Quantum Introduction

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Quantum Introduction as PDF for free.

More details

  • Words: 14,813
  • Pages: 63
 

  !#" $%!$ &('' )+*,.- %/02143563 $Id: quantic physics.lyx,v 1.31 2005/01/24 08:18:34 itay Exp $

47 8:9;8<8:9;=?>A@6BDC E FGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFIFHFGFHFGFKJML(NGJMOPJRQTSNGU V E FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFXWYV[Z]\<^_`JMJbacXdPJRJMegfhJMU;aINiL(ejYaHj`Q k2lmaINiQ e!k V[F V E FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGF(WYVZ:no\f2_pjYaIQ q!j`NraINGQ e V[F n s FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFGFutGJML(vwxtiJRNiJRNiL(y V[F E s FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGF{zHJR|Xe%L(N}kq!~NGk VF E{F V ^ FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHF]JbaIdjpj`Nrcj`q€JRc VF E{F n †^ FHFGFHFHFGFHFHFGFIFIFGFHFHFGFGFHFHFGFHFHFGFHFIF!FHUF‡~DtGj`|XJML(qUaIcXNGJR‚+Q v|ˆqtGtGJmJMdjpj`j`NŠU;aI‰ NiU k€L(j`eƒ‚‹UL(j`cˆOPJRQutgljYaIWYe!VZ:kn…„;L‡f~ŒU j`qKq2U‰ vo~Dj2U _pj`j`Q |XUhJm zIjp~ Uu_pj`JM|XJRd V[F s † FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFˆU k€j`‚‹L:cˆtgjYaIe%kL‡~Dj`q VF s F V „ FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFŽNiJRNiL(ykzGj`vkdPzIk‘L:cŽzHj`JRL(ejp~ V[F ^ „ FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFW Young ftGJMNi~|ŠJRdmcˆ_pj`JR|XJMd V[F ^]F V „ FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHF’L(vizIJRJM“NGdj`Q ” FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFzGj`e%~Œjpj`k2lPJRe}_pj`U NiS;L#JMj`|XJMdPkL:cŽkq€vojp~ ” FGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFGtGJRaIdPjpj`Nik•zIUj`z}L:cˆJML(q€Uj`Q5e%L#yj`|XJRdj2Uv–dmJm~UcˆzHj`ejpjYcXq n ” FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHF—~ye˜_pjpj`JRwD‚™S;dmcˆNiJRNiL(yšUj`‚+S›kejpjYcXq€k‘zIU~vk n…F V Z FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGF]k€JRUj`Q5tiUj`Q|XdPUaHj2tGJML(vGzHU j`‚+y n…F n Vœ\ FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHFHFGFIFHF_`q€OP‚ukSdHkL(JM‚Œy Vœ\ FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFžL(vkzIJRJM“NGdj`Q V
n ” IF FGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHtiJM~Jm~qtGJMUjYaIUQj`e§L:cˆkq2L:c zwDU S;q n ” FGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFtiJbaIdjpj`NGk•zIUj`z}L:cŽJRL(q2U j`Qxyj`|XJRd n ” FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFžW¡zHj`q2j`JM|XNGeXftiJbaIdjpj`NikzHU j`z}L(cŽzHj`JML(NiJROPJRQ k•zHj`ydmk E{F V n…Z FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHFtiJRNg~|ŠJMdmcŠJMj`|XJMdIkq€vojp~ n…Z FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFGFIFHFrk€JR“JROj`Q U Qj`| E{F n n…Z FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFŒ_`q€OP‚xJmj`L(z}JRzHL(‚ E{F E E]\ FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFGzHj`e~Djpj`k2lJRe}_pj`U NGHS E{F s EAV©FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFŽ~JM~Dq‘JRL(NiJROPJRQTL;~Dj`vgL:cˆS“Dj`q€qƒL(cŽ_`q€OP‚uzHj`yzIQ zIk E{F †^ E(nªFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFŒJR|XL(N«_`Qj`e%‚‹j`qw™tGJMvkdPzIq P lj x L:c zIJRQ “zrJbwDU S E{F E]sE FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFŽvU ‚ŒdPOPJRe‘L:cŽkv“kk E{F „ E FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHF_`q€OP‚™zHj`e~Djpj`k2lJRe}_pj`U NGS E{F ” E<^ FGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFIFHFGFHFGFž_pj`U zIQ5zGjYaIJbc E<^ FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHF{_pj`UzHQLTzGjYaIJbc E<^¬FIFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHF4zHj`NiJMjp~q‘zHjYaIJRc E<^¬FIFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFhzHj`‚+Uj`NGq‘zHjYaIJRc E<^ FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFGFŽzIJR“JMU;aIq‘zIsaIJbc s F V E<^ FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIF tGJM‚Œ“q§ntGSTzIwDUSq F V[F V E]„ FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHFHF­_`q€OP‚u‚Œ“qzHj`yzIQ zIk E ” FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFŽJMdPj`q2U k•UjYaIL(JMs|j`e s F n Es ” FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFDJM~q2qƒ~y.JMdPj`q2U kUjYaIL(JM|j`e F n…F V s s EV©FHFGFHFHFGFHFHFGFIFIFGFHFHFGFGFHFHFGFHFHFGFHFIFHFHFHFGFHFHFGFGFHFHFGFIFHFGFIFHFGFHFHFGFHFHFGFGFHF‹FIFGzIJbFHaIFGdjpFHj`N}FHFGkF™NiJRE]OP\<JMFQV<‚un…F n…JR\]zH\ JMs jpj`‚™OHSkdPe%z§“L(U cŽk tiJR‚+“q F E s E¨FIFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHF­_`q€JMqtgjYaIe s]s FGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFž_`q2Om‚™kJmj`L(zrJRzIL‡‚ŒkzHj`SUQ kk‘zHU j`z s ^ FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFT®R¯p¯`°Y±G²D³:³µ´¯Y¶;·:¸A¹;¹#´h·(¯`´ ^F V s ^ FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGF0_pjYcge%UxU ~D|X‚‹zHj`S;U Q kk‘zIUj`z ^]F V[F V s{† FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFºJMdMcˆU ~D|Xq‘zHj`S;U Q kk‘zIUj`z ^]F V[F n s Z FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHF_pjpj`dGtGeKzHj`S;U Q kk‘zIUj`z ^F n ^{V FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHFHFGFIFHF(tGJM‚Œ“q•JRdmcŠzIJMJRS‚ ^An FGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFIFHFGFHF:tiJRQ † |j`dItiJRe!cj`d ^An¨FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGF+S j`‚ŒN}JRaIdPvqk2~ cX‚š_`q€JRqtgjYaIe F \{F V † ^[E FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHF5_`JMQ † |Xk F V ^[sE FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFI¢‡L‡UvX_`UacŠJmj`|XJRd † F V[F V ^ FHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFNg~kkdP‚Œq2k F V[F n ^]†^ FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGFHFGFHF‹JML‡j`e%Q5zHj`“JMU;aIq‘zGj`dPjYwDz ^ FGFHFHFGFIFHFGFHFGFHFHFHFHFHFGFHFGFHFIFGFHFHFGFHFIFGF»‚+yhU q2‚h¼_`JRQ |«‚+yUq2‚™U j`e%JMz ^ ” FHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFHFIFGFHFHFGFHFGFIFHFGFHFHFGFHFIFGFHFGFHFHFGFIFHFGFHFGFtiJRL(JMvU z † F n

n

E

s

†

^

8{½µ¾68:¿D8AÀÁ=5¾ÃÂ Ä zHj`SQ j`z tiJRNiJRNiL(yšj`qw™zIvk€dmzHq‘zIJbaIdPvq%lj`UaINGL(e§kdPJRU N F V F tiJRL(vwutGJMvkdPzIqtiJRNiJRNiL(y»F n F kdPJRU Ngj€tiJRNiJRNiL(y‹L:cŽzHj`JRL(ejp~™tik‘j`L(L(k‘zHj`SQj`zIk F tGJMJbaIU Ni|XJM~›tiJbwDU S‚™kJRvU dPeKF tiJRL(NiJROPJMQTtGJML‡~viL:cŽk€JR“OPJbaIdjpj`N F E ŜÆ]Ç ÈDÉ.ʖ˖˖Ì6͚Î[Ëo˅ÏО˅ÑÌÃÒÓÏgԜÌ6Ô[ÕHÖi×oÌÃҀÕÏžÖ Æ<ØœÆ WYV ”]” „;f€Ù;U kJMj`|XJRd lPUaINiL(etGJRaIL(Q d!zHq€JMj`|Xq•zwDzIq2‚5Sv–j`Q λ = 10 anstron L‡j`v|žlPkUaIL‡j`e%‚‹j`e‘ke%U d%U j`eÚF V tGJMdPj tiJRdj`UaINGL(e kJML(SqŠNiU;c£RŸ|ÛzHj`U JM~zG£6cXJ6zwDzIqŽL:wDL.kdPJMUNzHj`U JM~DzI‚§k€JMj`L(zÜkaIJRL(Q kÝF n F tGJRaIL(Q d U j`e%kzIq2“S;LTzIJML(dj`JR“Uj`Qj`U QxtiJRdj`UaINGL‡e!ktiU Omk•zIq2“SŠF E zHj`U JM~DzI‚‹kJMj`L‡z}tGJMdPj`UaINiL(e%kL(cˆkJMvU dme%kÝF s UcXe2w E = hυ kJRv–UdPe˜cXJGNiJRNiL(yL:wDLƒF tiJRNiJRNiL(y•L:cޟ|j`e«e%JRkƒkdPJMUNikÜ_`JMJbacXdPJRe‘L:c0_pj`JRSU ~q2q€k§‰ h = 6.63 × 10 (joul × sec) kq€v–jp~DLšF _`q€OiL‡j`QwškJRvU dPe˜e%j`k h L:c»~q2q€k fzIJMzIJMjpj`OGS;dPzrL:cŽe%j`k L(c W JM~w™_pj`UaINiL(e%L kcXj`U~ c0kJMvU dPe!kzIe˜zIU e%zIqLc =wmvr k€~Dj`‚+S5zIJMJR“Nidj`QTcXJzwDzIqƒhL:wDL JROPeKF U U yzcXkL mv = hυ − w ŜÆ]Çß È2ÐXʅԜ̞Õ%àGÔAÒ§ÌÃҀÕÏ Æ<Øbß tiv–j θ zIJmj`OP‚uzHUOPQ zIq‘kdPJMUNik•Uq!j`y‚‹zIS;voj`Q x zIdPJRU N}UcXe!w™F λ = 1WYV ” Z<^—_`vaIdPUfq%£be§kdPJRU Nˆá X zIdPJRU N 3

−34

1 2

0

λ −λ

=



2

h me c



(1 − cos θ)

âW _pj`UaINGL(e%kzI|Xq m f€F _pj`UaINiL(e%k•L(cŽ_pjYaIQ q2j`N«L‡vi¢;Uj`e§e%U NGd   = 0.024A Ucge!w U|XyxNGJMNGL‡yF ~DUe%JML(JR‚TUjp~ w›j`qwTU OPQ zIq2j_pj`UaINGL‡e!‚TSv–j`Q k|XqšU |Xy5NiJRNiL(yk•Wâ_pjYaIQ q2j`N—fŒU ‚Œ|Xk zHjYcXvdPzIkJMdmQ L#k|Xq zHjYcXvdPzIk€kKã¡V6U j`JMe h me c

e

E P

= hυ hυ = c 3

zHjYcXvdPzIk‘U yhe%L E P

0

0

= hυ 0 hυ = c

0

= mc2

Ee P hυ + mc2

~2 P

=

kJMvU dmeKU j`q2JbcŽJROPe 0

= hv +

P~

zGjYcgv–dmzHkk‘U yhe%L›_pj`UaINiL(e%k•L(cXj

p

m 2 c2 + P 2 c2

S;dPzrUj`q€JRc

0 ~ = P~ + P

_YwDL

2  p~ − p~0 0

~ 2 c2 P

= p~2 + p~ 2 − 2~ pp~ !2 !  2   0 0 hv hv hv hv = + −2 cos θ c c c c    0 0 2 = hv − hv + 2 (hv) hv (1 − cos θ)

m2 c 4 + P 2 c 2

=



hυ − hυ

0

2

(1)

k€JRvU dPeƒUj`q€JRc

  0 + m2 c4 + 2 hυ − hυ mc2

(2)

e%“Dj`JzHj`ejpjYcXkƒJMdMcXq

  0 0 (1) , (2) ⇒ mc2 v − v = hvv (1 − cos θ) 1 1 0 − v v

=

0

⇒λ −λ =

h (1 − cos θ) mc2 h (1 − cos θ) mc2

ä ËÓ2å;æ ä ËÒ2ËÒÓç Æ<ØRè éêRëDìhí+îxïhð+ñîï ò…ó¡ôAóRò tiJRU~Dj`|XqŠzGj`L‡j`NGL;j`q%õœtiJRq!jYaIeÞj`‚DcÝcXJR‚+v‚‘zISv–j`Q L‡v4¢‡Uj`eW¡q!£ReXf zIdPJRU NÞL:cÛUj`OPJRQ0WYVZ
sin θ = n



λ 2a

4



j`e

v–U‚™Uj`OPJRQxã¤nUj`JMe

Rê ÷€øùù…î›úžùðhêMú ò…ó¡ôAó¡û JML‡j`U ‚hlPk2~xL‡vg¢;Uj`eƒcXJ P SdPzrL(S;‚™NiJRNiL(yLŠWYVZ:n…E;fJML‡j`U ‚hlPk2~ λ =

p =

a

h p

_YwDL

E = hυ = pc, λ =

c υ

_pjYaHj`Q LTkq€v–jp~DL

hυ h = c λ

S jp~JtiJRUjYcXJRq‘_`JR‚™NGyU q ü ñDùëð.ú6êMýhþ[ð‹ÿDêMøù ü ÷Iî‡í ì ü ù –ê Mò {û ü ð ü þ[ù bùëêMùñ   



sin θ

=

λ

= = =

⇒V

λ 2a



NiJRQ |Xq‘_YaIN λ ¢‡JMU“™j`kcXq‘zHj`e%U LTL(JR‚ŒcX‚ L(e%JM“dMaHj`Q ‚šÙ;ej`qƒ_pj`U;aINiL(e í êRþ ü é V (volt)

= 1.6 × 10−19 [coul] · V [Joul] √ 2mE h √ 2me 6.6 × 10−34 √ 2 · 0.9 × 10−30 · 1.6 × 10−19 12.3 √ A V 2 (12.3) [Joule]

E = eV p

= n





'

JROPe

m = 10−15 [kg] , v = 10−3

6.6 × 10−34 h = −15 m mv 10 × 10−3 = 6.6 × 10−6 A

λ =

^

m s

Ni‚ŒeƒU JRv–Uv éêRë í+î ïhðhþ[ùñ  



ä ËÓÑÌÃÒ2Õ ä ËoÔÔ:Ò YÑÖGÔ ŽÓ!Í ä Ô[ÌºÏžÖˆÓ Ôà IÑ2Ô[Õ%Ñ јʅÔ[Ë %˅ΠÆ<Ø JR‚hj`JRyk5_`S;aIq€kšF _pj`|XQ q2jYaL:c§£btiJRNgj`q€JM“kTzIv–j`S£+L‡~Dj`quJRQ Lº‰ tiJRdj`UaINGL(e‹j`‚cXJRcƒJRL(UaIJRd–áhtgjYaIeÝJR|XL(NikL‡~Dj`q2k F tgjYaIe%kL:wuL‡S›tGJMS;‚hj`NGqtiJRdj`UaINGL‡e!kF tgjYaIe!k‘yhacŽL:wuL‡S›yj`Uq Uj`OPJRQÃtiJbcXQ yq2jW He _`JRSU v]f +2e zIJR‚hj`JRy5_pj`S;a α NiJRNiL(yTtieštijYaIe%kuzIe.tiJROPJMvQ qÝV[ZAV]Vº_p~|XU q%¼hUv–JRJRvGJMj`|XJMdmk F zHj`JRkL#L‡jYwDJHe!L#JM|XL(NGk•L‡~Dj`q2kOme§kUj`ye§Uj`OPJRQTcXJtieKF kUj`ye _`JRSU vkzHeKtiJRQ JRNiqtGJMdPj`UaINiL(e%k€jJM‚+j`JMyhk_`S;aIq€kL:w™tHcgcŽ_`JMS;U vGcXJ _pj`U zIQ zHj`JMS;‚ kJMvU dPeK~‚Œe%q!j2_`Uj`N«Ù;e%j`qƒ_`S;aIqÛF V tiJRL‡U;aINiQ |ŠtiJMjpj`N}Jmj`L(JRv™F n 

1 λ

= R







1 1 + n1 n2









"!



vU ‚+~JMUTSj`‚+N R ' 10 A Ucge!w k€dmJMU N}L:cˆzHj`U~|ŽcXJ%Ucge!w U q2L(‚™zIU~| n = 2 W¡eXf _`q2JRL zIU~| n = 1 W¡‚!f _YcgQ5zIU~| n = 3 W¡v{f ü ïhùý™í ú»ÿDùP÷2ìï™í ñDùð …ò ó :óRò zHj`ydPk L(cˆkq2L:cˆkL;j`Q;w‹ej`k‘JRzHJMjpj`OPkS;dPzIk‘j`‚DcŽJRL(v–S;qL‡j`L(|Xq2‚‹S;di_pj`UaINGL(e%kÝF V −3

−1

1 1 1

$#

%

F~ =

h 2π

(n = 1, 2, 3, ..) mvr

= n



h 2π



¡W JRU dj`JR“ aI|ˆ‚Œ“qifF j`zI“e%k‘zHj`U q€LTkdPJMUNraIL;j`Qxj`dPJReK_pj`UaINiL(e j`e«kaIJML(Q ‚.e!aI‚ŒzHq˜k€JRvU dPe%kƒJMj`dPJbcjHUye%L™~ye«JRUcXQ e}L‡j`L(|Xq€q«Ùj`Q NGLxL‡jYwDJX_pj`UaINGL(e%kÝF n F kdPJRU N}L:cŽkS;JML(‚ tiJRJRNiq•JROmwDU q•yjYw‹‚ŒJM‚Œ|«SdmcˆŸ j`v L‡~Dj`q2k e2 r2 E E2 − E 1

mv 2 r e2 1 = − + mv 2 r 2 = hν =

(3) (4) (5) &$' (*),+.-0/1' 24356'$'$78-95$) 3:/<;

6

JROPe (3) →

e2 v e2 v

⇒v r ⇒E R

= mvr   h = n 2π   2πe 1 = h n 2 e h2 = = n2 mv 2 4π 2 me2 2π 2 me4 1 2π 2 me4 1 −4π 2 me4 1 + =− = 2 2 2 2 h n h n h2 n 2 2 4 2π me ' 10−3 A = h3 c

Ucge!w ҀËÒÓç6Ö XÔ[åÖGÎ 6Ö Ó!Í Ô[ËÓÏgÔ Æ<ØbÉ ÿŒêî;ñDëuêRøú bùêRëêMø­ò…ó :óRò Young lPk‚hj I ∼ |E| kq€“Sk§SJRv–qc»k€~ cL:wDLuOme«~DyheˆÙ‡JMUytiJRq2|j`yƒUcge!w«F tiJR“JRU y‘JMdMcÞ¢;U~.U ‚hj`S‡cÞL‡v6_pj`zId zHjYwD‚+e%z _YwDL‡jIW¡zGj`JRU e%JRdPJRL#zHj`ejpjYcXqKtiktGJML(vHL:c y£R~DqGf E = E + E L(‚ŒNidItiJRyj`IzI∼QxtG|EJMNi~+|ˆEJRdm|cŠUj`‚ŒS 2π 2 me4 h2



' 13.2ev =



>



?

