,m i ∂ϕ ⇒ Yl,m
⇒ eimϕ
⇒m
= m~Yl,m = Θ (θ) eimϕ = eim(ϕ+2π) ∈
j`JMJRy
Z
m = 0, ±1, . . . , ±l
F
∂B ∂z
6= 0
cr¢(w z _pjpj`JbwDTJRaIdmvqxk~cr¢;U~ x _pjpj`JRwDTtGzGj`ej`U U y+cj|gw JMq2jYaIej`yhNiLJMj`|XJMdm¢LUvX_`UacJmj`|XJRd JRaIdPvqaIdmq!j`qcgJRcyJRdPdHF Ù;dPUj`L yjYw_`JRe_YwDL;j2JML(UaIJRdtgjYaIe%k V F~
~ ·B ~ = −M
~ = Mz = −∇V
∂Bz ∂z
j`e%q«tik}L(e F yj`L(k«L:wL(StGJMq2jYaIe%krzIe ~Djp~qL.kQ d6k~cgk}L(cÝJMdmcgk}~yj`LtiJbcXd6tGe cXJ6U q!j`L:wÚF W¡JML(UaIJRdkJMkcÃfGJML:aIJR+Uj`e0JRzIJmjpj`OºSdPzILU;cXNJRL( F M L:ctiJbwDU SnlPLkJROPJRaIdPjpj`N F tGJMqStiJR+qJRdmcUcXQe%qcÜWâ_`JMQ|ÃfUjYaIU Qj`e z
53
î ñ+ï.ïhøýhðï AóRò
ó¡û _pj`UaINGL(e§L:c + q º
|ψi
∈ m (~r) × m (~s)
_pj`UaINiL(e%L
s=
1 2
ψ (~r, sz )
[Sx , Sy ] = i~Sz 1 S = 2 1 ms = ± 2 s=
1 2
_pj`zIdG_pj`UaINiL(eL:c kU Niq
~ 2 |s, mi = ~2 s (s + 1) |s, mi S 3 2 ~ |s, mi = 4 sz |s, mi = m~ |s, mi
|s, mi
_YwDL
_`JRQ |XuJRq
tGJm~JRyJMkJMqkOPe§F s L#U zHj`J|XyJRJMzIdIe%L ~ye s cXJRcU ye!q m = 1 2 m = − 1 2
= |↑i = |+i = |↓i = |−i
|+i h+| + |−i h−| = I |χi = C+ |+i + C− |−i
σy σz
~ σx 2 ~ σy 2 ~ σz 2
Sx
=
Sy
=
Sz
=
~ S
=
=
0 1 1 0
1 0 0 −1
= =
_`JRQ |L:cJRL(L(wu+q JMLj`e%Q5zHj`JMU;aIq
OPe
~ ~σ 2
zHj`JRUaIq2k
0 −i i 0
54
vo£RetiJRq2k k~JMyhJMkUjYaIU Qj`e
h±|±i = δ
σx
1 2
[Sx , Sy ] S±
S± |s, mi = ~
p
= i~Sz = Sx ± iSy
s (s + 1) − m (m ± 1) |s, m ± 1i r
1 2 = ~ |−i r 3 S+ |−i = ~ 4 = ~ |+i
S− |+i = ~
S+ S−
UcXe!w
%
= ~ = ~
·
3 1 1 + · |−i 2 2 2
+
_YwDL
1 1 · |+i 2 2
_YwDL 0 1 0 0 0 0 1 0
êRíùì uéù hê ü ÷ðéùøù Dé FV [σ , σ ] = 2iσ Fn σ =σ =σ =I zHj`JMQj`L(yJRaIdPeF E σ σ +σ σ =0 JRL(L:w_`Qj`e% σ σ + σ σ = 2δ I kNiSTzHj`U |Xyj%zHj`JbaIJMqU k σ • F C L(S5kNiS;kzHj`U |XyzHj`JRUaIqkL:wyU qzIeKzGjYcgUj`Q • zHj`kOmkkdPj`zHd • M
C
x
2 x
x y
{
y