@

$A

2

B

1

1

I

2

2

2

2

2

2

2

∼ |E| = |E1 + E2 | = |E1 | + |E2 | + 2< (E1 E2∗ )

tiJRNg~|Xk5~yeš¢;U ~ÃtGJM|XdMwDdmc‘tiJRdj`UaINGL(e%k›zHe‹tGJm~D~Dj`q™j`dmJMJRk5j`L‡JRe‘F tGJMNGJMNGL‡yµtiv–jtiJRdjYaHj`Q—Uj`‚ŒSºkUj`N•U ‚h~k F zIJMNGJMNGL(yk•kzIUj`“LTzIU Oj`yk€e!“Dj`zHk‘kzIJRJMk W¡zIJM|Xe!L‡NzIJRaIdPvq!lj`UaINiL(eukdPJRU NšL:c‘kq2v–jp~‚4JMv–j`L(dPe E Ucge!w€f+W¡L(vzIJMJR“Nidj`Qf ψ (x, t) UJm~vd í þIéêMê €î;øù W¡kdPJRU NG‚™kq2“Dj`S;LTzHJRv–j`L(dPeXfzHj`U ‚+zI|Xkk P = |ψ| U JM~vd kNiJbaIq2zIJRU e lP‚+zI|XkHf¢‡|Xq2‚4_pj`UaINGL(e%k›tgj`NiJRq€LXzGj`U‚+zI|Xkk |ψ | UcXe!w ψ (x, t) yj`zIQÃ~ye™Ni~D|•Uj`‚+S«F V W¡tgj`JR|ˆ‚Œ“q€L#zHj`U zIe ej`“q€LzHj`U ‚ŒzI|Xkk2j ψ = ψ + ψ OmeöF L(vÃzHJRJR“Nidj`Qk€OMcÛU ye%qˆtiJRNg~|JRdmcÛU j`‚+S«F n tGJMNGJMNGL‡yhk |ψ + ψ | kdPNi|Xq F zGj`U‚+zI|Xk‘U e%zIqƒL(vkcŽ_`‚+j`q2‚‹F zIJRL(vikdjYwDzrcXJ%NGJMNGL(yLrF V F P = |ψ| e%JRk•zHj`U ‚ŒzI|Xk€k ← ψ (x, t) L(vk•zIJMJR“NidPj`QˆF n F zHj`JMe%~Œj2e%L‡j2zHj`JMzHj`U ‚ŒzI|Xk‘NiU5_`kNGJMNGL‡yhL zHj`JRaIdPjpj`NŠzHj`JRQ “z F E F kq€“Sxk€~JM~Dq€kq‘zISQcj`qƒk€~Jm~q€kL:cŽke%“Dj`zIkF s F ψ j`e ψ tGJM‚Œ“q€k•~ye§zHeKkU y‚™k€~JM~Dq€kÛF ^ C

2

1

1

2

1

2

1

2

2

2

2

1

DFEHG IHJG DJJKML

7

-N),O +.-QP



F _pj`U NiJRSk•L;jp~v‚ éùìñŒùù–ï Mêmì bù ü î ŒíxêRùëêMø–ï‹íúÞïhðhþ[ùñ JMOPeK∆xF zH·jYwD∆p‚Œe%zI>k€‚šh tij`q2JR|XNiq‘_`zHj`dPk a sin θ = nλ kOPe%Q k•cgU Q kL(S›L:wDzH|Xd tij`q2JR|XNiqJMdmcŽ_`JR‚xcXU Qk€k M R

S

x

n ∈ Z; sin θn =

n λa

∆xmax

≈ d sin θn − d sin θn−1   λ ≈ d a

∆xmax

F zHj`e~Djpj`k§JReK_pj`U NiJRSTQD£bS j k€JR“Dj`L‡j`OPUx¢;JRU “utGJMNi~D|Xk•~ye§zIe§~Djp~Dq€LTJM~wxJROPe a 2

∆px

_YwDL

∆θ

∆x

>

2h a

≥ P =

h λ

UcXe2w‹zIJmjpj`OP‚‹zHj`e~DjpjblPJRer_`zHj`d

∆px P

= ∆θ

2λ 2h λ · = a h a

tiej _YwDL

λ > 2 d > ∆xmax a

748 ‹9;BBŒ¾ C™Â6BDC¥½ <8 ½ 5Â6B;À #½ ›B —8:9;B} 9‡8 µÂ CxB TBB IçžÏ»Ê…ÔÔ[Ëoæ GÎÍ Ò€Ë]Ò%Ó çÝÑ2Ô ÜiÖ ÏgÔÔ͚àÖ žÑ %åÖ ßŒØœÆ zIJbaIdPJMNGkkJRvU dPe%k zHJRL(e%JR“dmaHj`QxkJRvU dPe V (x) zIL(L‡jYwDk‘k€JRvU dPe%k E= + V (x) kejpjYcXq€k =T

9U

0V

XW



ZY

\[

,]

fe

_^

a`

bV

1Y

ge

c

VcW

h

p2 2m

P2 2m

i~

∂ψ (x, t) ∂t

= −

~2 ∂ 2 ψ + V (x) ψ 2m ∂x2

zHJM~q2q‘zIL(zIk‘kejpjYcXq€k ~2 2 ∂ψ (x, t) = − ∇ ψ + V (x) ψ ∂t 2m  ~2 ∆ = ∇2 ⇒ = − ∆ψ + V (x) ψ 2m i~

E

=

Uj`‚ŒS}UjYwDOPL#kaIJbc

P2 +V 2m ψ = ei(kx−wt)

h λ = ~ω = hν

p = ~k = E

8

yNiJRdj

d

yzIQ d i = − Eψ h

∂ψ ∂t ∂ψ i~ ∂t ∂ψ ∂x ∂2ψ ∂x2 2 ~ ∂2ψ − 2m ∂x2

i pψ ~ p2 = − 2ψ ~ p2 = ψ 2m

=



=



= Eψ

p2 +V 2m



j`dPL(‚+JRNrw+£Rk|

ψ

kU Sk

i

L(vizIJRJM“NGdj`Q›JP£bS5L:cXq€L#U e%j`zHqƒJbaIdjpj`N}‚Œ“q•cXJIF ‚DaIJMkU~voj`q‘L‡j`L(|Xqƒ_`JReKNGJMNGL(yLrF V P ã JRL‡U;aINiQ |ŠNgj`U QŠF n c ψ ψ (x, t) = W¡tiJR‚+“q€k~ye!LTk€|XJRU NrcXJ!OPeƒtiJM~Œ~Dj`q‘Ucge!w€f2k|XJRU Nik.aIQcXqÛF E ÖH˅Ñ2Ô[Õ ä рÔ[Õ Î]ÑÌ6Ô ä ËÓ!å žÑ2Ô gç ߌØbß F ‚ŒyU q€kL:wD‚™NiJRNiL(yšej`“q€LTJmjYwDJR|Žj`zHj`eKcXJ%JbwuJRzIJMJRS‚™kO |ψ| = 1 j`dPL(‚ŒJMN e Uj`‚ŒS tiJRL(vizIL(JM‚ŒykdP‚ŒdIL(JM‚Œvk€LµJm~ wuF ‚+yhU q2k•L(wŒj2tiJRdPq2Omk•L:wuJRdPQ›L(STcj`U Q ψ a a a



j

2

f (x)

g (k) =

=

Z

∞ −∞

zIJMUj`NGq2k•k€JR“NidPj`Q L Uj`‚ŒSdGF ∆k = ‚+yj`U kzIe§UJm~vdIJMOPe √2 α

=

Z

Z



mO e |j`e%vX_pj`q€SQ

2

2

e−α(k−k0 ) eikx dk

−∞ ∞

2

kJRUj`Q5tiUj`Q |XdmUa˜L:cŽk€OmOPkk•zIy|j`dP‚™cXq€zcXkL5_`zHJRdkJMk_`JMQj`L(yL

F [f (ax + b)] (ω) =

ω 1 ibω e F (x) |a| a 9

UcXe2w

F [f (x)] (k) = g (k) f (x) = eik0 x δ (x − x0 )

g (k) = e−α(k−k0 )

e−α(k−k0 ) +ikx dk −∞ Z ∞   02 0 0 0 ik0 x e−αk eik x dk k = k0 + k ⇒ = e −∞ Z ∞ “ 0 ”2 0 −α k − ix x2 ik0 x 2α dk e = e e− 4α −∞ r  x2 π − 2α +ik0 x = e α =

i(kx−wt)

g (k) eikx dk

Uj`‚+S5kq2v–jp~LxF tiJRdjYc k lPLTzHj`L‡j`NGcXq§_`zHj`d f (x) L(cŽkJMUj`QxtiUj`Q|XdPUa f (x)



kq€vojp~

OPe 2

2

|f (x)| = |ψ| = |E| =

2

√2 2α

(g (k)) → ∆k =

√ π − x2 e 2α → ∆x = 2 2α α

∆k∆x

L:cŽ‚Œyj`U j`dmL‡‚ŒJRN

= 4

UcXe!w

p = ~k ⇒ ∆p = ~∆k ∆p∆x ∼ ~

kOPe%QkzHj`U JMkq2j e =

vp

Z

f (x, t) =



ω k

w (k) = w (k0 ) + (k − k0 ) f (x, t) =

Z



0

dk e

−αk

02

e



1 + (k − k0 )2 2

−∞

Ome |f (x, t)|2

~2 k 2 2m

=

s

*S

JRcXQ j`yNGJMNGL‡yšUj`‚ŒS›kq2v–jp~L 

d2 ω dk 2

k0 „ i (k−k0 )x− w(k0 )+(k−k0 )( dω dk ) »

 k

Ml

dkg (k) ei(kx−ω(k)t)

−∞

dω dk

tiJMj`|Xq‘L‡v Rð …ýï ŒøXï+í êMý

_`q2Om‚ukSdHe%JRk¢;JReKk€e!U dj2kL(JR‚+yšUj`“JRd

~ω = 

i(kω−ωt)

2β =



k0

+ 21 (k−k0 )2 k0



d2 w dk2

w (k)



k0



tiv–j

2

α(x−vg t) π2 − 2 α2 +βt2 ( ) e α2 + β 2 t2

d2 ω dk2



k0

« – t

dw dk k0



= vg

UcXe!w

í þ]ï•éêMê €î;øù á t _`q2Om‚hj x tgj`NGq2‚xNiJRNiL(yšej`“q2L zHj`U ‚ŒzI|Xkk zHj`Q JRQ “ P = |ψ| qzHj`JMU;aIdPq2L(e§zGjYcgJMU~ P Sj`‚+JRU ‚™zHj`JRL‡JR‚ŒU vaIdPJMeƒ_`k ψ (x, t) kJR“Nidj`QkaIU Q ‚™_YwDL R P dx = 1 kJM“OmJML(q€Uj`d5F V C

nm

2

∞ −∞

Z

|ψ|2 dx

< ∞

W ψ ∈ ` ‚™U ‚+jp~q€cŽJMLµkq!~d[f ψ ∈ L zHj`e%U NGdij`L(e!w‹zHj`JR“Nidj`Q F _`q€OP‚™kdPzcXq‘kdPJRe}W¡‚+yhU q2k•L(wD‚2fzIJML(L:wDk‘zHj`U ‚+zI|Xkkc kyJbaI‚+q•U vdPJm~UcˆzIejYcXqF n 2

2

KG IIHG DJJKoL -N),O +.-Qp

10



L

tiJRJbcXq2q V yJRdPd™W¡eXf ∂ψ ∂t ∂ψ ∗ −i~ ∂t ∂ψ ⇒ i~ψ ∗ ∂t ∂ψ ∗ −i~ψ ∂t  ∗ ∂ψ ∂ψ i~ ψ ∗ +ψ ∂t ∂t i~

∂ |ψ| ∂t

~2 d 2 ψ +Vψ 2m dx2 ~2 d 2 ψ ∗ − + V ψ∗ 2m dx2 ~2 ∗ d 2 ψ − ψ + V ψψ ∗ 2m dx2 ~2 d 2 ψ ∗ − ψ + V ψ∗ψ 2m dx2  2 ~2 d 2 ψ ∗ ∗d ψ − + V ψ∗ψ − V ψ∗ ψ ψ−ψ 2m dx2 dx2   ~2 ∂ dψ ∗ ∗ dψ − ψ−ψ 2m ∂x dx dx

= −

i~

= = = =

2

=

zHj`U ‚ŒzI|Xk‘tiU OIkU~vk J

~ 2im

=



dψ dψ ∗ ψ − ψ∗ dx dx

∂ ∂ P+ J ∂t ∂x



JROPe

= 0

tGJMJMjYwDJM|XkzHj`Q JM“UxzIejpjYcXqKj`dPL(‚+JRNGcŠkejpjYcXq€L›e%U NGJMd WpnAfkydPkkzIe˜Nijp~‚+d

0=

Z

∞ −∞

J|∞ −∞

 Z ∂ d ∞ ∂ P+ J dx = P (x, t) dx + (J) |∞ −∞ ∂t ∂x dt −∞  d = 0 ⇒ P (x, t) = 0 dt P (x, t) = const



[−a, a] d dt

Z

S‡aIN«Ngjp~‚Œd kq2v–jp~

a −a

P (x, t) dx = J (−a, t) − J (a, t) 6= 0

OPeƒzHJM~q2q‘EkJRS‚Œ‚

kU S;k

∂P ~ · J~ = 0 (~r, t) + ∇ ∂t J~ =

 ~  ∗~ ~ ∗ (~r, t) ψ ∇ψ − ψ ∇ψ 2im V

d dt

Z

P (~r, t) d3 V V

= −

Z

V

~ · Jd ~ 3V = − ∇

11

Z

Jn dσn σ

yhQ dGU j`‚+S

kU S;k

Ome«W R

∂ψ ∂x ∂ψ ∗ ∂x

W P L:cŽzHj`Q JR“U™_`JRe‘zIU yeXf€k€QJM“U ψ F E F ψ zIye˜tGSQ t ‚+j ψ tiJRJMq€SQ xlP‚‹kU JMOmvuF s j`OHkq2v–jp~‚™tidmq!j`eXf ψ = e k€q€v–jp~ =∞ ∂ ∂t

∞ −∞

|ψ|

2

∂ ∂x2

i(kx−ωt)

= ikψ

= −ikψ ∗  ~  2 2 ik |ψ| + ik |ψ| J = 2im ~k 2 = |ψ| m   p |ψ|2 = 1 ⇒ = =v m

F tiUOGkJRk€JbcŠJm~ wxzI‚ŒwDUj`qƒzHj`JRk€L zH‚ŒJRJMy ψ kU S;k éù ëùøgéùêMñDùëêIéù ü ñDþ]ï £bS“Dj`q€q%£GášzIJRQ “z}¢‡U S kU~v–k W x j`eXf hxi Jm£RS›_`q2j`|XJ x L:cŽS;“Dj`q2q ψ (x, t) 

hxi

=

Z

∞ −∞

2

x |ψ (x, t)| dx f (x)

hf (x)i =

Z



f (x) P (x, t) dt

−∞

hpi 2

P = |ψ| ; hpi =

i~

∂ψ ∂t

= −

Z

L:cˆS“Dj`q€q p SdPz§cXJ%NiJRNiL(yL kU~vk

pP (x, t) dx

~ ∂ 2 (ψ) +Vψ 2m ∂x2

p2 +V 2m ∂2 ⇒ p2 = −~ 2 ∂x ∂ = = i~ ∂x E

ej`kc NGJMNGL‡y‹L:cŽk€dPjYwDz

=

12

Fp =

UcXe!w ã tGJMU‚+|Xk U vdPJM~UcŠzHe%jYcXq2qF V ~ ∂ i ∂x

JR|Xe%L(NikkS j`dPzIk‘Ngj`yÞF n dx dt

= p

hpi

= m

m

∂ψ ∂t ∂ψ m ∂t d hxi m dt i~

= =

=

~2 ∂ 2 ψ +Vψ 2m ∂x2 ~ ∂2ψ m − + Vψ 2 2i ∂x i~ Z d ∞ ∗ ψ xψdx m dt −∞ Z ∞ ψ ∗ xψdx m −∞  Z ∞ ∗ ∂ψ ∗ ∂ψ m dx xψ + ψ x ∂t ∂t −∞

= = ∞ −∞

∂ ∂x

∂ψ ∂ψ ∗ xψ − ψ ∗ x ∂x ∂x



(6)

(7)

L(‚+NGdjW¡„fplP‚•W † fzHeK‚ŒJM“d

=



U vdPJM~DU;cŽzIejpjYcXq€L›Uj`‚ŒSq

= −

=

Z

d hxi dt

=0⇒ = = hpi =



   2 m m ∂ 2 ψ∗ ∂ ψ ∗ ∗ − V ψ xψ + ψ x − 2 + V ψ dx ∂x2 i~ ∂x i~ −∞  Z ∞ 2 ∗ 2 ∂ ψ ∂ ψ ~ xψ − ψ ∗ x 2 dx 2i −∞ ∂x2 ∂x  ∗   Z ∞ ~ ∂ψ ∗ ∂ ∂ψ ∗ ∂ψ ∗ ∂ψ − dx xψ − ψ x ψ+ψ 2i −∞ ∂x ∂x ∂x ∂x ∂x  Z ∞ ~ ∂ψ ∗ ∂ψ − dx ψ + ψ∗ 2i −∞ ∂x ∂x Z ∞ Z ∂ ~ ∞ ~ ∂ψ ∗ (ψ ψ) dx + dx − 2ψ ∗ 2i −∞ ∂x 2i −∞ ∂x   Z ∞ ~ ∂ ψ∗ ψdx i ∂x −∞ ~ 2i

Z



F kdjYc ke%“Dj`z}L(‚ŒNidS“q€e%‚šj`zHj`e˜tGJRcgdHe!L#tie§_YwDL UjYaIUQj`e˜ej`k zHj`JM“NGdj`Q k‚ŒyU q UjYaIUQj`e p = ψ (x, t) JRU e%JRdPJRL UjYaIUQj`e p = i t R J b J X c 2 q  q ` j ( L ˆ c I z M J  Q  “ H z ‘ k b J D w U  S 2 j b J aIJMq€U k•U jYaIU Qj`e p = hpi ∈ R rq

~ i ~ i ~ i

p ∂ ∂x ∂ ∂x ∂ ∂x

FV Fn FE Fs

zHj`U S;k

;ùPíê .ë ê ûAó¡ûAóRò zHj`JMkLTU~v–j`q‘Ÿ j`L(JRy|XyJ kU~v–k s

Hl

8l

[A, B] = AB − BA

[A, B] = − [B, A]

VœE

tiJRJMNGzHqŸ j`L(JRy|XyJRL

k€USk EHG IIHG DJJKoL -N),O +.-Qt

Ÿ j`L(JMy.|XyJ%tGJMq€JRJMNGq•tgj`NGJMq€k€j€S;dPzIkݟ j`L(JRyk|XyJ [p, x] =

~ i

zGj`y+wŒj`k

|XyJRk•zIeKNgjp~‚+d5F V [p, x] ψ (x, t)