2 y
z
2 z
y x
i j
i j
ij
i
2
~ ~σ · B ~ ~σ · A = Sx , Sy , Sz hSx i
=
hSy i
=
hSz i
=
zILyj`zHk¢U SzIe§e%q
~ 2 ∗ ∗ ~ c+ c− 2 ∗ ∗ ~ c+ c− 2
c∗+ c∗−
~ · BI ~ + i~σ · A ~×B ~ A
0 1 1 0
|χi = c+
1 0
+ c−
0 1
_pj`zId
L(JMvU z
0 −i i 0
1 0 0 −1
~ c+ = Re c∗+ c− c− 2 ~ c+ = Im c∗+ c− c− 2 ~ c+ 2 2 = |c+ | − |c− | c− 2 I ¤ G IHG DJJ ML
55
-N),O+.-,;
W s tgj`NGq22f xy UjYcXJRq2 x U JR#tiS φ zIJMjpj`O%U Dj`JRk.UJML|XyJR x
± ~2
_`JMQ |§U e%zIqk.qtgjYcXUd¢;JRe _YwDL
~s = (sx , sy , sz )
sφ
= Sx cos φ + Sy sin φ ~ 0 = cos φ + i sin φ 2 ~ 0 e−iφ = eiφ 0 2
cos φ − i sin φ 0
S£bSk_YwDL
λ2 − 1 = 0
S£Rj`k2j
λ = ±1
λ = 1 : |χiφ
=
λ = −1 : |χiφ
=
1 √ 2 1 √ 2
L(JMvU z
1 eiφ
1 =√ 2
eiφ e−iφ
e−iφ eiφ
F φ U JR_pjpj`JbwDhj`JR|U jYaINgj`kL(SLJRSQkL#_`zHJRdW¡zIJM2fL(JMvU z
F X tGe
|χ+ iz π 2
=
+φ
(s)
(s)
i
~
e− ~ ~s·θ
i
zIJmjpj`OHU Dj`JRk
xy
UjYcgJMqU JRxJM| tiJRhj`|Xq π 2
ˆ
i
1 √ 2
=
1 0
= e− ~ ~s·θθ
Rθ~
Rθ~
θˆ = (− sin φ, cos φ, 0) θ = −iφ
1 eiφ
~
−e 1
θ θ − i ~σ · θ~ sin 2 2
kq2L:czIwDUSqtiJMjpj`kq ~ S ~ L,
i
J~ =
|ψi
OPe
zHj`kOGcXJ
= e− 2 ~σ·θ = cos
h
π 2
Sz , ~r
kU Sk
ý ü ðhý Rê ëuý ü ðý ü ùìêmé Ml
M½o
Ml
= 0
LLjYwzIJMjpj`OGS;dPzrU JM~vd
~ +S ~ L
ã _`JMQ |¼hyU qJMqUj`e%JRzILT|XJM|Xk
= |~r, sz i
56
|XJM|XkL:cÁzHj`JML(qUj`djYaIUj`e D 0 0 E ~r , sz |~r, sz
0 = δ 3 ~r, ~r δsz ,s0z
|XJM|XkzHj`qL:c0_Ywuj`qw zHj`q2L:c X Z
sz =± 12
d3 r |~r, sz i h~r, sz | = 1 |ψi =
X Z
d3~r h~r1 sz |ψi |~r, sz i
sz =± 21
tiJRS j`Nik
ψ± (~r) = h~r, ±|ψi 2×2 [ψ (~r)] = [ψ (~r)]†
hψ|ϕi
=
hψ|O|ϕi
=
=
Z
Z
kJRUaIqL:ckUj`U jYaIU Qj`e!w~+j`S5_`JMQ |Xk
ψ+ (~r) ψ− (~r)
† ψ+
† ψ−
P_Ywj
%
†
d3 r [ψ (~r)] [ϕ (~r)] †
d3 r [ψ (~r)] O [ϕ (~r)]
F _pj`UaINiL(eKLSk~Jm~qUjYaIUQj`e O UcXe!w tiJRU JRkzIeK++j`|Xd
ψ (~r) = h~r|ψi ψ R−1~r = h~r|Rψi