 ~ ∂ , x ψ (x, t) i ∂x ~ ∂ ~ ∂ (xψ (x, t)) − x ψ (x, t) i ∂x i ∂x ~ ~ ∂x ψ (x, t) = ψ (x, t) i ∂x i



= = =

hpi − hpi



=

Z



∂ψ ψ dx + i ∂x −∞ ∞

∗~

2

Z

∞ −∞

ψ

zHj`JbaIJMq€U kNgjp~‚+d5F n

~ ∂ψ ∗ dx i ∂x

~ ∂ |ψ| = dx −∞ i ∂x i∞ hh 2 |ψ (x)| = i −∞   2 = |ψ (∞)| − |ψ (−∞)|2 = 0 Z

iÎ ÞÓ!Í Ó!å XË–Ë žÒ2ÎÔ[Õ Œß ØRè zHj`U~v–k F S;dPzIk‘L(cˆL(vizIJRJM“NGdj`Qw φ (p, t) _`q2|Xd›F V ~Djp~q2LTzHj`U ‚ŒzI|Xkk |φ (p, t)| F n p L:c kJRJMUj`Q›tGUj`Q |XdPUa˜ej`k φ (p) kU~vk ψ (x) e =

j

.u

2

ψ (x) 

k=

=

p ⇒ = ~ φ (p) = =

φ (p) = = =

Z ∞ 1 √ g (k) eikx dk 2π −∞ Z ∞ 1 i √ φ (p) e ~ px dp 2π~ −∞ Z ∞ 1 √ f (k) e−ipk dk 2π −∞ Z ∞ 1 i √ ψ (x) e− ~ px dx 2π~ −∞

∞ ∞ 1 1 i 0 i √ φ (p) e ~ p x dpe− ~ px dx 2π~ −∞ 2π~ −∞ Z ∞ Z ∞ “ 0” i 1 p−p x dxdp φ (p) e~ 2π~ −∞ −∞ Z ∞  0  1 φ (p) 2π~δ p − p dp = φ (p) 2π~ −∞



Z

Z

Vs

L(JMvU z

p

~Djp~q2LTzHj`U ‚ŒzI|Xkk R∞

−∞

Z

Z

φ∗ (p) φ (p) dp =



dp φ∗ √ 2π~ −∞

Z



|φ (p)|

2

Šc yJbwŒj`d kyhwŒj`k cŽke%UdxF V =1 |φ (p)|

2

i

dxψ (x) e− ~ px −∞ Z ∞ Z ∞ i 1 = dxψ (x) √ φ∗ e− ~ px dp 2π~ −∞ −∞ Z ∞ ∗ = ψ (x) ψ (x) dx = 1 −∞

R∞

hpi = Z



−∞

dpφ∗ (p) pφ (p)

ke%U dHU q2j`L(w

hpi

S;“Dj`q2q‘Nijp~D‚Œd5F n

~ ∂ψ i ∂x −∞   Z ∞ Z ∞ ~ ∂ 1 i √ = dxψ ∗ φe ~ px dp i ∂x 2π~ −∞ −∞   Z ∞ Z ∞ i 1 = dpφ (p) p √ dxψ ∗ e ~ px 2π~ −∞ −∞ Z ∞ dpφ (p) pφ∗ (p) =

hpi =

dxψ ∗

−∞

_`q2JR|ˆJM~ w™~S x

ψ (x) = i~

‚ŒyU q€‚š‰ p L#kkOIUjYaIU Qj`e§ej`k x ‰ φ (p) ‚ŒyU q€‚

kU S;k

∂ ~ ∂ =− ∂p i ∂p

hXP i

F zHj`JbaIJMq€U k

ü ùP÷ ü ùìï kU Sk 

bJ wxJRaIJRq2Uk•e%L hXP i UjYaIUQj`eÚF V k€JR“OPJRUaIq€JM|«Jm£RS›zHj`JRaIJRq2Uk•L(‚+NGLT_`zIJMd›F n hXP + P Xi IçžÏ àià XÔË HÓ XÔ]ÎÔ]Ñ gÕ ßŒØ U vdPJM~UcˆzHe%jpjYcXq X, P



i~

∂ψ (x, t) ∂t

= −

c

vw

xev f



"!

~2 ∂ 2 ψ +Vψ 2m ∂x2

p2 ψ + vψ 2m   2 p +v ψ = 2m =

_`JRJML‡jYaIL(JMq€k•e%j`k H = + v UcXe!w _`q€OP‚utGJMJMj`L(zrtidPJRe!cŠyJRdPd ¢‡JML(kzIk V (x) p2 2m

i~

∂ψ (x, t) ∂t

= −

~2 ∂ 2 ψ (x, t) + V (x) ψ (x, t) 2m ∂x2 15

ψ (x, t) = T (t) u (x) i~

∂T (t) u (x) ∂t i~ ∂T∂t(t) T (t)

= −

kUj`“kqK_pj`U zIQ5ej`“q2LTk|XdPd

~2 ∂ 2 u (x) T (t) + V (x) T (t) u (x) 2m ∂x2 ∂ 2 u(x)

~2 ∂x2 = − + V (x) 2m u (x)

zHj`ejpjYcXqKJRdmc j`dmL‡‚ŒJRNrJMOme«W¡kJRvU dPe%kHf E e%L#e!U NidmcˆS j`‚ŒNiLµtiJMjpjYcŽkejpjYcgq2kƒU JR‚+STJRdmcŠkdPNi|Xq dT dy T

= −

iE T ~ i

= e− h Et

UcXe!w™F _`q2Om‚™kJmj`L(z}e%L#zHj`U ‚ŒzI|Xkk‘JMU dPj`JM“ aI|«‚Œ“q2‚‹F zIJRU dj`JR“ aI|ŽkJR“Nidj`Q›zIe%O −

~2 ∂ 2 u + V (x) u (x) = Eu (x) 2 2m ∂x   2 p + v u (x) = Eu (x) 2m

F _`q€OP‚™kJMj`L‡z˜JMzIL(‚™U vdPJM~UcŽzIejpjYcgq§j`dmL‡‚ŒJRN W¡tGJRaIUNi|XJM~xtikkJMvU dPe!k•JbwDU S›U q!j`L:w€fzaaIdjpjpj`Niqƒe%JRk•kJRv–UdPe%k_`e2wcŽzHj`e%U L›_`zIJRd

k U Sk zHj`e%q€v–jp~

kvU~q‘L‡e!JM“dmaHj`QŠF V JMQj`|ˆUj`‚0F n JRQj`|Štgj`|XyqF E zIJMJR“Nidj`Q›L:cˆtiJRL‡e!JM“dmaHj`QŠF s δ tGJMJRUj`OPyq•tiJRL‡e!JM“dmaHj`QŠF ^ F k€“JRQ NGk€q‘NGJMQ|Xq¢j`Ue˜L(vk‘¢;Uj`e§j`‚DcŽ‚Œ“q2L tiJR‚+Uj`NGq•tGk‘j`L(L‡k‘tGJMU‚h~L zHj`dj`UzHQk ïhþ ü ñDð™íìê høP÷€ù Aû ó :óRò L(L(v–‚šJRQj`|0L(e%JR“dmaHj`Q™Uj`‚ŒS.F x = 0 ‚W¡Ÿ;JM“ULx¢;j`Q kd[f!NGJML(ydjHWYVUj`JReXf!tGJMdPjYcXk‘tiJRUj`OPe%‚štGJMU zHj`Q kIa Jbc kvU~q‘L(e%JR“dmaHj`Q™ã¡V6kL(‚Da C

U vdPJM~UcˆzHe%jpjYcXq du dx

= u

0

16



$#

Uj`zIQ d 00

u +

2m (E − V (x)) u = 0 ~2 2mE = k2 > 0 ~2 2m (E − V0 ) = q2 > 0 ~2

00

u1 + k 2 u1 00

2

u1 + q u1

(8)

j`dPL:cˆkejpjYcXq€kKJM~JM“5JRdmc

= 0 = 0

u1 (x)

= eikx + Re−ikx

u2 (x)

= T eiqx

JROPe

it JRS j`‚ŒN T − T ransmition, R − Ref lection UcXe2w F Uj`OPyJIj`kcXqc0_YwDzIJ%e!L#JRw e ‚™JMj`L(z}e%L u kU Sk Y_ wŒj`q€w ψ = T (t) u (x) = e e L(L(v‚‹zIe%O x _pjpj`JRwD‚‹L(vgj`dmL‡‚ŒJRN zIUjYwDOmz −iqk

2

− ~i Et iqx

u1 (x = 0) = u2 (x = 0) 0

0

u1 (x = 0) = u2 (x = 0) k − kR = qT K (1 − R) = qT 1+R = T k−q ⇒R = k+q 2k T = k+q

J~ =

JR

~ 2im

J1

=

J2

=



zHj`U ‚ŒzH|Xk•tiU OI‚DcXyd

∂u∗ u −u ∂x ∂x ∗ ∂u



 ~k  2  1 − R2 m ~k 2 T m

‰ |XdmwDdPk‘zHj`U ‚ŒzI|Xkk§tGU O J ‰ U ‚+S;q§zHj`U ‚ŒzI|Xk P ‰ k€UOPykƒzHj`U ‚+zI|Xk P UJm~vd F U ‚+j`Sk‘zHj`U ‚ŒzH|Xk•tiU O J F U OPyj`q€k‘zHj`U ‚ŒzH|Xkk‘tGU O I

T

R

T

JI

=

JR

=

JT

=

~k m ~k 2 R m ~q 2 T m 17

 2 JR k−q 2 = =R JI k+q q 4kq JT = T2 = = 2 JI k (k + q) = 1

PR PT PR + P T

zHj`U S;k

U vdPJM~DU;cÜzIejpjYcgk}L(c_pj`U zIQ L™Ome tiJRdPzcXqrzH~U Q k –U j`‚+S«F V k JRv–UdPe%‚ukJMj`L(z«_`q2OP‚xkJmj`L(z}JRzHL(‚ucψ£Rqƒ(x,F £RJRU t)dj`JR=“ aIT|ž(t)£HášutG(x)Jmj`|Xq E L‡S;‚‹_pj`U zIQ e U vd~JMUcŠzHj`ejpjYcXqc»¢(w•W¤£RkJRvU dPeI£%UjYaIU Q j`eXf H = − + V (x) = + V (x) F n zy

T (t) =

− ~i Et

p2 2m

~ 2 d2 2m dx2

H (uE (x))

= EuE (x)

Yïhþ ü ñDðhý íìê høP÷€ù DïhðïhøP÷Iî5ïhêMþ ü øìï ü ð+ùPí E < V ü ùý .ïhþ ü ñDð ûAó :ó¡û kvU~kJMUyej2Uq€cXdHL:wDkkvU~q2kJRdPQ L:cˆNiL(yk 



C



4{

*S

$#

00

u + q2u = 0 2m (E − V0 ) q2 = <0 ~2 u = e|q|x + e−|q|x

W¡zHj`U ‚ŒzI|Xk€LŒf2_pj`U zIQxe%L#_YwDL;j€S j`‚ŒJMU‚™JML(JR‚+UvaIdmJMe‘e%L

e|q|x

UcXe!w

u = e−|q|x

F |XQ e!zHq‘tGU OPkzIJbcXq€qkJM“NGdj`Q L#Jbw pR

k − i |q| 2 =1 = k + i |q|

JT = 0

zHj`U ‚ŒzI|Xk€k‘tGU O

Œùý€îxï ü êMýú í +ý ùù–éý™í ùùëhî;ðéùìùùúžð™í ùð Œùý€îTíìê høP÷€ù ý ü þ[øêRñŒú»é€ìùùúžð U vdPJM~UcˆzHe%jpjYcXq S

4S }|





 2m d2 + (E − V ) u (x) dx2 ~2

~2 ∂ 2 d2 − dx2 c2 ∂t2 



ε (x, t)

ε (x, t)  2 2 ~ d − 2 ω 2 E (x) dx2 c

~S

= E (x) e−iωt

18



= 0

= 0

= 0

C

L‡jpj`|XNGq‘zHe%jpjYcXq

L(e%JR“dmaHj`Q5Uj`‚.ã EUj`JRe

Rü ù–ïhøð 2ê ùë5ÿŒùë ð+ùGíìê høP÷€ù ü ùý ûAó :ó¡ô W¡EUj`JReXfWhL‡j`vU zI‚‹U zIQ JRJ…f—L(e%JR“dmaHj`Q5Uj`‚+‚



T

2

|T |

= e−2ika

 

2kq 2kq cos 2qa − i (q 2 + k 2 ) sin 2qa

q

=

k

=

8l

L(‚+kSj`‚+N

C



$#

2ka

UcXe!w

p

2m (E + V0 ) ~ √ 2mE ~

K

=

(q = ik) ⇒ k

=

JMQj`|Štgj`|Xyhq



2mE p~ 2m (V0 − E) ~ 2

(2Kk) 2K 2 cosh2 (2ka) + (K 2 − k 2 ) sinh2 (2ka)

=



|T |2





4kK K 2 + k2

2

2

2

+ý ù ü êî OPe ka  1 U j`‚+S}tij`|Xyq2k‘‚+j`U JRN

Wentzed-Kramers-Brillin WKB

e−4ka  1

JMOPe}W¡L(U vaIdPJRe%L#_`q€JRU5tijYwD|gw€f€zIJRL(q2JR|XJMQdPJMeKj`zHj`e˜vU~dj€j`kcXL:w‹tgj`|XyhqKyhNiJRd |T |

ln |T |

2 2

i

2

|T |2

p

2m (V (x) − E) Z ~ p 2 = − dx 2m (V (x) − E) ~ V (x)>E √ R 2 = e− ~ V (x)>E dx 2m(V (x)−E)

k (xi ) = ln |T |

2

= |T1 | |T2 | |T3 | X 2 = ln |Ti | = −2k (xi ) ∆xi

V[Z

IF€FG IIHG DJJK‚L -N),O +.-Nƒ

hý ù ü êî;íuéùìðhþ[ùñ JRL‡qcXy.k€~cˆzIL(SQ k‘Jm£RSTzwDzIq2qƒtGJMdj`U;aINiL(eƒL(cˆkaIJML(QŠF V F owlen − N ordheim W KB

|T |

2

2

= e~ = e

Ra√ 0

2m(w−eεx)dx

√ 3 −4 2m 2 3~eε w

cXJi_`JMS;U vk€q§e%“Dj`J α NGJMNGL(yUcXe!wŠF L(e%JR“dmaHj`Q‹Uj`‚Œ‚•tGJM‚Dcj`JGtiJRdj`UaHj`JRdgJMdMcjtiJRdjYaHj`U QšJMdMc α Ngj`U QŠF n L(e%JR“dmaHj`Q ‚šk€~DJRU J%cXJIL(e%JR“dmaHj`QuU j`‚+L›Ù;j`yqƒU q!j`L:wF NiJRNiL(yLT_`JRSU vk‘_`JR‚‹tiJM~v–j`dPq‘tiJRdPS;aIq‘L:cŽk€JRJRy~ e%JRk W KB JRQ L#ke%“Dj`zIkƒF Ùj`yk_`JM‚ŒL Uj`‚Œk‘_`JR‚ tunneling cXJ!U q!j`L:wšF JRQ L „

1 r

2

2

= e− ~

|T |

= e

Rb

R

dx



(V (x)−E)2m

2πz1 z2 e2 − ~v

U q!j`L:w b  R U;cXe!w ÊoÔ]Ñ XÕI֎Ó!Í XÔ[˖ӀÓ%æ XÔÎ]Ôæ ÔÃËoÕ!Ô Î[Ë…Ï»Ë àiài× IçÛÑ2Ô ßŒØbÉ ( 0 −a < x < a L(e%JR“dmaHj`Q5Uj`‚š_pj`zId V (x) = ∞ |x| ≥ a U vdPJM~UcˆzHe%jpjYcXq 1 2 2 mv



…

P2 +V 2m ∂ψ (x, t) i~ ∂t

H=

=E

f

= −

z 1 z 2 e2 R







.



~2 d 2 + V (x) 2m dx2

= Hψ (x, t)

tGJMdPzcXq‘zH~U Q k

ψ (x, t) = T (t) u (x)

HuE (x)

JROPe

= EuE (x) i

T (t) = e− ~ Et

ψ (x, t) =

X

JRL(L:w‹_pj`U zIQ5OPe

i

cE e− ~ Et uE (x)

E

F E Uj`‚ŒS›JMU dPj`JM“ aI|Xktg~Niq€k

L#e%U NGdj Uj`‚ŒLTÙj`yq Rù ü é |x| ≥ a i

e− ~ Et





~2 00 u + V (x) u = Eu 2m ⇐⇒ u = 0

20

IEHG IIHG DJJKML

-N),O +.- †

‚

E =V +T >0

kU~vkkQD£bS5Ome

V = 0 −a < x < a

Uj`‚Œk‘¢j`zI‚

~ 00 = Eu u 2m 00 2mE u + 2 u = 0 ~ −

_pj`U zIQ e!L OPe L‡L(v‚›_YwŒj`qw™W¡zHj`Q JM“UµL(‚+NGLJm~ w€f kQc˜JMe%dmztie S£bSTNiU cgJ!uzI=JMUAeL;j`vU›L(+JM‚+Bej`JRLµtGUjYac«EzI>JMJRS0‚ŒL:c«e%JMkƒ e‘U£M~q‘j`e‘y£R~Dq~Dq€L:cŠu JM(±a) q€LµŸ;|=j`d0U ‚Œ|XkGfF JRUcXQ e W¡tiJRJRL‡JRL:cžlPJMe W¡\S£bS5U j`‚+Shf u = 0 JRL‡e!Jmjpj`UaIk_pj`U zIQ kej`kƒ_pjYcXe!U k‘_pj`U zIQ k zHj`dj`U zIQ kƒU e!c −qx

qx

u = A sin



2mE x ~

!



+ B cos

WâF tikJRdmcŠzIe˜Ngjp~‚ŒdH_YwDLT‰ tGJML(‚ŒNizIqzHj`dj`U zIQ k‘JRdmc

±a

2mE x ~

!

‚+JR‚Œ|ŠkL:wDJRU~™JMe!dPzI‚™y£M~q‘JRU JRNgj`q€L+f tiJRJMv–j`OlPJRe%k•zHj`dj`UzHQkÛF V

u (±a) = A sin (kx) = 0 ak = nπ ~2 k 2 ~2  π  2 2 n E1,n = = 2m2 2 2m a ~ π n2 = 2ma2

tGJMJRv–j`OPk•zHj`dj`UzHQkÛF n

u (±a) = B cos (kx) = 0   1 ak = n− π 2 ~2 π 2 E2,n = (n − 1)2 2ma2

W¡zIL‡q€Uj`dPqƒzHj`U ‚ŒzI|Xk‘JMe%dmzHL tiJRe%zIq€cÃfzHj`dj`U zIQ kq§~ye§L:wDLTL‡j`q€U dGJRe%dPzKcXJ Z

∞ −∞

|u (x)| dx =

1 = = = ⇒A=B

=

Z

Z

a −a



|u (x)| dx = 1

A2 sin2 x

−∞ Z a

1 A2 x 2 −a

A2 (2a) = A2 a = 1 2 1 √ a

21

_YwDL‡j

kU S;k

tijYcXU dHOPe

l ∈ N; El

=

E2,n

=

E1,n

=

~2 π 2 (l − 1) 2ma2 4 ~2 π 2 l 2 2ma2 4

~2 π 2 2 l 2ma2

_`q2|XdIzHj`yj`di¢;Uj`“L

l = 2n

2

w+£bk|

(E1 = E1,1 , E2 = E2,1 , ...)

F L(aI‚ŒzIq

JML(e%JMjpj`UaIk‘_pj`U zIQ k•tiv–j ü ùýïéùøù ü é 5í úÞéùøù Dé vo£ReKtikzGj`dPjYc zHj`JMvU dme%L#zHjYwDJMJbcXkL(vgzHj`JR“Nidj`QŠF V u=0

o

∀n, m ∈ N;

Z

b

u∗n um dx

δ=

= δn,m

a

(

1 m=n 0 m= 6 n

! cn

Z

a −a

u∗m (x) ψ (x, t) dx

⇒ cm |cm |

1=

Z

a −a

|ψ (x, t)| dx =

Z

=

Z

2



X n

|cn | = 1

2

a −a a

Z

=

a

u∗m (x)

−a

= cm e Ra Z =

X

−a n

i

cn e− ~ En t un (x) dx

u∗m (x) ψ (x, t) dx

a

−a

i

e − ~ Em t 2 u∗m (x) ψ (x, t) dx

i c∗n e ~ En t u∗m (x)

n

X

tiJRq2~DNGq‚+jYcXJMyÞF n

n

− ~i Em t

−a

=

X

{

2

|cn | |un | dx =

!

X n

X

cl e

éêRíŒî;ê –ê ïéù Œðúžðï zIL(q2Uj`dmq ψ (x, t) F V  

− ~i El t

l

S

!

ul (x) dx

|cn |

kJRv–UdPeƒL(cŽzIJMQ “zr¢;U S«F n hHi =

Z

U vdPJM~UcˆzHe%jpjYcXq Hun (x)

ψ ∗ Hψdx 2

2

~ d H = − 2m dx2 + V (x)

= En un (x) 22

kJMvU dme%kL:cŽU jYaIU Qj`e%k

F S £RS hHi =

Z

=

Z

a

dx −a

dx −a

n

X

⇒ hHi =

n

i c∗n e ~ En t u∗m

X

i ~ En t

!

c∗n e

u∗m (x)

n

2

zHj`JMq€“S›zGj`JR“NidPj`Quj`e%UNiJ u Ucge!w zIJMQ“zHkƒ¢‡U S›zIe§yzIQ d n

X

(x) H

n

a

X

=

X

En

cl e

− ~i El t

ul (x)

l

!

X

cl e

− ~i El t

En ul (x)

l

|cn | En

! !

2

|cn | En

+‚ “q€‚ E kJMvU dme§~Djp~q€LTzGj`U‚+zI|Xkk‘e%JRk |c | kU Sk F tiJRdjYcXk ψ tik u (x) U q2j`L:w‹~Dj`|XJRkJM‚Œ“q€L#zI|XUj`N«e%JMkzwDU Sq€k‘zIe§tGJm~D~Dj`q‘UcXe!w kU S;k ä ËÌ6Î]ÔÔAÒÖ Ñ2Ô gÓr˖Ì6à Xà Ò!Ñ ßŒØ OPe P : x 7→ −x zHj`JMv–j`OPk•UjYaIU Qj`e P =1 ψ (x, t)

n

n

2

n

‡

2

=

ˆ

ce

Š‰

‹

P u (x) = λu (x) u (x) = P 2 (x) = P λu (x) = λP u (x) = λ2 u (x) ⇒ λP = ±1

JML(UaINGQ |Xk•Nij`U JRQ kaIQcgq

ψ (x)

= +

1 [ψ (x) + ψ (−x)] 2 1 [ψ (x) − ψ (−x)] 2

S £RS;L#kq2JRe%zIq‘zIJMv–j`OPk•k€JR“NidPj`Q k u (x) = [ψ (x) + ψ (−x)] UcXe2w S £RSLTkq€JMe!zHq‘zIJRv–j`OlPJMe%kkJM“NGdj`Q k Ÿ j`L(JRy|XyhJtiJRJMNGzHq2jF L:cˆzGj`JRq€“SxzHj`JR“Nidj`Q5tivi_`k§W u (x)uf H(x)L(cˆ=zHj`JMq€[ψ“(x) Sk‘zH−j`JRψ“Ni(−x)] dj`Qk λ=1 λ = −1 P

1 2

+

1 2



n

[H, P ] = 0

zHj`JRv–j`OPkUjYaIU Q j`e§zIeKL‡JRSQd ψ (x, t) , i~ PH

= HP

∂ψ ∂t

= Hψ

Uv–dmJm~UcŠzIejpjYcXqKUcXe!w

∂ (P ψ (x, t)) = P Hψ (x, t) ∂t = (P H) ψ (x, t) ~2 ∂ 2 H (−x) = − + V (−x) 2m ∂x2 ~2 ∂ 2 V (x) = V (−x) ⇒ = − + V (x) = H (x) 2m ∂x2 ∂ ⇒ i~ (P ψ (x, t)) = HP ψ (x, t) ∂t i~

zHj`JMU e!JMdPJRL(kqƒF _pj`U zIQ

(1 ± p) ψ

= ψ (x) ± ψ (−x)

P ψ (x, t)

U q2j`L(w

F tiJRJMv–j`OlPJRej€tGJMJRv–j`OzHj`dj`U zIQ DDG IIHG DJJKML

noE

-N),O +.-QŒ

F zIU qcXdzHj`JMv–j`OPk._YwDL t L:wD‚›zGj`JRv–j`O%kzHj`e‘k€LcXJ t = 0 Uj`‚ŒS zIq€Jmj`|Xq.zHj`JMv–j`O2cgJ2L(vzIJMJR“NidPj`Q LÃtie kdPNG|Xq zHj`U S;k UjYaIU Q j`e˜Uj`‚ŒS›OPe H = JbcXQj`y.NiJRNiL(y»F V H p2 2m

00

u +

2mE u = 0 ~2 ~2 k 2 E = >0 2m

F k L(cŽŸJR“U5¢;U S›L:w™L(‚ŒNiL kL‡jYwDJIkJMvU dPe!k W¡S;dPzžf p U jYaIU Qj`e˜U j`‚+S«F n

  ~ ∂ = p ⇒ p eikx = ~k, p e−ikx = −~k i ∂x

F _pjpj`dPq‘e!U NidISdmzrJRwDUS5JRdmc«cXJbc cos (x) = j`qw™kOmwu‚+“q€‚ _pjpj`dmq‚+“q‘ke%UNidIS£bSxj`zHj`eKcXJzHj`JMq€“S›zGj`JR“NidPj`Q.nL:cˆ‚+“q€L kU S;k k€JRvU dPe%‚™_pjpj`dG_`JReƒzHj`Jm~q€q%l~y•L(e%JR“dmaHj`Q5zGj`JRS‚ŒL aIQcXq kzGj`e§tiS u (x) zHj`dj`U zIQ•n kyhwŒj`k E eikx +e−ikx 2

E

2m (−V + E) u1 ~2 00 2m u2 + 2 (V − E) u2 ~ 00 u1 u1

00

u1 +

00

00

u1 u2 − u 2 u1  0 d  0 u1 u2 − u 2 u1 dx 0 0 u1 u2 − u 2 u1   x→∞ u1 , u2 −−−−→ 0 ⇒ 0

u1 u1 ⇒ ln u1 u1

= 0 = 0 00

=

2m u (V − E) = 2 ~2 u2

= 0 = 0 = const = 0 0

u2 u2 = ln u2 + ln c = cu2 =

F tiJRdjYcˆzHj`dj`U zIQue%L#_YwDL;j€zIJMU e!JMdPJRL JMj`L(z}_YwDL‡j SdPzIkU jYaIU Qj`e˜L:cˆzHj`JMq€“SxzHj`JR“Nidj`Q ~ ∂up (x) i ∂x p ∈ R; up (x)

= pup (x) = ce

ipx ~

zGj`JRL(dj`v–j`zIUj`e Z

dxu∗p0 (x) up (x) = |c|

2

Z

i



p−p

0



x

dxe ~   0 2 = 2π~ |c| δ p − p 24

_YwDL‡j u Z

p

=

p

√ 1 ei ~ x 2π~

L(q2UdPdGJROPe

  0 dxu∗p (x) up (x) = δ p − p

:L c δ p − p  LµkwDQkU NidPj`U NrL:c δ ‰ zHj`JRq2“S›zHj`JM“NGdj`Q›L:cŽŸ;“U5zIq€“Dj`S›L‡STUq!j`L:w€f W¡NiU JM~ zHj`U ‚ŒzH|Xkk zHj`Q JRQ “Ke%JRk |φ (p)| U;cXe!w φ (p) tiJRq!~Niq€k ψ (x) = R dpφ (p) yj`zHJRQ›aIQcXq ~Djp~Dq€L lP‚+zI|Xkk |c | F L(e%JR“dmaHj`Q k›Uj`‚Œ‚ ψ (x, t) = P c e u (x) tiJbaIU NG|XJm~ºtGJRwDpUS6Uj`‚ŒSf F JRaIU NG|XJm~5‚+“q~Œjp~q€LTzHj`U zHj`JMq€“S›zHj`JM“NGdj`Q X lPL#tij`Niq€k•UjYaIU Q j`eÚF E 0

n,m

i

e ~ px √ 2π~

2

n

2

n n

xωx0 (x) ⇒ ωx0 (x) ψ (x)

|ψ (x0 )|

2

− ~i En t

n

= x0 ωx0 (x) = δ (x − x0 ) Z = dx0 ψ (x0 ) δ (x − x0 )

U;cXe!w X UjYaIU Qj`e0L:czHj`JRq2“SzGj`JR“NidPj`Q‘zGj`S;“q2e!‚

L:w§L:cÛyj`zHJRQaIQcXqˆj`dPL(‚ŒJMN F D~ jp~q€LTzGj`U‚+zI|Xkk‘zHj`Q JMQ“ î ü êRñ bùðhêRëDý.ÿDê ü ùP÷î;ùùGÿDêMý ü ð _`q!j`|XJ UjYaINgjpj |ψi zHJRU L(Ni|ˆkL‡Q;wDq‘L‡JRSQq€c L(dj`JR“Nidj`Q k hϕ| zHj`U~v–k OPeF V ψ (x) x0



Ml

:

hϕ|ψi = (hϕ| , |ψi)

Q£Rq€kL:cŽzHj`JbaIJMq€U kÝF n _`q€|Xd›F E hϕ|T |ψi = (hϕ| , T |ψi) zIU~vkÝF s T

hϕ|ψi∗ = hψ|ϕi



hϕ|T |ψi = hψ|T |ϕi



JRaIJRq2Uk•UjYaIU Q j`eÚF ^ ∗

hψ|T |ϕi

= hϕ|T |ψi

UjYaIU Qj`e§L(cˆzIJM“JRUaIq‘kv“k•zIzIL›_`zIJMd›F † Tmn

= hun |T |un i DH€FG IIHG DJJKML

25

-N),O +.- Ž$

|aψi = a |ψi , haϕ| = hϕ| a∗



tiv–j |T ψi = T |ψi F ” FZ (T T ) = T T lItiL:cŽ|XJR|X‚ F Vœ\ {|u i}

hT ψ| = hψ| T †



1 2

† † 2 1

n

X n

X

=

|ϕi

=

hϕ|ψi

n

=

X n

0

X n0

= ⇒

X

*

hun0 |ϕi |un0 i ⇒ hϕ| =

∞ −∞

X n

n

0

hψ|un0 i hun0 |

|un i hun | |ψ

+

|XJR|X‚ŒkzHj`q€L(c xˆ UjYaIU Q j`e˜L:cŽtGJM‚ŒJbwDU q2L

|xi hx| dx = 1

hϕ|ψi = =

=

X

hϕ|un i hun |ψi hun |un i

|xi

|ψi

= |ψi

hun |ψi |un i

ϕ|

|un i hun | = 1

Z

_YwDL kq2v–jp~L

X n

= 1

|un i hun |ψi

n

|ψi

|un i hun |

Z Z Z

kU S;k

_YwDL

hϕ|xi hx|ψi dx ϕ∗ (x) ψ (x) dx

∞ −∞

UcXe!w

hx|ψi |xi dx

€êR÷€êRð ü ï ü ùP÷ ü ùì‹í ‹ÿDêb÷ ú6ð F tiJRJbcXq2q•JRaIJRq2Uk•UjYaIU Q j`e§L:c S £RS«F V vo£ReKtiktiJRdjYcŽS £RS;L#tiJRq2JRe%zIq€k•S£Rj F n kyhwŒj`k 

26

A† = A





4S



A |ψi = a |ψi

tGk•S£Rj A = A yhJMdPd›F V †

hAψ|ψi = hψ|A|ψi = hψ|a|ψi

haψ|ψi = a∗ hψ|ψi = hψ|ψi a ⇒ a = a∗

vo£ReKtiktiJRdjYcŽS £RS;L#tiJRq2JRe%zIq€k•S£Rj F n hϕ|A|ψi ⇒ ab hϕ|ψi ⇒ hϕ|ψi

= hη|aψi = hϕ|ψi a = hAϕ|ψi = b hϕ|ψi

= 0 = 0

W¡S£RS;LTS£Rj2JRdmcˆcgJ…f~yeKJMq€“S›UjYaINgjpj`q‘U zHj`J%cXJ a tGJmj`|Xq•JMq€“S›¢;U S;L:c yJRdPd A |ψ1 i = a |ψ1 i A |ψ2 i = a |ψ2 i

_pjpj`d

v…£be§|XJR|X‚uU“JMJRdIOPe

F a S£bSkL:cŽS£Mj€Jm£RSTcXU Q dmk‚+yhU q2kzIv–U ~™j`e§JRU ‚ŒvL‡eƒJMj`‚+JRU›U~v–j`JI_pjpj`JMdPkzIv–U ~ F tGJM‚Œ“q€k•‚ŒyU q€L#|XJM|X‚utiJMjpj`k€q‘S £Mj2F ~DJM~q‘L‡~Œj`viL(wuv“JMJRqJbaIJMq€U k.UjYaIU Qj`e kU Sk ÿDêRê ùPí ê ÿDêRñŒêRñDð ÿDê ü ùP÷ ü ùì W¡L(QwD‚TtiJRQ L(yzIqGf€F tGJm~JM~q™tik [A, B] = AB −BA = 0 Ÿ j`L(JMyhk‹|XyJzIetGJMq€JMNGq€cKtGJMUjYaIUQj`e k€U ~Dvk W¡L(QwD‚‹tiJRQ L(yzIqGf2F tGJMJRQj`L(JMyštGk ⇐⇒ tiJRQ zHjYcXqƒtiJRJRq2“STtGJM‚Œ“q2k.tiJM~Jm~qtGJMU jYaIU Qj`e˜JRdmcXL aIQcgq kyhwŒj`k JMOmeKtGJMQzGjYcgqKtGJMJRq€“STtiJR‚+“qtieKL£b“ŽF V [A, B] _pj`zIdPkU q2j`L:w A (α1 |ψ1 i + α2 |ψ2 i) = a (α1 |ψ1 i + α2 |ψ2 i)



l







A |ψa i = a |ψa i B |ψa i = b |ψa i ⇒ BA |ψa i

⇒ AB |ψa i

= Ba |ψa i = aB |ψa i = ab |ψa i = Ab |ψa i = bA |ψa i = ab |ψa i

∀ψ; (AB − BA) |ψi = 0 ⇒ (AB − BA) = O

27

_YwDL

F tGJMQzGjYcgq‘tiJR‚+“q€k•L;£R“u_pjpj`JMdG_`JRe!c A |ψa i

yJMdmd›F n U yh‚+d

[A, B] = 0

= a |ψa i

OPe

A (B |ψa i) = BA |ψa i = Ba |ψa i = a (B |ψa i)

_pjpj`JRdcXJ%tie

A ψa1

⇒ B |ψa i = b |ψa i

_pjpj`JRdH_`JMeƒtieƒOPe

= a ψa1

F yJbwŒj`di_`Q j`e˜j`zHj`e%‚+j UcXQeŽtiJRdjpj`dPq˜tidPJRe«tie |ψ i W¡JRq2“Sš‚Œ“qifIS£bq A cXJbcyhJMdPd ÿDêRñŒêRñDðƒÿŒê ü ùP÷ ü ùìƒíúïhð+í úÚé ü Œð F zHJRL(NiJROPJRQ k•zwDU S;q2kzIe Jm£RS›U e!zHL ŸJR|j`dXtiJRdjpj`JRdXL:cÜU ~D|»L:wDLxw+£bk| F [B, A] = 0 Ÿ|j`dXU jYaIU Qj`eŠtiJRJMNij |ψ i Ÿ|j`dXU jYaIU Qj`e}cX|ψJX_pijpj`JRdgcXJitGe F tGJMJRQj`L(JRy.tGJMU jYaIU Qj`e 748 ™9BBD¾ C™ÂžBDC ½ 8{½ 5Â6B‡À ›B —8:9 ÿDêMøùð+êMë NiU JM~xL:c P_pj`q2JR|XkÝF V U jYaINgjpj |ψi ∈ F JbaIJMq€U k.ej`k F ‚ŒyU q€‚™JRU e%JRdPJML4UjYaIU Q j`e A F n ‚ŒyU q€L |XJR|X‚™tiJMjpj`kqrW¡tiJRq2“STtGJM‚Œ“qifS £RqÛF E F Å ÔàiÔ[Ë iÒ!ÏÐ ä ËÌ6Î]ÔÔAÒÖ žÑ2Ô ÞÓ!Í Ô[ËÓGÒ€Ë <˖ÕHÖ XÔ]çÎ<Ö èDØœÆ tGJML(q€Uj`dPq |ψi , |ai tiJR‚+“q€k•L:w‹F |ψi ∈ F UjYaINijpjIášzIJRL(NiJROPJMQTzwDU S;qƒ‚+“qF V 

o{

S

a

a

a

=T

‘U

XV

0W

Z[

,]

’

“Š

F



@

=

…

”



1 = ha|ai = hψ|ψi

‰ JbaIJRq2U kUjYaIU Qj`eKJm£RS5_`zIJMdG£M~JM~q%£%JRL‡NGJMOmJMQTL‡~Dj`v™F n kJM“OmaIdPjpj`N F A L:c a S£RS›NGUx_`k A zH~DJM~q2LTzHj`JRUcXQ e!k‘zGj`e!“Dj`zHkF E A

•



A |ai

|ha|ψi|2

= a |ai

_pjpj`JRdG_`JMe‘Ucge!w a ‚Œ“q‘P~Djp~Dq€LTzHj`U ‚ŒzH|Xkk |ψi ‚Œ“q2‚ A tiJM~Œ~Dj`qU;cXe!w0F s tGJm~D~Dj`q n U ~D|Xqƒ_pjpj`JRdcXJ%Ucge!w |ha |ψi| L#|XU j`N}‚+“q€k a ‚+“q€kzIe |ψi ‚™tiJM~D~Dj`qUcXe!w F ^ |ψi → |ai n j=1

j

2

D—G IIHG DJJKML



-N),O +.- Ž˜Ž

|ψi i~

d |ψi dt

H (r, P ) = =

L#_`q2OP‚xzHj`yzIQ zIk˜lHU vdPJm~UcŠzIejpjYcXqF †

= H |ψi

W¡k€JRvU dPe%L JM|XL(NikJmjYaIJR‚ŒkGf_`e!JMdjYaIL(JRq2k H Ucge!w

P2 + V (r) 2m   ~ 2 − ∇ + V (r) 2m

W¡tGJMU jYaIU Qj`eKL(cf€Ÿj`L‡JRy.|XyJ%tiJRJRNizIqÝF „ − [x, P ] = P X − XP = −i~ = [P, x] =

F |ψ i , |ψ i W¡S £RqGfGzHj`JRUcXQ eˆJMdmcÜcXJxF |hψ |ψ i| 1

2

x

s

2

F zHj`e~DjblPJRe}_pj`U NiS ⇐ tGJMQj`L(JRyšJMzIL(‚‹tiJRUjYaIU Qj`e ‚‘NGJMNGL(y§~Djp~q€L.zHj`U ‚ŒzI|Xk ÿŒêî;ñDëêMøúÛêRùëêMøïhðhþ[ùñ x zHj`q2L:cXk‘QD£bS

|ψ1 i hψ1 | + |ψ2 i hψ2 | = 1

|hψx |1|ψs i|

2

~ i

UjYaIQj`e%k‘zIe§¢;JRL(cgdiF UjYaIUQj`erj`dPL(‚ŒJMN

= |hψx |ψ1 i hψ2 |ψs i + hψx |ψ2 i hψ2 |ψs i|

2

F S £Rq€k€qK~ye%LT|j`UNiJ%‚Œ“q2k•F tiJRNiJRNiL(yk•j`U ‚+S›tGk€qcˆtiJRNg~|Xk•zIe§~Œjp~q€dGtGe ÖHË HË AÔ[Õ%рÕ%Ô èDØbß e!JMk .u ™”

Pa (ψ)

= |ha|ψi|

?