= R−1~r|ψ h~r|R|ψi =
0
ψ+ (~r) 0 ψ− (~r)
L(JMvU z
JROPe
D 0E 0 ~r|ψ = ψ (r)
F Jm£RS_`zIJRd L, S L:c+j`JM|XktiJRdj`JMJRUaIqkU j`
= (Rθ (s))
ψ+ R−1~r ψ− R−1~r
F ~r +yhU q2kLSU JRk+j`JM|ej`k
R−1
zIe%OHkU j` DJG IHG DJJ ML
^[
-N),O+.-,;6
ä ËÓ!Ëå;Ñ Øbß _pj`zHd5F V
ψ (|x| , t = 0) =
( c 1− 0
|x| a
|x| ≤ a
|x| > a
Iz e§DcXyÛW¡eXf _`qOP p SdPz}~Djp~qLTzGj`U+zI|XkkzHj`Q JMQÞW¡2f t=0 L:czIJRQ z}¢U S W¡v]f p kJRvU dPe%kzHJRQ z}¢U SzIej`DcXyÛWâ~f _pj`UzHQ W¡eXf a
1 =
Z
∞
2
|ψ| dx −∞ Z a x x2 2 = 2c 1 − 2 + 2 dx a a 0 1 2 2 = 2c a 1 − 1 + = c2 a 3 3 r 3 c = 2a
φ (p, t = 0) = = = = = = = |φ (p, t = 0)|
2
=
kJRJMU j`Q5zIU qzIkSdW¡!f
Z ∞ 1 i ψ (x, 0) e− ~ px dx 2π~ −∞ Z a 1 i √ ψ (x, 0) e− ~ px dx 2π~ −a Z 0 Z a 1 − ~i px − ~i px √ ψ (x, 0) e dx + dx ψ (x, 0) e 2π~ −a 0 Z ∞ Z a i 1 px − ~i px ~ √ ψ (x, 0) e dx + dx ψ (x, 0) e 2π~ 0 0 r Z a 2 px ψ (x, 0) cos dx π~ ~ 0 r r Z a px x 2 3 cos dx 1− π~ 2a a ~ 0 r 3~3 1 a 1 − cos p πa3 p2 ~ 3 sin4 pa 12~ 2~ πa3 p4 √
F JRUaIq2JR|«+yhU q2uJMvj`OlPJReKU jYaIU Qj`e p cU yhe%q 58
hpi = 0
W¡v]f
OPe ∂ψ ∂x
∂2ψ ∂x2
H=
P2 2m
0 x < −a q 1 3 −a ≤ x < 0 a q 2a = 1 3 − a 2a 0 ≤ x < a 0 x≥a r 3 1 = (δ (x + a) − 2δ (x) + δ (x + a)) a 2a
2
2
~ d = − 2m dx2
Wâ~f
OPe
hHi = hψ|H|ψi Z ∞ ∂2 ~2 ψ ∗ 2 ψdx = − 2m −∞ ∂x r Z ∞ 2 ~ 1 3 = −ψ ∗ (δ (x + a) − 2δ (x) + δ (x + a)) dx 2m a 2a −∞ r ~2 1 3 = (−ψ ∗ (−a) + 2ψ ∗ (0) − ψ ∗ (a)) 2m a 2a r r ~2 1 3 3 = 2 2m a 2a 2a 3~2 = 2ma2
RJ zHJMjpj`OISdPztiSSdINiJRNiL(y»F n √ zIJbcXe%U kqNiJRNiL(yk.NiyhU q!j ~ zIe§zIJRdmaIL(q2JR|~jp~qL_YwDzIJtie%kW¡eXf L r = ~r F L:cJMqSkq|XQ e%zIq L:czHJRQ zIk¢;US5JbwxyJRwj`kW¡!f tGJML~vzHj`e~Djpj%LJMeL:czIJRL(q2JRdPJRq2kkL(QwDqkzILe§kOIq2DcXy hzi = a _pj`zHdW¡v]f 0 −i 0 1 0 0 I z § e % e q zHj`dj`zIdWâ~f L L = i 0 i ,L = 0 0 0 0 −i 0 0 0 −1 _pj`UzHQ j`LJRy.|XyJ%Ngjp~dW¡eXf ~ L