2

= |α1 ha|ψ1 i + α2 ha|ψ2 i|2

= α21 ha|ψ1 i2 + α22 ha|ψ2 i2 + 2Reα1 α1 ha|ψ1 i ha|ψ2 i∗

‚ŒJRwDU#cXJ%‰ zIJMUe%JMdmJML4zIq€wDzI|Xqe%LµzHj`U ‚+zI|Xkk§W¡k€~JM~Dq•e%L(L tiJR‚Œ“q•U Q |XqL:cÃfzGjYwD‚Œe%zIk•L:cŠ‚Œ“q2‚xU q!j`L:w zHjYwD‚Œe%zIk 2Reα1 α1 ha|ψ1 i ha|ψ2 i∗

…Ê à Ë…ÔœÓ ÞË iÓ H èDØRè OPeKtiJRdPzcXqzH~U Q k‘kS“‚ŒLT_`zIJRdGF _`q€OP‚ucgUj`Q q€‚‹Jmj`L(zrJRzIL‡‚ H JMkJ g”a

JRL‡L:wT‚Œ“q™cj`U QLµ_`zIJRd2Ome

š

? 

H |En i = En |En i

|ψ (t)i ∈ F

‚ŒyU q€L|XJM|X‚Dc˜Uye%qšU q2j`L(w™F _`q2Om‚TtiJRJmj`L(zJRzIL(‚5tGJM‚Œ“q |ψ (t)i =

X 29

cn (t) |En i

|En i

U q!j`L:w JP£bS

Uv–dmJm~UcˆzIejpjYcXq€‚.‚ŒJR“d i~

X

i~

d hEm |ψ (t)i dt dcm (t) i~ dt ⇒ cn

dcn (t) |En i dt X cn (t) H |En i

d |ψ (t)i = dt H |ψi =

X

dcn (t) |En i dt

=

i~

Wâ_pj`q€JR|ŽL(QwšlIS£bS

= i~

i~

X

_YwDL

cn (t) H |En i

Em = H

JRwxU JbwDOPd[f%Wâ_`q€OP‚uJMj`L(zre%LŒf hE | L(Sx¢;JRL:cXd n

dcm (t) X = cn (t) hEm | H |En i = Em cm (t) dt

= Em cm (t) i

= ce− ~ Em t

Ô]Ï ÔÔ<Öiׅ˜Ï0ʅÔ]ÑÒ èDØ zH~Jm~q€‚‹zGj`e%~Œj_`JRerF tGJMQzGjYcgq§S £Rq‘L:c |XJR|X‚‹tiJRJMN ⇐ tGJMQ j`L‡JRy•tGJMU jYaIU Qj`eKU q!j`L:w [A, B] = 0 yJMdmd • a, b Jm£RSTzHj`e~DjpjblPJMe˜U Jm~vd [A, B] 6= 0 JMkJ • 

q

∆A =

∆A∆B



2

hψ| (A − hψ| A |ψi) |ψi

=

1 |hψ| [A, B] |ψi| 2

e

Wâ_`Niz§zIJRaI|Ãf JROPe tiJbaIJRq2U k

U;cXe!w ï ù–ï UJm~vd

A, B

Mlo{

λ ∈ R; |ψi = (A + iλB) |ψi

JROPe

0 ≤ hψ|ψi

= hψ| (A − iλB) (A + iλB) |ψi



A

2



+ iλ h[A, B]i + λ

2



B

2



hψ| A2 |ψi

= hψ| A2 + iλ [A, B] + λ2 B 2 |ψi ≥ 0

JbaIJRq2U kUjYaIU Qj`eKUj`‚ŒS

= hψ| A · A |ψi ≥ 0 30

"!

JROPe



A2

B

2





h[A, B]i

≥ 0

≥ 0

= hψ| [A, B] |ψi = hψ| BA − AB |ψi

= hψ| BA |ψi − hψ| AB |ψi = hψ| BA |ψi − hψ| BA |ψi∗ = 2Im (hψ| BA |ψi)

zIJMSj`‚+JRU›tgj`dPJRL‡j`QxL:cŽkaIdmdPJMq€U NG|XJm~k.zHeKNgjp~‚Œd

2

(iλ h[A, B]i) − 4 hψ| A |ψi λ hψ| B |ψi

≤ 0

‚+JR“dI_YwDL‡j!Ÿ j`L(JRy|XyJ!tiJRq2JRJMNGq•e%L:cˆtiJbaIJMq€U k

A, B

L:wDL›_pjYwDd

0

A → A = A − hψ| A |ψi

B

0

→ B = B − hψ| B |ψi λ=1

‚+JR“dIJMOmeKkaIdPdmJMq€U Ni|~‚x‚+JR“d

(i h[A, B]i)2 − 4 hψ| A |ψi hψ| B |ψi ≤ 0 D 0E D 0E 1 2 ≥ B ⇒ A (i h[A, B]i) 4 1 ∆A∆B ≥ |h[A, B]i| 2 0

0



U U j`v [x, P ] = tiJbaIdjpj`NikzIUj`z}L:c kq!j`JR|XNie!k•Uj`‚ŒS kdPNi|Xq ~ i

∆x∆P



~ 2

%Ë à»ËÓHÒ2Ë <˖Õ}Ó Ô[åxÓ!Í iÔàiàŽÓ!Í Êoà Ô]ç XÕ ºÖ Dè ØbÉ _`q2OP‚uS“Dj`q€q2kzIU Omv–dmL#JmjYaIJR‚ e%“€q d 



”



›evu

v”a‡

b

š

R %

d hψ (t) |A|ψ (t)i = dt



     d d d ψ (t) |A|ψ (t) + ψ (t) | A|ψ (t) + ψ (t) |A| ψ (t) dt dt dt

U vdPJM~DU;cŽzIejpjYcXqƒQD£bS

d 1 |ψi = H |ψi dt i~  1 d ψ = − hψ| H dt i~ (9) ⇒

(9)

d hψ (t) |A|ψ (t)i = dt

d dt



ψ (t) |

kejpjYcXq€‚šk€UOPy‚ŒJR“d

 1 d A|ψ (t) + hψ (t) | [A, H] |ψ (t)i dt i~ DG I DG DJJKoL -N),O +.- Ž;

31

Hz j`dPNi|Xq Ÿj`L(JMy.|XyJ%tGJMJRNiq A Uj`‚ŒSTUcXe!w F V [A, H] = 0 d hψ|A|ψi dt



A

= 0

L:c JRq€“ST‚+“qU j`‚+STaIU Q ‚uS j`‚ŒNŠlG‚+“q•L(wD‚ A L(cˆzIJMQ“zHk¢;U S5_YwDL A |ai

= a |ai

ha|A|ai

= a

U j`‚+‚™zHj`JRv–j`OPk P kq2v–jp~ S j`‚ŒNá%f`F a, E Jm£RS.tiJR‚Œ“q2krzIe0_`JRJRQ e%L‹UcXQe F H lPL‡j AlPLštiJRQ zHjYcXqŠS£Rq |a, Ei cXJOPe [A, H] = 0 F n W¡k€Sj`dPz Ë !ÓHÒrʖÕ%Ô]Ï Ôàiæ ä Ëoå ÖGÎ à P ×œÔ x Ó!Í XË–Õ ÞËoæ%Ñ èDØ JRwuk€e!U d [H, P ] = 0 ∞

™

œ

d hxi dt

d hpi = dt





x, P 2

P, xn+1





=

=

>

hP i m

1 h[P, H]i i~

= xp2 − p2 x = [x, p] p + p [x, p] = 2i~p ~ ~ = [p, xxn ] = [p, x] xn + x [p, xn ] = nxn + xn i i ~ n = (n + 1) x i

d hxi dt

H

=

[x, H] = = = =

1 h[x, H]i i~

=

P2 + V (x) 2m 2  P x, + V (x) 2m   P2 + [x, v (x)] x, 2m 1 2i~p + 0 2m ~ip m 32

uˆ

‚e

Š‰

U vdPJm~UcˆzIejpjYcXq€q L(‚Œe

tiv–j (10)

UcXe!w

(10) ⇒

d hxi dt

  1 ~ip i~ m hpi m

= =

tij`NiJRq2‚xS“Dj`q€q2LTS;dPzIkS“Dj`q€q€c _`JM‚xUcXN}cXJj`dmL‡‚ŒJRN}U q!j`L:w d hpi = dt = = = =

1 h[P, H]i i~   P2 1 P, + V (x) i~ 2m    P2 1 P, + [P, V (x)] i~ 2m 1 h0 + [P, V (x)]i i~  d (V (x)) − dx

L(e%JR“dmaHj`Q kzIU OPvdIS“Dj`q€q€LTSdPzIkS;“Dj`q2qƒ_`JR‚™UcXN«j`dmL‡‚ŒJRN}U q!j`L:w _pjYaHj`JRdHL:cˆJMdMcXk•Nij`ykzIe§aIS;q€wuj`dPL(‚+JRN}tivGJMOme

⇒m

d2 hxi dt2



d (V (x)) dx dV (hxi) d hxi

= 6=



;å Ñ GÎ {˜Ï0Ó%Í ÖHå ÖXÖ èDØ JRzHL(‚ H yJRdPd_`q€OP‚ tGJMJMj`L(zJRzIL‡‚ H, P, X tiJRUjYaIU Q j`eƒF _`q2OP‚µtiJRJmj`L(z |ψ (t)i Uv–dmJm~UcKzIv“k™j`d~q€L kq!~NGk lP‚™JMj`L‡z t  ”

u

i

|ψ (t)i = e− ~ H(t−t0 ) |ψ (t0 )i i

Š

JROPe

U (t − t0 ) = e− ~ H(t−t0 )

F JbaIJMq€U k H Uj`‚ŒS›JMUaIJRdj`J2UjYaIU Qj`e L:cˆS£Rq |ψ (t )i yJRdPd H 0

H |En i

= En |En i i

|ψ (t0 )i = e− ~ H(t−t0 ) |En i

vU ‚ŒdPOPJRe‘L(cˆkv“k€k |ψS i = |ψ (t)i

= U (t − t0 ) |ψ (t0 )i

33

F k€v“k‚‹tiJRJMj`L‡z§JMzIL(‚‹zIJMQ“zrJRwDUS;cˆkcgJMU~5cXJgW¡vU ‚+dmOPJMe‘zIv“k‚!f—tGJMU jYaIU Qj`e hψS |AS |ψS i

= hψH |AH |ψH i

L(‚Œe

† hψS |AS |ψS i = ψH U † AS U ψH

⇒ AH

= U † AS U i i = e ~ H(t−t0 ) AS e− ~ H(t−t0 )

dXH dt dPH dT dAH dt d ⇒ AH dt dAH ⇒ dt

= = =

JbwuzHj`e%U L›_`zIJRdIOPe

PH m dV (xH ) = − dXH =

i i i i H(t−t0 ) i i e~ HAS e− ~ H(t−t0 ) − e ~ H(t−t0 ) AS He− ~ H(t−t0 ) ~ ~ i [H, AH ] ~ 1 [AH , H] i~

Uv–dmJm~UcŠzIv“kUj`‚ŒS5zHj`S~Œjpj`k2lPJRe}_pj`U NiJRSTJbw™tivH‚ŒL tiJbcXd ž B



d AS dt



=

1 h[AS , H]i i~

ʅà Ô]Ï ÔÔ<Öiׅ˜Ï0ʅÔ]ÑÒ èDØ F _`q2OP‚5cXUj`Q q€‚šJmj`L(zrJRzIL(‚ (H, P, X) ~JM~q A UjYaIU Qj`e§UcXe!w U vdPJM~UcŽzHj`ejpjYcgq2qKS‚+j`d g”a‡

d hψ|A|ψi dt

1 hψ| [A, H] |ψi i~

=



e



Ÿ j`L(JMy.|XyJtGJMJRNizIq•tGe

d hψ|A|ψi = 0 dt

F U qcXd aIUQ ‚ JML(L:wDkzHj`e~Djpj`k2lJRe}_pj`U NGJMSTOme§Ÿj`L‡|ψiJRy.|X=y|aiJ_`JReKtGe

[A, B] 6= 0 ⇒ ∆A∆B



1 |hψ| [A, B] |ψi| 2 H

∆A∆E

≥ =

tiS›JMQ j`L‡JRy.j`dPJRe!cŽU jYaIU Qj`e A yhNiJRd

1 |hψ| [A, H] |ψi| 2 ~ d hψ| [A, H] |ψi 2 dt

Es

  G I DG DJJKoL -N),O +.- Ž6P

U JM~vd ∆A d hψ| [A, H] |ψi dt ~ 2

∆t = ⇒ ∆t∆E



F zwDU S;q2‚‹JMj`dPJbcXkzIe§_`JMJRQ e%q€k

S;aIN}JRdPQ›L‡S›Ÿ;L;j`yS“Dj`q€q2kƒj`‚Dcˆ_`q2Omk ∆t U ‚+|Xk >
∆A

QT

i~

d |ψi dt

ψ (t) =

aV

¡

= H |ψi

F [X, P ] = i~, X, P zHj`S“q€e%‚._pj`zIdGUjYaIUQj`e H L:c S £RS5~Djp~q2L›~Dj`e%q‘‚+jYcXy H

X n

i

cn e− ~ En t |ψi

bù ü é íuéùP÷€êMú éù…î;êRùñDð.éùP÷€êMú zHJR“JRUaIqkaIJRcÁF V zIJRUjYaIU Qj`eKkaIJRcÁF n zIJML(e%JR“dPU QJm~5k€e%jYcXqƒL(cˆkaIJRcÁF E éùý ü ù…î;ð.éùP÷€êMú _`q€OP‚™zHj`JMj`L(z}JMzIL(‚+k•zGj`S;U Q kk‘zIUj`z F V zGj`JR“e%JRUjpj`k‘zaIJRcÁF n XË G˅ÑÌ6à g̞ËoÍ +ØœÆ JRQj`|ˆtiJR‚+“qUQ |Xq•cXJUcge!w™k‚+jYarzIJM“JRUaIqkaIJbc kU Sk ÿDêmý hðšûÿ .é ü Œð :óRò…óRò zHj`e%q€v–jp~ cgQj`y•zHj`vU~uJRzc0li_pj`U;aINiL(e§L:cŽ_`JMQ|ÁF V ↑↓ tikJRdP‚™SdH~ye§_pj`UaINiL(ej2tiJRdPq2JRq•JRdmcŠL:cŽkL‡j`NiL‡j`qƒU q2j`L:w.lG_`q€JMq_pj`J H F n kJMdPj`q2e%k•zHL‡j`NGL;j`qF E H N tGJM‚Œ“qJRdmcŠtiJRdj`zId kL(e!c 



™u

*C



<S

+ 2

3

H0 |ψ1 i = E1 |ψ1 i H0 |ψ2 i = E2 |ψ2 i 35

o

o{

S

!

#

S jp~JRcŽyJRdPd W e%UNiJbc H lPL#zIQ |j`zrcXJ!zGj`yhdPOPk‘L(L(v–‚ hψ1 |W |ψ1 i = w11 hψ2 |W |ψ2 i = w22

hψ2 |W |ψ1 i = w21 hψ1 |W |ψ2 i = w12 

=

H0



=

W

E1 0

w11 w21

OPe

0 E2



w12 w22



Ome§JbcXq€q ww =‰ ww 12

∗ 21

11

tiv–j€tGJRcgq2q

E1 , E2

tGviyJRdPd

w11 , w22 = 0, w22 = 0

= H0 + W   E1 w12 = w12 E2

H



|XJR|X‚+‚uU q!j`L:w

F tiJbcXq€q 12

Uq!j`L:w

|ψ1 i , |ψ2 i

S £RS5_`q2|XdHF H L(cˆtiJRJRq2“S;ktiJR‚+“q2jzIwDUSq€kkJMvU dPeƒe%“q€d H |ψ± i = E± |ψ± i 

=

H

0 E−

E+ 0

kv“k‚‹UcXe!w



k“JMU;aIq2LzIJRUaIJMdPj`Jk€“JRUaIq‹Jm£RSµ_pj`|gwDL(L4zIdPzIJRd2zIJbaIJMq€U k‹k“JRUaIq‹L:wTL(‚+eU ‚+S;qšzH“JRUaIq‹e%“q€d tiJRdj`|gwDL(e U † HU

= D

Wâ~ye§U JR“k•Ÿ j`NGJRcˆL(L‡jYw™e%LŒfzHJRL(L:wDk‘k€U j`“kU q2j`L(w™v…£be U j`dPL:cŽkU NGq2‚ U

=

U HU





=

cos θ − sin θ 

sin θ cos θ



0 E−



E+ 0

_pj`|gwDL(k‘zIcgJMU~ zHj`S“q€e%‚ ej`“q€L#kUaIq2k

θ E1 , E2 , w12       cos θ sin θ E1 w12 cos θ − sin θ E+ 0 = − sin θ cos θ w12 E2 sin θ cos θ 0 E−    cos θ sin θ −E1 sin θ + w12 cos θ ⇒ = 0 − sin θ cos θ −w12 sin θ + E2 cos θ 1 sin 2θ (E2 − E1 ) + w12 cos 2θ = 0 2 2w12 tan 2θ = E1 − E 2 36

w+£Rk| |ψ± i =

det



E1 − E w12

tan 2θ

=

w12 E2 − E



2 E 2 − E (E1 + E2 ) + E1 E2 − w12





cos θ − sin θ 2w12 E1 − E 2

sin θ cos θ



S£RS›e%“q€d

2 = (E1 − E) (E2 − E) − w12 =0

= 0 q 1 1 2 (E1 − E2 ) + 4w12 = (E1 + E2 ) ± 2 2

tiJRJMdPj`“JMNrtGJM‚Œ“q˜nXcXJ |2w12

tan 2θ |θ|  1, cos 2θ

≈ sin 2θ ≈ ≈ 1

|ψ+ i ≈ |ψ− i +

OPe%j E

1

k U Sk U j`‚+S«F V |  |E − E |

θ

|ψ± i =

2

2w12 E1 − E 2

w12 |ψ2 i E1 − E 2

kJMvU dme%‚™JRzHL(yzIkƒ_pjpj`JRdIL(cˆkU Niq€‚™kq€vojp~L |2w

= E2

1

12 |

 |E1 − E2 |

π 4

'

Fn

OPe%j

1 √ (|ψ1 i ± |ψ2 i) 2

_`q€OP‚š_pj`UaINiL(e%k‘zIe§ej`“q2L›zHj`U ‚ŒzI|Xk€kƒkq§‰ |ψ i ej`k‘‚Œ“q2k 1

t=0

_`q2OP‚Dc yJRdPd bð oý•ý hðéù €é é2ï ‚+“q€‚ t |ψ i _pj`U zIQ k ¢ i

 *

*C

l ‚

£

2

|ψ1 i = cos θ |ψ+ i − sin θ |ψ− i

|ψ2 i = cos θ |ψ+ i + sin θ |ψ− i

i

JML(L:wDk‚Œ“q2k

i

|ψ (t)i = a+ e− ~ E+ t |ψ+ i + a− e− ~ En t |ψ− i

|ψ1 (t = 0)i

⇒ |ψ1 (t)i

= cos θ |ψ+ i − sin θ |ψ− i i

i

= cos θe− ~ E+ t |ψ+ i − sin θe− ~ En t |ψ− i

37

k€L(yzIk‘JRe%dPz§UcXe!w ¤ G I DG DJJKhL -N),O +.- Ž$¥

JROPe P1→2 (t) hψ2 |ψ+ i hψ2 |ψ− i P1→2 (t)

−α e ! − e−α2 2

= |hψ2 |ψ (t)i|

2

= sin θ = cos θ i 2 1 i = sin2 2θ e− ~ E+ t − e− ~ E− t 4

L(JMvU z

2 α +α 2 (α! −α2 ) (α1 −α2 ) −i 1 2 2 −i 2 − ei 2 e e

=

2 α1 − α2 2 α1 − α 2 = 1 · 2i sin = 4 sin 2 2

ã t _`q€OP‚

2

P1→2 (t) = sin 2θ sin

2



E+ − E − t 2~

1→2

‚Œ“q€qU ‚ŒSq€L

(Rabi)

zHyh|j`d



˅ÎÔàgÑ%ÖÞрÔ[ÌÓ2Ë Ô]Ï +Øbß êMñDð+ð.ñ .êMøùð ü ï ü ùP÷íêMëùì :ó¡ûAóRò F zIJR|XL(NikzHj`U JM~zHk ω UcXe2w V = mω x ™

!


#

1 2

=

H

2 2

P2 1 + mω 2 x2 2m 2

L;£R“ En

  1 = ~ω n + 2

_`q€OP‚™kJMj`L(zre%L(kU vdPJM~UcŽzIejpjYcgqKzIeKtgjYcXUdg_`zIJMdœf kyhwŒj`k −

~2 d2 uE (x) 1 + mω 2 x2 uE (x) 2m dx2 2

= EuE (x)

W¡zIJML(e%JR“dPU QJm~ukUj`“‚‹kzHj`e˜U j`zHQL;j zIJMU jYaIU Qj`e˜kaIJbcŠJP£bSTUjYaIQ d JRwxtiJRS ~Dj`Jj`dPe [p, x] = −i~

H |Ei = E |Ei

H

=

 ~ω X2 + P 2 2 38

tijYcXU d

F tGJm~q€qU |Xy X

=

P

=

mω x ~ 1 √ p mω~

£bcX~Dy£U jYaIU Qj`e˜UJm~vdXW¡tiJbaIJMq€U k

_YwDL

X, P

U;cXe!w€f A =



[H, A]

Ÿj`L‡JRyk|XyhJUcXe!w Ÿj`L(JMyk‘|XyhJ%zIe§Nijp~D‚Œd

 ~ω ,A ~ωA† A + 2  †  = ~ω A A, A   = ~ω A† , A A = −~ωA

[H, A] =

H, A†

U Jm~vd

= ~ωA† A +

  A, A† = 1



(X + iP )

_`e%JMdPjYaIL‡JRq€k€k•_YwDL

~ω i [P, X] 2 ~ω ([P, X] = −i) ⇒ = ~ωA† A + 2 H

√1 2

1 √ (X − iP ) 2

=

UcXe!w

r

[P, X] = −i

A†

X, P



= . . . = ~ωA†

lP‚ L:cŽS £RS5~JMU j`q kdPS;a lP‚ HH L(cˆS£bS›k€L(S;q AA k€y+wŒj`k JbwxyJRwŒj`dPj H |Ei = E |Ei yJRdPd›F V ~ω ~ω

H (A |Ei) = (E − ~ω) (A |Ei)

HA |Ei



L‡‚Œe

([H, A] = −~ωA ⇒ HA − AH = −~ωA) ⇒ = AH |Ei − ~ωA |Ei = AE |Ei − ~ωA |Ei = (E − ~ω) (A |Ei)

E{Z

JbwuyJbwŒj`d5F n H A† |Ei



H, A

 †

= (E − ~ω) A† |Ei



= ~ωA† ⇒ HA† − A† H = ~ωA

 †



L‡‚Œe

HA† |Ei ⇒ = A† H |Ei + ~ωA† |Ei = A† E |Ei + ~ωA† |Ei  = (E + ~ω) A† |Ei

tikqNgjp~‚Œd Šc L(L‡v‚ E ≥ 0 F V £

H

=

1 P2 + mωx2 2m 2

E

F tGJM‚+j`JMyšS £RS5_YwDL‡j2tiJbaIJRq2U ktiJRUjYaIU Qj`eKJRS j`‚ŒJMU›L:cŽtijYwD|ŽU q2j`L:w Uj`SJbcX‚ E ~DJRUj`q A F n ~ω W |Ei = 0 L‡S;qƒ~ye§Uq!j`L:wƒf`F UzGj`JR‚š¢j`q€dH‚+“q A |E i = 0 F E j`kqF s E 0

0

1 H |E0 i = ~ωA† A |E0 i + ~ω |E0 i 2 1 = ~ω |E0 i 2

n ∈ N ∪ {0} ; En

|En i =



=

1 n+ 2



OPe

E0 = 21 ~ω

U q2j`L:w



L;£R“

n 1 √ A† |E0 i n!

yJbwŒj`d kyhwŒj`k L‡q€U dPL#¢;JRU “Dj |E i|E= bi =A |EA |Ei tGJMSi~Dj`Jj`dPe n

n

n

hEn |En i = b2n En−1 |AA† |En−1   

A, A† = 1 ⇒ = b2n En−1 |A† A + 1|En−1 H



1 = ~ω A A + 2

⇒ bn



= b2n n = 1 1 = √ n

40



√1 n †



n−1

n−1

L(‚Œe L‡j`q2U dmk€qƒ_YwDL

Hz j`U S;k tieKUj`zIQ LTkJMk•_`zIJMd›F V −

r

~2 d 2 1 uE (x) + mω 2 x2 uE (x) 2 2m dx 2



= EuE (x)

F zIJbaHjYaIQ q2JR|XeKzGj`vkdPzIk€j JP£bSTUj`zIQ L›_`zIJMdH_YwŒj`qw F n

A |E0 i = 0

i mω ~ d uE0 (x) = 0 x+ √ 2~ 2mω~ i dx ! r r mω ~ d uE0 (x) x+ 2~ 2mω dx

uE0 (x) = ce− 2~

x2

1 uEn (x) = c √ n!

r



1 = c√ n!

n mω ~ d i mω 2 x− √ e− 2~ x 2~ i dx 2mω~ !n r r mω 2 mω ~ d e− 2~ x x− 2~ 2mω dx

XËÌ6Î]ÔÔAÒ«ÖÒ2Ë <Ë–Õ 0Ë g˅ÔÔ iÎ »Ó!Í ä Ë ià +ØRè F U qcXdGJRzIJmjpj`OHSdmzrOPe V (~r) = V (r) tik‚ŒcŠzHj`JRS‚Œ‚‹~Dj`e%qƒ‚hjYcXy.JRzHJMjpj`O SPd z k U Sk 

”



?

?”ne =

.vu

!

:m

~ = ~r × p L ~

Ÿ j`L(JMy.JR|XyJMktiJRdj`zId

yj`zHJRQ

[x, px ] = i~ [y, py ] = i~ [z, pz ] = i~

W⢇‚hj`|Xq‘U jYaIU Qj`eKej`k L~ _YwDLŒf Ÿj`L(JMy.|XyJ%ke%U d5F V

[Lx , Ly ] = i~Lz [Ly , Lz ] = i~Lx [Lz , Lx ] = i~Ly

kyhwŒj`k [Lx , Ly ]

= [ypz − zpy , zpx − xpz ] = [ypz , zpx ] − [zpy , zpx ] − [ypz , xpz ] + [zpy , xpz ]

= y [pz , z] px − 0 − 0 + [z, pz ] py x = i~ (xpy − ypx ) = i~Lz IH¦G I DG DJJKML

41

-N),O +.- Ž6p



~2 L  L2 , Lx

p

~ 2 = L ~ L

L:cˆL‡~Œj`vie%“q2d5F n

= L2x + L2y + L2z   = L2x + L2y + L2z , Lx     = L2y , Lx + L2z , Lx = Ly [Ly , Lx ] + [Ly , Lx ] Ly + Lz [Lz , Lx ] + [Lz , Lx ] Lz = −i~Lz Ly − −i~Lz Ly + i~Lz Ly + i~Ly Lz = 0

_`q€|Xd L~ , L L:cŽtGJMJRq2“STtGJM‚Œ“q•tGkJRzHJMjpj`OISdPz˜L(cŽtiJR‚+“q•_YwDLrF E 2

~2

L |λ, mi

Lz |λ, mi

z

= λ~2 |λ, mi

= m~ |λ, mi

m, λ

S£bS›ej`“q2LTk“U d kdPS‡a

o n n ` ∈ l|l = , n ∈ N ∪ {0} ; λ = ` (` + 1) 2 n o n m ∈ l|l = , n ∈ N, −` ≤ l ≤ ` 2

_`q2|Xd kyhwŒj`k

= Lx + iLy = Lx − iLy

L+ L−

kq€e%zIk‚š~DJRUj`q2j2kL(SqƒUjYaIU Q j`e

Lz |λ, mi Lz (L+ |λ, mi) ~ 2 (L+ |λ, mi) L

Lz (L− |λ, mi) ~ 2 (L− |λ, mi) L

= m~ |λ, mi = (m + 1) ~ |λ, mi

= λ~2 (L+ |λ, mi) = (m − 1) ~ |λ, mi

= λ~2 (L− |λ, mi)

[Lz , L+ ] = ~L+ [Lz , L− ] = −~L−

= i~Ly + i (−i~Lx ) ~ 2 , L+ L

i

= ~ (Lx + iLy ) = ~L+ h i ~ 2 , Lx + iLy = 0 = L

[Lz , L− ] = [Lz , Lx − iLy ]

= i~Ly + i (i~Lx )

h

~2

L , L−

i

ke%U d íýhì

[Lz , L+ ] = [Lz , Lx + iLy ]

h

L£b“

= −~ (Lx − iLy ) = −~L− h i ~ 2 , Lx − iLy = 0 = L 42

Jbwu‚ŒL tGJRcXdH_YwŒj`qw L+ L−

= (Lx + iLy ) (Lx − iLy ) = L2x + L2y − i [Lx , Ly ] = L2x + L2y + ~Lz

⇒ L + L−

L− L+

~ 2 − L2z + ~Lz = L ~ 2 − L2z − ~Lz = L

tiJbaIJRq2U k.tiJRUjYaIU Q j`e§L:cˆJMdmcˆU~|Xq‘zIJMSj`‚+JRU›zIJMdP‚Œz˜L:cˆS£bS;c Uye%q ~2 L

éùø D÷ S

λ≥0 •

= L2x + L2y + L2z λ

JP£bS5tij`|Xy

m •

L+ L− = L†− L− ⇒ hλm|L+ L− |λmi ≥ 0 D E ~ 2 − L2z + ~Lz |λm hλm|L+ L− |λmi = λm|L   ⇒ ~2 λ − m 2 + m ≥ 0 ⇒ λ − m (m − 1) ≥ 0 λ − m (m + 1) ≥ 0

`≥0

NGUu_`yh‚+dtHwD|Xk‘F λ = ` (` + 1) U JM~v–d

λ = ` (` + 1) ≥ 0

` (` + 1) ≥ m (m − 1) ` (` + 1) ≥ m (m + 1) ⇒m ≤ ` m ≥ −`

¢j`q€dPk

m2

‰ UzGj`JR‚‹k€j`‚+vk

m1

U j`⇒‚+Sš−`F tij`q2≤JR|XmNi≤q‘cX` JU q2j`L:w•V]lP‚ m k€L(S;q

L(‚Œe F U zHj`JM‚

L+

L+ |m1 i = 0 L− |m2 i = 0

tiv–j Y

ô :óRò–û<óâû µý.ïì ü ï tGvgj`dPL zGj`Sjp~JGF H, L~ , L lL tiJRq2JRe%zIq€c |n, l, mi NGJmjp~q€‚‹j`dPU zIQ bðhêRðÿDùP÷2ì (θ, ϕ) ?§

l,m

2

Z

oC



z

∗ dΩYl,m Yl 0 m0

En

?§ §¨#

= δll0 δmm0

= − (13.6ev) 43

1 n2

zIJML(e%JM~U kkejpjYcXq€kq

S jp~JUcge!w‹F Wâ_`q€JMq‘tijYaIe%L#NGUf llP‚™_pjpj`JRdj mlP‚‹_pjpj`JRdHcXJ!UcXe!w

u = rR;





Z

∞ 0

Rn,l (r)

= ...

u2n,l dv =

Z

∞ 0

UcXe!w

2 2 Rnl r dr

= 1

vo£Re

 ~2 d2 u ` (` + 1) + u + v (r) = Hr 2µ dr2 2µr2 Hr u = Eu

Z

Z

0 ∞

0



un,l un0 ,l dr

= δnn0

Rnl Rn0 l r2 dr

= δnn0

F vo£ReKzHj`JM“NGdj`QxtGJML(‚ŒNiq•j`dPe

_YwDL‡j2JbaIJMq€U k

l=l

|Yl,m (θ, ϕ)| = |Yl,m (θ)|

|Y0,0 | = const

0

Hr

Rn,l

tie%k

tiv–j

Uj`‚ŒSTNiU5U q!j`L:w

zHj`U ‚ŒzH|Xk

Uj`‚ŒSTL:cXq€L zHJRUjp~ w‹kJRUaIq2JR|ŠU q!j`L:w Uj`‚ŒS

|Y10 | = c |cos θ|

> T¿  8:B(½4C 8;C›½ CxB;=›ÂÀ C™Â6BC Sjp~JMk‘_pj`UzHQk‘JMOPeKF H L:time cˆzHj`−JMvU independent dPe!k2j€tiJR‚+“q€k•perturbation zIe§j`dPU zIQcŽythoery JMdmd =W

M©ªU

«©žU

¬UU

­

0

H0 |ϕn i = En0 |ϕn i

H

= H0 + W

hϕn |H0 |ϕn i

hϕn |W |ϕn i

s]s

=

En0

 En0

F kSUQ k‘zIQ |j`z W lPL#e%U NGd U q2j`L:w‹kcXL(y•kSU Qk€kcŽyJMdmd

tiJM~q2qU |Xy‹S j`‚ŒNrej`k W lj H _`JM‚›cXU Q kkU q!j`L:w

H0

0

L‡~Dj`viU~|X‚

H1

cj`U ~DdIUcge!w

zIe§U j`zHQLTtiJR“Dj`Uxj`dme§U q2j`L:w

= H0 + λH1

H

H |ψn i (H0 + λH1 ) |ψn i

_`q€|Xd _YwDLTF λ  1

W = λH1

= En |ψn i = En |ψn i

ŒÉ ØœÆ F λlP‚‹UjYaw |ψ i l j E zIeKyzIQ d

®"¯"¯"°:±ž²‘³š³“´}¯µX¶·¬¸ˆ¸´¶¯:´ n

∞ X

= En0 + λEn1 + λ2 En2 + . . . =

En (λ)

L‡j`q2UdGtGUj`vw

Enk λk

_`q€|XdItie§‰ |ψ i zIeKyzIQ d

k=0



|ψn (λ)i = N (λ) |ϕn i +

(H0 + λH1 ) |ϕn i + λ

(1)

X

(1)

k6=n



k6=n

X

k6=n

(2) cnk

λ0 ; H0 |ϕn i

(1)

cnk |ϕk i + H1 |ϕn i

|ϕk i + H1

X

(1) cnk

k6=n

n

cnk (λ) |ϕk i

tiJRq!~NGq2kUjYa}_YwDL

(2)

|ϕk i

k6=n

X

k6=n

‚ŒJM“dH_YwDL 

(2)

X

cnk |ϕk i + λ2

En0 + λEn1 + λ2 En2 + . . . |ϕn i + λ

λ1 ; H0 λ2 : H0

X 

=

k6=n

N (λ) 

= λcck + λ2 cnk + . . .

cnk (λ)



X

cnk |ϕk i + . . .

(1)

cnk |ϕk i + λ2

X

hϕn | · En0

X

k6=n

(1)



(2)

cnk |ϕk i + . . .