2
x
∆y∆Lx
z
y
y
~ 2
z
~ 2
j`L:c kJRNidj`QL:wtGe§JRQj`L(JMy.tivHkJMkJ ~r tGeJMQj`L(JRytGe§L(e
[Lx , r]
= [ypz − zpy , r]
2
ypz − zpy , x2 + y 2 + z 2
= 2i~yz − 2i~zy = 2i~ [y, z] = 0
Sjp~JuW¡!f
Lx |Xi = m~ |Xi [Lz , Lx ] = i~Ly i~ hX| Ly |Xi = hX| Lz Lx − Lx Lz |Xi = m~ hX| Lz |Xi − hX| Lz |Xi = 0
59
zHj`S ~Dj`k2lPJMe}_pj`UNiJRSW¡v]f ∆y∆Lx
1 |h| [y, Lx ] |i| 2
≥
cXyhdi_YwDL
[y, Lx ] = [y, ypz − zpy ] = −z [y, py ] = −i~z
Wâ~f NGJMNGL(ykL:cSdPz P UcXe2w W = vP tivj V = mω x _pj`zHd5F E DcXyÛW¡eXf E E JP£bSx_pjYcge%UxU ~D|X tiJRq2k.zIe§DcXyÛW¡!f E ψ JRdmcU~|XqkJRvU dPe%L#_pj`NiJRzHkzIej`DcXyÛW¡v]f zINiJMjp~qke%Dj`z vHJRwuyJbwj`kLWâ~f _pj`UzHQ OPe W¡eXf Lx =
1 i~
[Ly , Lz ]
1 2
2 2
%%
(1) n
(1) n
0 n
0
∆En
√
E (1) E n cnk
v Ek0 |p|En0
tivj
1 A − A† p = P = √ 2i m~ω r m~ω A − A† ⇒ p = −i 2
En0 |p|En0
En0 − Ek0
= hϕn |W |ϕn i
= v En0 |p|En0
En0 |αA + βA† |En0
0 0 = α ˜ En0 |En−1 + β˜ En0 |En+1 = 0
vo£be%kq!j
=
_pjYcXe!UuU~|XL#ky|j`dPkW¡!f
X (1) 0 = En0 + cnk Ek k6=n
=
v
Ek0 |p|En0 En0 − Ek0
= ~ω (n − k) r m~ω 0 Ek |A − A† |En0 = iv 2 r m~ω √ 0 0 √ n Ek |En−1 − n + 1 hEk |En+1 i = iv 2 r √ m~ω √ nδk,n−1 − n + 1δk,n+1 = iv 2 60
OPe
DKG IHG DJJ ML
-N),O+.-,;;
OPe En(1)
=
∆En(2)
En(0)
=
+ iv
r
0 m √ 0 √ n En−1 + n + 1 En+1 2ω~
kJRvU dPe%LT_pj`NGJMzIkW¡v]f
X v 2 Ek0 |p|En0 En0 − Ek0
k6=n
=
X v 2 m~ω nδk,n−1 − (n + 1) δk,n+1 2 En0 − Ek0
k6=n
= =
H
X v 2 (n + 1) X v 2 m~ω n 2 δ − δk,n+1 k,n−1 E 0 − Ek0 En0 − Ek0 k6=n k6=n n v2 m v 2 m~ω n n+1 m =− − = − v2 2 ~ω ~ω 2 2
tGJMS~Dj`Jj`dPe Wâ~f
= H0 + W 1 p2 + vp + mω 2 x2 = 2m 2 2 (p + mv) 1 m = + mω 2 x2 − v 2 2m 2 2
JMdPj`q2U kUjYaIL(JM|j`e!qKDwDUj`q_`e%dMaHj`LJRqkkU q!j`L:w