U~|ˆL(wD‚utiJRJMNGzHz§kejpjYcXkc0tiJR“Dj`Uxj`dPe k6=n

= En0 |ϕn i X (1) = En0 cn,k |ϕk i + En1 |ϕn i k6=n

= En0

X

k6=n

(2)

cn,k |ϕk i + En1

X

k6=n

(1)

cn,k |ϕk i + En2 |ϕn i

Rùú6ì üxü ñŒëDýéù ü ïïé ü ù–é :óRò…óRò F kejpjYcXq€‚tGJm~D~“x¢j`Q kd 



n

0



cn,k |ϕk i + En |ϕn i ⇒ ∆En1 = λEn1

45

= En1 = hϕn |W |ϕn i = hϕn |λH1 |ϕn i

S



A

F S;U Qj`qƒJRzHL(‚‹‚Œ“q2‚xkSU Q kk‘L:cˆzHJRQ “zIkƒ¢;USL = _pjYcXe%U5U~|Xq E kJMvU dme%L#_pj`NGJMzIk‘_YwDL _pjYcge%UuU~|Xq‘kJRv–UdPe%L#_pj`NGJMzIk n

= En0 + hϕn |W |ϕn i

En

|ϕk i 

hϕk | · En0

X

(1) cn,k

k6=n



0

|ϕk i + En |ϕn i

L(S›kL:aIk€k•zHeKNgjp~‚Œd

(1)

= Ek0 cn,k + hϕk |H1 |ϕn i (1)

= En0 cn,k

hϕk |λH1 |ϕn i En0 − Ek0 X hϕk |W |ϕn i ⇒ |ψn i = |ϕn i + |ϕk i En0 − Ek0 (1)

⇒ λcn,k

=

k6=n

|hϕk |W |ϕn i| 

0 En − Ek0

= 1 + o λ2

N (λ)

cj`U~dHzGj`S;U Q kkƒzIUj`z«¢;Uj`“L

ej`kL‡j`q€U dPkrW¡zIJM‚uL‡JRvU zžfk€OH‚Œ“q2‚



êMøú ü ñDëðéù ü ïïé ü ù–é :óRò…ó¡û L‡S –¢;JRL:Xc d hϕ | S



A

n



hϕn | H0

X

k6=n

(2)

cnk |ϕk i + H1

X

k6=n



(1)

cnk |ϕk i

= hψn | H1 

X

k6=n

= hϕn | En0

= ⇒λ

2

En2

=

(1)

cnk |ϕk i

X

k6=n

(2)

cn,k |ϕk i + En1

hϕn | En2 |ϕn i X (1) λcnk hψn | λH1 k6=n

=

:q

X

k6=n



(1)

cn,k |ϕk i + En2 |ϕn i

|ϕk i

X hϕk |λH1 |ϕn i hψn | λH1 |ϕk i En0 − Ek0

k6=n

=

X |hϕk |W |ϕn i|2 En0 − Ek0

k6=n

WE

0 n

U jYaI‚‹Jbw€f€~Dj`|XJRkzIq2U5zIe§k€~JRUj`q‘kSU Q kkÛF V W¤£Mj`OHzHe§j`OHzGj`yjp~™zGj`q€UD£–fµF n F _YaIN}kJMvU dme%kcXUQ kc L:ww™kL‡~vgkdmwcŽkq€UxzIS;QcXkÛF E

zHj`U S;k

− Ek0 < 0

¦G IHG DJJ €ML

46

-N),O +.- Ž6t

λ2 En2 ≤

2 2 (∆W ) = ϕn |W 2 |ϕn − (hϕn |W |ϕn i)

(∆W )2n ∆E

F U zHj`JR‚‹k€‚+j`U NGkkJMvU dPe!L NiyhU q2k

λ2 En2

≤ = = =

∆E

L(JRvU z F V Ucge!w

1 X 2 |hϕk |W |ϕn i| ∆E k6=n

1 X hϕn |W |ϕk i hϕk |W |ϕn i − (hϕn |W |ϕn i)2 ∆E k i 1 h

ϕn |W 2 |ϕn − (hϕn |W |ϕn i)2 ∆E 2 (∆W ) ∆E

£pcXL(y£IJRL(q€cgyk€~ cX‚š_`q€JMqtgjYaIe kJRvU dPeƒL(S‚š~yeK‚+“qNGUTcXJ%U q2j`L:w.‰ n = 1, l = m = 0 ~Dj`|XJMkzIq€U ‚ E10

OPe

= −13.6eV 1 = − µc2 α2 2

F _pjpj`JRwD‚‹JRL(q€cXyhkk€~cgk‘L(cŽ_pjpj`JbwDkzIe§U yh‚+d

~ = Ez z E

e2 p~2 − 2µ r W = eEz hz1 i ∼ r1 ∼ 10−8 cm =

H0

_pjYcge%UxU ~D|X‚™~Œj`|XJRkzIJRv–UdPe%LT_pj`NGJMz

∆E11

= λE11 = hϕ1 |W |ϕ1 i

= h1, 0, 0|eEz|1, 0, 0i = eE h1, 0, 0|z|1, 0, 0i Z = eE d3 rϕ∗1,0,0 (~r) zϕ1,0,0 (~r) = ∗

ϕn,l,m (~r) = Rn,l (~r) Yl,m (θ, ϕ)

ϕn,l,m (~r)

kJR“Nidj`Qk•L:c zHj`JRvoj`OmL#‚+LµtiJbcXd

l

ϕn,l,m (−~r) = (−1) ϕn,l,m (~r) ~r → ~r r θ

→ r → π − θ, ϕ → π + ϕ

∗ = 0 47

_YwDL

kq€vojp~

JRdmcŠU~|ŽNgjp~‚Œd ∆E12

E10 − En0

= e2 E 2

Z

Z

Rn =

r

3

∗ drR10

(r) Rn,1 (r)

r

2

∗ drR10

(r) Rn,l (r)



⇒ |h1, 0, 0|z|n, l, mi|2

∗ r3 drR10 (r) Rn,l (r)

Z

∗ dΩY00 Yl,m (r cos θ)

Z

∗ dΩY00 Yl,m cos θ r   Z Z 4π 1 ∗ ∗ Y10 = r3 drR10 (r) Rn,l (r) dΩ √ Yl,m 3 4π Z Z 1 ∗ ∗ dΩYlm Y10 = r3 drR10 (r) Rn,l (r) √ 3 Z 1 ∗ = r3 drR10 (r) Rn,l (r) √ δl,1 δm,0 3 1 = √ Rn δl,1 δm,0 3

(dΩ = sin θdθdϕ) ⇒ =

Z

2

n 6= 1 l, m   1 = −13.6 1 − 2 n     2 e 1 e 2 n2 − 1 = − 1− 2 =− 2r1 n 2r1 n2

h1, 0, 0|z|n, l, mi =



|h1, 0, 0|z|n, l, mi| E10 − En0

X

=

f (n) = ∆E12

X

n 6= 1 l, m

1 2 R = f (n) r12 3 n 2n−5 28 n7 (n − 1) 3 (n + 1)

= −2e2 E 2 r13

2n+5

X

n 6= 1 l, m

n2 f (n) n2 − 1

= 1.125

⇒ ∆E12

= −2.25e2E 2 r13

n2 f (n) n2 − 1

JMUq!j`dI‚+jYcXJMyhq

F JMSj`‚+JRU k•NGUaI|«aINiQ eƒzIe˜j`dmL‡‚ŒJRN zHj`e%U kL _`zIJMdTzIJR‚™L(JMvU z :y

∆E12 ≤ 1 2 r 3  1 3r12 ⇒ 3

e2 E

2

100|Z 2|100 |E10 − E20 |

lP‚‹Jmj`L(zrJRzIL‡‚



‚Œ“q2k•F tiJR‚+“q€k•zHj`q€L:c0JMQL

|100i θ, ϕ

2 2 2 = z = x = y = r12

  G IHG DJJ €ML

48

-N),O +.- Ž$ƒ

U q2j`L:w E

0 1

− E20 =

3 e2 8 r1

Ÿ|j`dP‚™F Y

00

=

√1 4π

Sjp~Jmj

8 3 2 r E 3 1

∆E12 ≤

ÊoÔ]ÔÎ ä Ï XÔ iрÕIÖXÖ Ñ2Ô ÉŒØbß tGJM‚Œ“q2k L:cXq€L _pjpj`JRdPk0|XNg~dPJRe = i _`q€|Xd»F E kJRv–UdPe%‚«_pjpj`dPq |ϕ li=‚Œ0,“q2mk’=F N0, l == 1,4 mã n=‚+0,“q»±1L:c _pjpj`JRdPk0zInv=U~2L‘k€UNid OPe (i = 1, 2, 3, 4) w

0 2

n

?e



=

n

E = En0 ϕ(i) n

E H0 ϕ(i) n

cXJU q2j`L(w™F H tiSj2tGq2“S5_`JR‚+L4tidPJR‚utGJMQ j`L‡JRyktGJMUye§tGJMU jYaIU Qj`e%L#U jYcXNŠ_pjpj`JMdPk•|XNg~dPJRe cŽ¢‡w I tGJMU jYaIU Qj`eKUj`y‚ŒLT_`zIJMdHF hϕ |ϕ [I, H0 ] = 0

n

ϕin |ϕjm

mi

= δnm

_pjpj`JRdGkJRk•e%L UcXe!w

_YwDL S £Mj%j`q€“S‚‹ej`k•zHJRQ “z}¢‡U Skƒj`eKS£bSk‚ŒyU q€‚™UjYaINij2L:w™tGvg_YwDL

H0

Nn X i=1



|ψn i = N 

Nn X i=1

(H0 + λH1 )  =

λ1 : H0

k6=n

Nk X (1)

cnk

i=1

= En0

Nn X i=1

E αi ϕ(i) n

JROPe

i=1

k6=n

Nn X i=1

 Nk E E X (1) X (i)  (i) βi ϕk cnk αi ϕn + λ k6=n



i=1

 Nn Nk E E X X X  (i)  (1) E0 + λEn1 + . . .  αi ϕ(i) +λ c βi ϕ n ⇒ λ 0 : H0

X

= δnm δij

 Nk E E X (1) X (i) (i) αi ϕn + λ cnk βi ϕk + λ2 . . .





E αi ϕ(i) n



Nn X i=1

nk

i=1

k

i=1

k6=n

Nn E E X αi ϕn(i) αi ϕ(i) = E0 n i=1

Nk Nn Nn E E E E X X (1) X X (i) (i) (i) 1 αi ϕ(i) βi ϕk + En cnk = E0 αi ϕn βi ϕk + H1 n i=1

0 + H1

Nn X i=1

D

k6=n

Nn X E (i) ϕ α ϕ(j) W i n n

Nn X i=1

i=1

=

i=1

αi

D

i=1

Nn E E X = En1 αi ϕn(i) αi ϕ(i) n

E (i) ϕ(j) n W ϕn

D

Nn E X (i) 1 ϕ α ϕ(j) λE i n n n

= λEn1 αj

49

i=1

i=1

L(‚+NGdj Dϕ Pl ‚™L(JRQwDd (j) n

_YwDL

Nn × N n

U~|Xq‘k€“JRUaIq€k

E D (i) (j) hji = ϕn W ϕn Nn X

(n)

tGJMdjpj`dmq2ktiJR‚+“q€k•L:cˆ‚+yUq2‚™kS;U Q kk‘zI“JMUaIq

= ∆En1 αj

hji αi

i=1

h i ⇒ h(n) α ~k

1 = ∆En,k α ~k

tiJR‚Œ“q2k˜_YwDLrF _pjpj`dPq€kr‚ŒyU q€‚kSU Q kkrzI“JRUaIq}L:cS £RS;L = _pjYcge%U.U~|Xq}k€JRvU dPe%Lu_pj`NiJRzIkcÜj`dPL(‚ŒJMN»_YwDL F h L:cˆS£Rj`k = k€S;U Q kk‘U ye!L zIdjpj`dmq2k‘zHj`SUQ kk‘zHU j`z tgjYwDJR| D

E (j) ϕ(i) n |W |ϕn   k = 1 . . . k; h(n) (α)k

(n)

= hi,j

0

= ∆En (k) (α)k

det h − ∆En1 (K) I



kdjYcŽ‚ŒJRzIwD‚

= 0

_YwDL#F k€S;U Q kk‘U ye!LT_pjpj`di_`JRe‘w+£RU~‚š‰ N ej`kzHj`dj`U zIQ k‘U Q|Xq |ψn i =

Nn X i=1

n

E αi (k) ϕ(i) n

F ϕ |XJM|X‚Œ‚uzIJRdj`|gwDL(e H JRzIq‘Ngjp~‚ŒLT¢;JRU “ âW _pjpj`JRdPkL:c CSCO UjYaIU Q j`e I f€F [H , I] = 0 tie˜‰ k‚hjYcgz tiJR‚Œ“q 4 cXJ n = 2 Uj`‚+SKF ‚ŒyU q€‚•JRdPv–j`q!j`k€jIS j`‚ŒNŽJRL(q€cgyKk€~ cX‚•_`q2JRq§tijYaIeŠlžNGUaI| aINGQ e tiJRdjpj`dPq i n

i

1

‡

|0, 0i , |1, 0i , |1, 1i , |1, −1i W

„

k U Sk kq€vojp~

OPe W = eE~~ r kSUQ kU y‚Œd



 h0, 0|W |0, 0i h0, 0|W |1, 0i 0 0  h1, 0|W |0, 0i h1, 0|W |1, 0i  0 0     0 0 h1, 1|W |1, 1i 0 0 0 0 h1, −1|W |1, −1i £

U ye!qr‰ l − l 2

Fm

1

tiSTtiJRQj`L(JRy

[Lz , z] = 0  2  L , z 6= 0

L z , L2

tie%k

e%j`‚•W¡Ngj`L(‚Œ‚!fNiL(y‚uNiU›tiJRdj`|gwDL(e§e!L#OPe§F tGe§NGU5JRQj`L(JRy_YwDL Uj`‚ŒSuNGU hn, l , m|z|n, l , mi 6= 0 cŽL‡‚ŒNid z LJRvoj`OlJReKUjYaIU Qj`erU j`‚+S F (−1) Jm£RSTzIU~v–j`qƒzHj`JMv–j`OPkc k€q€v–jp~‚

= m2 = uneven 1

W

1

z

2

l

h2, 0, 0|z|2, 1, 0i =

Z



3

r drR20 (r) R21 (r)

0

= −3r1

Z

∗ dΩ cos θY0,0 (θ, ϕ) Y (θ, ϕ)

IHJG IHG DJJ €ML

50

-N),O +.- Ž˜†

w+£Rk| 

tiviL(‚ŒNidIF ∆E

1 n=2

0  −3eEr1   0 0

 0 0   0  0

0 0 0 0

S£bSkq‘tiJRdmcˆF k“JMUaIq€kzIe§_`|gwDL‡dG_pj`NiJRz˜e%j`“q2LTJM~ w

(k = 3, 4) = 0 −∆E21 −3eEr1

3eEr1

‚›k€j`‚+vIkq2Uk

−3eEr1 0 0 0



−3eEr1 = 0 −∆E21

L(‚+NGd F JMUe%JMdmJML(k•NGUaI|«aINiQ eƒkO tiJRq2JRe%zIq2k•tiJRq2“S;k•tiJR‚Œ“q2k

1 ∆En=2 (k = 1, 2) = ±3eEr1

∓1 −1 −1 ∓1



α1 α2



S£bq2k‘_YwDL

1 1 √ (|2, 0, 0i − |2, 1, 0i) , √ (|2, 0, 0i + |2, 1, 0i) , |2, 1, 1i , |2, 1, −1i 2 2 √1 2

F

U j`‚+S›F kJRv–UdPe%‚5_pj`NiJRzK_`JMe |2, 1, 1i , |2, 1, −1iLw+£Rk|«_YwDL ‚™k€~Uj`kƒj`dPL(‚+JRN (|2, 0, 0i + |2, 1, 0i) Uj`‚+Sj 3eEr _`e%JRdjYaIL(JMq€kcXJbcˆyJMdmd ÿDêMý hðšêRøúÜéêRê +ý

(|2, 0, 0i − |2, 1, 0i) 3eEr1

√1 2

1

MC

S

H0 |ϕ1 i = E1 |ϕ1 i

e%j`“q2LTk“U d H = H + W tGcˆyJRdPdHF S£Rq‘JRdmcŠJm£RS›tiJR|XU Q dItiJR‚Œ“q2kcj H0 |ϕ2 i = E2 |ϕ2 i 0

H |ψ+ i = E+ |ψ+ i H |ψ− i = E− |ψ− i |ϕ1 i , |ϕ2 i W

=



w11 w21

w12 w22



j`dPe!“q§F JbcXq€q

‰

|XJR|X‚+‚™‚+j`zwDd

w21 w11 = w22 = 0

j`dPydmk

|ψ+ i = cos θ |ϕ1 i + sin θ |ϕ2 i

|ψ− i = sin θ |ϕ1 i + cos θ |ϕ2 i 2W12 tan 2θ = E1 − E 2 q 1 2 (E1 + E2 ) ± (E1 − E2 )2 + 4w12 E± = 2 sin θ cos θ

w12 E1 − E 2 ≈ 1 ≈

W12 |ϕ2 i E1 − E 2 w12 |ϕ1 i |ψ− i = |ϕ2 i + E1 − E 2

⇒ |ψ+ i = |ϕ1 i +

51

OPeƒkcXL(y•kSU Qk‘yJMdmd

F zHj`SU Q kkƒzIUj`z}zIe§kU Omy•j`dPL(‚ŒJMN OPeKF |XQ e!zHqK_pjYcXe!UxU~|Žj`dPydPkOme w = w = 0 k€yhdPkk 11

E+

= E1 +

22

2 w12

E1 − E 2

47 8AÀ B;9K748 »B9 +ùý€î#êR÷€øþ[ðïhñŒúºý bðhêRðšÿŒùP÷2ì Aó :óRò WpntiJbaIdjpj`N}|XUj`NG‚™e%“q€JMzrzINGJmjp~q€k kyhwŒj`kkHf _`q2JRqtgjYaIe!Lr_`q€JMO%aINGQ e «]

S

QYnV

R

º $§

»

H

=

¹

‹

e2 P~ 2 − 2m r

S j`‚ŒN}JRaIdmv–qk€~cŽ¢j`zI‚štgjYaIe!kcˆyJRdPdHF L~ JRzHJMjpj`OHSdPz˜cgJ_pj`UaINiL(e%L ~ B

= B zˆ

F

kJRv–UdPe%k•U;cXe!w M~ L‡j`Q Jm~uaIdmq!j`q•cgJOPe O£RdPzrj`L cXJ r |j`Jm~U5L‡S›S;d e yJRdPd

~ ·B ~ W = −M L = µrv 1 ~ ML = iπr2 c v i = e 2πr erv ~ M L = 2c e ~ ⇒ M L = − L 2µc ~ ~L = − e L M 2µc

L

W¡‚ŒUj`NGqifF JR|XL‡NGk•UcgNikkOHU q!j`L:w F kJRv–UdPe%LT_pj`NGJMzIk_YwDL

W

= H1 =

eB Lz 2µc

zIJR|XL(Nik•zHj`U JM~zIkrW¡Uj`q2ULTzGj`UJm~z}e%U NGd w f

= ω L Lz

L

ωc

En0 |ϕn i

eB µc

=

JRaIdmv–qk€~cˆJRL‡‚

 1 e2 2r1 n2 = |n, l, mi = −



Uj`‚ŒS›zGj`S;U Q kk‘zIUj`z}tieKNgjp~‚ŒdIOPe

H = H 0 + ω L Lz [H0 , Lz ] = 0 IH¦G IHG DJJ €ML

52

-N),O +.- Ž6Œ

OPe

[Lz , H] = 0

JbwuzHj`S;U Q kkƒzHU j`zHkƒ¢‡Uj`“™_`JRe

H |n, l, mi = (H0 + ωL Lz ) |n, l, mi  = En0 + ~ωL m |n, l, mi

ÊoË–Õ GÖ ŒØœÆ _`JRQ |Xk•yj`zHJRQ WYVZ:nV:f!¢‡L(U vg_`UacÁF V _`q2JRq€ktijYaIe§zHj`q€UuL:cÜWâ_`JM~SfNg~kkdP‚Œq€kF n WYV[Z(nœ^(f!F JRL‡q2j`dPe%k_`q2JROaINiQ eF E F _`JRQ |Xk•L:c yj`|XJMdXWYV[Z(n ” f€JML‡j`e%QŠF s F zIJbaIU Q kzHj`|XyJRk‘zIUj`z}tieƒtiJbaIdjpj`NGk•zIUj`z}zIe˜~ye!q«WYV[Z:nœZ‡f€NGU JM~ˆF ^ ;í ü þ ü ÷2ú0êRùëêMø AóRò…óRò U ‚Dw™j`dPe!“q zIUjYwDOPz 

|

X

~ = ~r × p L ~

tGvgj`dPe%“q

h l

~ 2 , Lz L

i

[rx , px ] = i~ ⇒ [Lx , Ly ] = i~Lz

= 0

UcXe!w

l (l + 1) ~2

‰

¼º

UcXe!w

tik L~ :L cŽS £RS;k‘UcXe!w

3 1 = 0, , 1, , . . . 2 2

F zHj`Q JR“UuJRL;j`NGJRcŠL(L(v‚‹tiJRq2L:cŠe%L(ktiJbwDU S;k‘j`dPq€L‡S;zIk L(cˆzHj`dj`U zIQ kKF −l ≤ m ≤ l UcXe!w m~ L L(cˆS£bS z