[x, p] = i~ ⇒ [x, p + mv] = i~
tiJRe%zIdIkL U q2j`L:wF kOPOPkqwDU j`q!j
En = ~ω n +
En
_pj`UaINGLe!kckL;j`NGLj`q2k«q
1 2
1 m = ~ω n + − v2 2 2
Ucge!wÜF tikJMdmÙ;Q NGqcÜUjYaINiL(ejF tGJMq2jYaIeEtGekLj`NiLj`qkdPj`zHd5F s F tGJMq2k|XJM|XukLj`NiLj`qk_`e%JRdjYaIL(JMqkF i = 1, 2, 3 tijYaIe%L#UjYcgN
|ii |ii
H
= ε
3 X
|ii hi| + δ
X
|ii hj|
it JRdj`zId ε, δ U;cXe!w kLj`NGL;j`qL~Djp~q2LTUcgQ e§zHj`JRvU dPe§j`LJRe W¡eXf j`L(LktGJMqkzIe~Djp~qLW¡!f zHj`djYcXkzHj`JMvU dme%kzIe~Djp~qLTtiJRq!jYaIe%k~Dyhe%LTUjYcXN«ej`kU;cXe!wzHj`U zI|XkkÚW¡v]f F U yeKtgjYaIe%L UjYcXN«kJMkJ t SvU DczHj`U zI|XkkÚWâ~f _pj`UzHQ i=1
61
i6=j
kJMU;aIqw H +j`zIwDLW¡eXf
ε = δ δ
H
det
ε − Ek δ δ
δ ε δ
δ δ ε
OPe
δ ε − Ek δ
δ = 0 δ ε − Ek ε − E1 = δ E1 = ε − δ
Ome
δ δ = x3 − 2δx + 2δ 3 x
x δ det δ x δ δ
= (x − δ) x2 + δx − 2δ 2 2
= (x − δ) (x + 2δ) = 0
x=ε−X
_`q|XdItie
OPe
= E2 = ε − δ = ε + 2δ
E1 E3
tGJMdPjpj`dPq2ktiJRq2S;ktiJRq2kW¡!f E1,2
r 1 1 1 1 −2 √ 0 , 6 2 1 −1
=
E3
=
1 1 √ 1 3 1
zHj`JRvU dPe%kq~yeKL(w~Djp~DqL P zGj`U+zI|Xkk k
|hpk |1i|
|ψ1 i |ψ2 i = |ψ2 i
2
|ψ (t = 0)i = |1i
= |h1|pk i|
√1 2 √1 6 √1 3
0 − √26 √1 3
P1
=
P2
=
P3
=
1 2 1 6 1 3
62
Uj`S
2
√1 2 √1 6 √1 3
L UjYcgN_pj`U;aINiL(e%kW¡v]f UcXQ eKtivj
|1i |2i |3i
JROPe
t=0 |1i =
|ψ (t)i = =
1 1 1 √ |ψ1 i + √ |ψ2 i + √ |ψ3 i 2 6 3
_YwDL
i
i
i
e − ~ E1 t , e − ~ E2 t , e − ~ E3 t
qL:wDLTOPe
i i i 1 1 1 √ e− ~ E1 t |ψ1 i + √ e− ~ E2 t |ψ2 i + √ e− ~ E3 t |ψ3 i 2 6 3 1 − i E1,2 t 1 i e ~ (2 |1i − |2i + |3i) + e− ~ E3 t (|1i + |2i + |3i) 3 3
2
P2 (t) = |h2|ψ (t)i| 2 1 −iE t 1 − i E3 t 1,2 ~ ~ (2 |1i − |2i + |3i) + e (|1i + |2i + |3i) = h2| e 3 3 2 1 i 1 i = − e− ~ E1,2 t + e− ~ E3 t 3 3 E3 − E 1 4 3δ 1 2 − 2 cos t = sin2 t = 9 ~ 9 2~
E
q2kWâ~f
_YwDL