~ ∂ Yl,m i ∂ϕ ⇒ Yl,m

⇒ eimϕ

⇒m

= m~Yl,m = Θ (θ) eimϕ = eim(ϕ+2π) ∈

j`‚ŒJMJRy

Z

m = 0, ±1, . . . , ±l

F

∂B ∂z

6= 0

cr¢(w z _pjpj`JbwD‚TJRaIdmv–qxk€~cr¢;U~ x _pjpj`JRwD‚TtGzGj`ej`U U y+cjŸ|gw JMq2jYaIe•j`yhNiL—JMj`|XJMdm‚Ž¢‡L‡UvX_`UacˆJmj`|XJRd JRaIdPvq•aIdmq!j`q•cgJRcˆyJRdPdHF Ù;dPUj`L yjYwš_`JReƒ_YwDL;j2JML(UaIJRdtgjYaIe%k V F~

~ ·B ~ = −M

~ = Mz = −∇V

∂Bz ∂z

j`e%“q«tik}L(‚Œe F yj`L(k«L:w‘L(StGJMq2jYaIe%krzIe ~Djp~q€L.kQ “d6k€~cgk}L(cÝJMdmcgk}~“‚‘yj`LštiJbcXd6tGe cXJ6U q!j`L:wÚF W¡JML(UaIJRdkJMkcÃfGJML:aIJR‚+Uj`e0JRzIJmjpj`OºSdPzIL•U;cXNJRL(‚ F M L:ctiJbwDU S˜nœlPLkJR“OPJRaIdPjpj`N F tGJMq€“S›tiJR‚+“qJRdmcŠUcXQe%q€cÜWâ_`JMQ|ÃfUjYaIU Qj`e z

53

î ñ+ï.ïhøýhðï AóRò…ó¡û _pj`UaINGL(e§L:c ‚+“ q º

|ψi

∈ m (~r) × m (~s)

_pj`UaINiL(e%L

s=

1 2

ψ (~r, sz )

[Sx , Sy ] = i~Sz 1 S = 2 1 ms = ± 2 s=

1 2

_pj`zIdG_pj`UaINiL(eƒL:c kU Niq€‚

~ 2 |s, mi = ~2 s (s + 1) |s, mi S 3 2 ~ |s, mi = 4 sz |s, mi = m~ |s, mi

|s, mi

_YwDL

_`JRQ |X‚uJR‚Œ“q

tGJm~JRyJMkJM‚Œ“q€k•OPe§F s L#U zHj`J|XyJRJMzIdIe%L›‰ ~ye s cXJRcˆU ye!q  m = 1 2  m = − 1 2

= |↑i = |+i = |↓i = |−i

|+i h+| + |−i h−| = I |χi = C+ |+i + C− |−i

σy σz

~ σx 2 ~ σy 2 ~ σz 2

Sx

=

Sy

=

Sz

=

~ S

=

=



0 1 1 0



1 0 0 −1

= =



_`JRQ |ŠL:cŽJRL(L(wu‚+“q JML‡j`e%Q5zHj`“JMU;aIq

OPe

~ ~σ 2

zHj`“JRUaIq2k 

0 −i i 0

54

vo£ReƒtiJR‚Œ“q2k k€~JMyhJMkUjYaIU Qj`e

h±|±i = δ

σx

1 2





[Sx , Sy ] S±

S± |s, mi = ~

p

= i~Sz = Sx ± iSy

s (s + 1) − m (m ± 1) |s, m ± 1i r

1 2 = ~ |−i r 3 S+ |−i = ~ 4 = ~ |+i

S− |+i = ~

S+ S−

UcXe!w

% 

= ~ = ~

·

3 1 1 + · |−i 2 2 2

+





_YwDL

1 1 · |+i 2 2

_YwDL 0 1 0 0 0 0 1 0





êRíùì uéù hê ü ÷€ðéùøù Dé FV [σ , σ ] = 2iσ Fn σ =σ =σ =I zHj`JMQj`L(yJRaIdPeF E σ σ +σ σ =0 JRL(L:w‹_`Qj`e%‚ σ σ + σ σ = 2δ I k‚ŒNiSTzHj`U |Xyj%zHj`JbaIJMq€U k σ • F C L(S5k‚ŒNiS;k•zHj`U |Xy•zHj`“JRUaIq€kL:w™‚ŒyU qzIeKzGjYcgUj`Q • zHj`k€Omk‘k€dPj`zHd • M

C

x

2 x

x y

{

y

2 y

z

2 z

y x

i j

i j

ij

i

2

   ~ ~σ · B ~ ~σ · A = Sx , Sy , Sz hSx i

=

hSy i

=

hSz i

=

zIL‡yj`zHkƒ¢‡U S›zIe§e%“q

 ~ 2   ∗ ∗ ~ c+ c− 2   ∗ ∗ ~ c+ c− 2

c∗+ c∗−

  ~ · BI ~ + i~σ · A ~×B ~ A

0 1 1 0

|χi = c+



1 0



+ c−



0 1



_pj`zId

L(JMvU z



0 −i i 0

1 0 0 −1

  ~ c+ = Re c∗+ c− c− 2    ~ c+ = Im c∗+ c− c− 2    ~ c+ 2 2 = |c+ | − |c− | c− 2 I ¤ G IHG DJJ €ML

55

-N),O +.-,; 

W s tgj`NGq2‚2f xy UjYcXJRq2‚ x U JR“#tiS φ zIJMjpj`O%U “Dj`JRk.UJM“L|XyJR‚ x

± ~2

_`JMQ |§U e%zIq€k.‚Œ“qštgjYcXUd¢;JRe _YwDL

~s = (sx , sy , sz )



= Sx cos φ + Sy sin φ  ~ 0 = cos φ + i sin φ 2   ~ 0 e−iφ = eiφ 0 2

cos φ − i sin φ 0



S£bSk‘_YwDL

λ2 − 1 = 0

S£Rj`k2j

λ = ±1

λ = 1 : |χiφ

=

λ = −1 : |χiφ

=

 1 √ 2  1 √ 2

L(JMvU z



1 eiφ

1 =√ 2 

eiφ e−iφ



e−iφ eiφ



F φ U JR“™_pjpj`JbwD‚™‚hj`‚ŒJR|ŠU jYaINgj`k‘L(S›L‡JRSQk€L#_`zHJRd™W¡zIJM‚2fL(JMvU z

F X tGe

|χ+ iz π 2

=



(s)

(s)

i

~

e− ~ ~s·θ

i

zIJmjpj`OHU “Dj`JRk

 xy

UjYcgJMq€‚‹U JR“x‚ŒJM‚Œ| ‚™tiJR‚Œ‚hj`|Xq π 2

ˆ

i

1 √ 2

=

1 0

= e− ~ ~s·θθ

Rθ~

Rθ~





θˆ = (− sin φ, cos φ, 0) θ =  −iφ

1 eiφ

~

−e 1

  θ θ − i ~σ · θ~ sin 2 2

kq2L:cˆzIwDUSqƒtiJMjpj`kq ~ S ~ L,

i

J~ =

|ψi

OPe

zHj`kOGcXJ

= e− 2 ~σ·θ = cos

h

π 2

Sz , ~r

kU Sk

ý ü ðhý Rê ëuý ü ðý ü ùìêmé Ml

M½o 

Ml

= 0

L‡L‡jYw‹zIJMjpj`OGS;dPzrU JM~vd

~ +S ~ L

ã _`JMQ |ž¼h‚ŒyU q•JM‚Œ“qUj`e%JRzILT|XJM|X‚Œk

= |~r, sz i

56

|XJM|X‚Œk•L:cÁzHj`JML(q€Uj`djYaIUj`e D 0 0 E ~r , sz |~r, sz

 0 = δ 3 ~r, ~r δsz ,s0z

|XJM|X‚Œk•zHj`q€L:c0_Ywuj`q€w zHj`q2L:c X Z

sz =± 12

d3 r |~r, sz i h~r, sz | = 1 |ψi =

X Z

d3~r h~r1 sz |ψi |~r, sz i

sz =± 21

tiJRS j`‚ŒNik

ψ± (~r) = h~r, ±|ψi 2×2 [ψ (~r)] = [ψ (~r)]†

hψ|ϕi

=

hψ|O|ϕi

=

=

Z

Z



k“JRUaIqL:cŽkUj`“‚‹U jYaIU Qj`e!wš~‚+j`S5_`JMQ |Xk

ψ+ (~r) ψ− (~r)

† ψ+



† ψ−



P_YwŒj

% 



d3 r [ψ (~r)] [ϕ (~r)] †

d3 r [ψ (~r)] O [ϕ (~r)]

F _pj`UaINiL(eKL‡S›k€~Jm~q‘UjYaIUQj`e O UcXe!w tiJRU JR“k•zIeK‚+‚+j`|Xd

ψ (~r) = h~r|ψi  ψ R−1~r = h~r|Rψi

= R−1~r|ψ h~r|R|ψi =



0

ψ+ (~r) 0 ψ− (~r)



L(JMvU z

JROPe

D 0E 0 ~r|ψ = ψ (r)

F Jm£RS›_`zIJRd L, S L:cŽ‚+j`‚ŒJM|XktiJRdj`JM“JRUaIqk€U j`“‚

= (Rθ (s))



  ψ+ R−1~r ψ− R−1~r

F ~r ‚+yhU q2k•L‡S›U JR“k•‚+j`‚ŒJM|Šej`k

R−1

zIe%OHk€U j`“‚ DJG IHG DJJ €ML

^[„

-N),O +.-,;6Ž

ä ËÓ!˖å;Ñ ŒØbß _pj`zHd5F V 

ψ (|x| , t = 0) =

(  c 1− 0

|x| a



|x| ≤ a

|x| > a

Iz e§‚DcXyÛW¡eXf _`q€OP‚ p SdPz}~Djp~q€LTzGj`U‚+zI|Xkk‘zHj`Q JMQ“ÞW¡‚2f t=0 L:cŽzIJRQ “z}¢‡U S W¡v]f p k€JRvU dPe%k•zHJRQ “z}¢‡U S›zIe˜j`‚DcXyÛWâ~f _pj`UzHQ W¡eXf a

1 =

Z



2

|ψ| dx −∞  Z a x x2 2 = 2c 1 − 2 + 2 dx a a 0   1 2 2 = 2c a 1 − 1 + = c2 a 3 3 r 3 c = 2a

φ (p, t = 0) = = = = = = = |φ (p, t = 0)|

2

=

kJRJMU j`Q5zIU q€zIk‘S“‚Œd™W¡‚!f

Z ∞ 1 i ψ (x, 0) e− ~ px dx 2π~ −∞ Z a 1 i √ ψ (x, 0) e− ~ px dx 2π~ −a Z 0  Z a 1 − ~i px − ~i px √ ψ (x, 0) e dx + dx ψ (x, 0) e 2π~ −a 0 Z ∞  Z a i 1 px − ~i px ~ √ ψ (x, 0) e dx + dx ψ (x, 0) e 2π~ 0 0 r Z a  2 px ψ (x, 0) cos dx π~ ~ 0 r r Z a   px x 2 3 cos dx 1− π~ 2a a ~ 0 r    3~3 1 a 1 − cos p πa3 p2 ~  3 sin4 pa 12~ 2~ πa3 p4 √

F JRUaIq2JR|«‚+yhU q2‚uJMv–j`OlPJReKU jYaIU Qj`e p cŽU yhe%q 58

hpi = 0

W¡v]f

‰

OPe ∂ψ ∂x

∂2ψ ∂x2

H=

P2 2m

  0 x < −a   q   1 3 −a ≤ x < 0 a q 2a = 1 3   − a 2a 0 ≤ x < a    0 x≥a r 3 1 = (δ (x + a) − 2δ (x) + δ (x + a)) a 2a

2

2

~ d = − 2m dx2

Wâ~f

OPe

hHi = hψ|H|ψi Z ∞ ∂2 ~2 ψ ∗ 2 ψdx = − 2m −∞ ∂x r Z ∞ 2 ~ 1 3 = −ψ ∗ (δ (x + a) − 2δ (x) + δ (x + a)) dx 2m a 2a −∞ r ~2 1 3 = (−ψ ∗ (−a) + 2ψ ∗ (0) − ψ ∗ (a)) 2m a 2a r r ~2 1 3 3 = 2 2m a 2a 2a 3~2 = 2ma2

RJ zHJMjpj`OISdPz˜tiS›SdINiJRNiL(y»F n √ zIJbcXe%U kqƒNiJRNiL(yk.NiyhU q!j ~ zIe§zIJRdmaIL(q2JR|ˆ~Œjp~q€L›_YwDzIJtie%kW¡eXf L r = ~r F L:cˆJMq€“Sk‚Œ“q€‚™|XQ e%zIq L:cˆzHJRQ “zIkƒ¢;US5JbwxyJRwŒj`kW¡‚!f tGJML‡~v‚™zHj`e~Djpj%LJMeƒL:cŽzIJRL(q2JRdPJRq2kk€L(QwDq€k‘zILe§kOI‚Œ“q2‚™‚DcXy hzi = a _pj`zHd‹W¡v]f     0 −i 0 1 0 0 I z § e % e  “ q zHj`dj`zIdšWâ~f L L =  i 0 i ,L =  0 0 0  0 −i 0 0 0 −1 _pj`UzHQ Ÿj`L‡JRy.|XyJ%Ngjp~‚Œd™W¡eXf ~ L

2

x

∆y∆Lx

z

y

y

~ 2

z

~ 2

j`L:c kJR“Nidj`Q›L:w™tGe§JRQj`L(JMy.tivHkJMkJ ~r tGeƒJMQj`L(JRytGe§L(‚Œe

[Lx , r]

= [ypz − zpy , r]

2

  ypz − zpy , x2 + y 2 + z 2

= 2i~yz − 2i~zy = 2i~ [y, z] = 0

Sjp~JuW¡‚!f

Lx |Xi = m~ |Xi [Lz , Lx ] = i~Ly i~ hX| Ly |Xi = hX| Lz Lx − Lx Lz |Xi = m~ hX| Lz |Xi − hX| Lz |Xi = 0

59

zHj`S ~Dj`k2lPJMe}_pj`UNiJRSŽW¡v]f ∆y∆Lx

1 |h| [y, Lx ] |i| 2



‚ŒcXyhdi_YwDL

[y, Lx ] = [y, ypz − zpy ] = −z [y, py ] = −i~z

Wâ~f NGJMNGL(yk•L:cˆSdPz P UcXe2w W = vP tiv–j V = mω x _pj`zHd5F E ‚DcXyÛW¡eXf E E JP£bSx_pjYcge%UxU ~D|X‚ tiJR‚Œ“q2k.zIe§‚DcXyÛW¡‚!f E ψ JRdmcŠU~|Xq‘k€JRvU dPe%L#_pj`NiJRzHkzIe˜j`‚DcXyÛW¡v]f zINiJMjp~q‘ke%“Dj`z  vHJRwuyJbwŒj`k€LŠWâ~f _pj`UzHQ OPe W¡eXf Lx =

1 i~

[Ly , Lz ]

1 2

2 2

%Š%

(1) n

(1) n

0 n

0

∆En







E (1) E n cnk

v Ek0 |p|En0

tiv–j

1 A − A† p = P = √ 2i m~ω r  m~ω A − A† ⇒ p = −i 2

En0 |p|En0

En0 − Ek0

= hϕn |W |ϕn i

= v En0 |p|En0

En0 |αA + βA† |En0



0 0 = α ˜ En0 |En−1 + β˜ En0 |En+1 = 0

vo£be%kq!j



=

_pjYcXe!UuU~|XL#ky|j`dPkW¡‚!f

X (1) 0 = En0 + cnk Ek k6=n

=

v

Ek0 |p|En0 En0 − Ek0





= ~ω (n − k) r m~ω 0 Ek |A − A† |En0 = iv 2 r  m~ω √ 0 0 √ n Ek |En−1 − n + 1 hEk |En+1 i = iv 2 r √  m~ω √ nδk,n−1 − n + 1δk,n+1 = iv 2 60

OPe

DKG IHG DJJ €ML

-N),O +.-,;˜;

OPe En(1)

=

∆En(2)

En(0)

=

+ iv

r

0  m √ 0 √ n En−1 + n + 1 En+1 2ω~

kJRvU dPe%LT_pj`NGJMzIkW¡v]f



X v 2 Ek0 |p|En0 En0 − Ek0

k6=n

=

X v 2 m~ω nδk,n−1 − (n + 1) δk,n+1 2 En0 − Ek0

k6=n

= =

H

X v 2 (n + 1) X v 2 m~ω n 2 δ − δk,n+1 k,n−1 E 0 − Ek0 En0 − Ek0 k6=n k6=n n   v2 m v 2 m~ω n n+1 m =− − = − v2 2 ~ω ~ω 2 2

tGJMS~Dj`Jj`dPe Wâ~f

= H0 + W 1 p2 + vp + mω 2 x2 = 2m 2 2 (p + mv) 1 m = + mω 2 x2 − v 2 2m 2 2

JMdPj`q2U kUjYaIL(JM|j`e!qK‚DwDUj`qƒ_`e%dMaHj`L‡JRq€k€k•U q!j`L:w

[x, p] = i~ ⇒ [x, p + mv] = i~

 tiJRe%zIdIk€L U q2j`L:wšF kOPOPkq‘‚ŒwDU j`q!j

En = ~ω n +

En

_pj`UaINGL‡e!kckL;j`NGL‡j`q2k«‚Œ“q

1 2

  1 m = ~ω n + − v2 2 2

Ucge!wÜF tikJMdm‚ƒÙ;Q NGq€cÜUjYaINiL(ej›F tGJMq2jYaIeˆE›tGeˆkL‡j`NiL‡j`qŠk€dPj`zHd5F s F tGJM‚Œ“q2k|XJM|X‚Œ‚ukL‡j`NiL‡j`q€kƒ_`e%JRdjYaIL(JMq€kF i = 1, 2, 3 tijYaIe%L#UjYcgN

|ii |ii

H

= ε

3 X

|ii hi| + δ

X

|ii hj|

it JRdj`zId ε, δ U;cXe!w k€L‡j`NGL;j`q€L›~Djp~q2LTUcgQ e§zHj`JRvU dPe§j`L‡JRe W¡eXf j`L(L‡k‘tGJM‚Œ“q€k•zIe˜~Djp~q€LŽW¡‚!f zHj`djYcXk‘zHj`JMvU dme%kzIe˜~Djp~q€LTtiJRq!jYaIe%k~Dyhe%LTUjYcXN«ej`kU;cXe!w™zHj`U ‚ŒzI|XkkÚW¡v]f F U yeKtgjYaIe%L UjYcXN«kJMkJ t SvU ‚DcˆzHj`U ‚ŒzI|XkkÚWâ~f _pj`UzHQ i=1

61

i6=j

k“JMU;aIq€w H ‚+j`zIwDLŠW¡eXf 

ε =  δ δ

H



det 

ε − Ek δ δ

δ ε δ

 δ δ  ε

OPe



δ ε − Ek δ

δ  = 0 δ ε − Ek ε − E1 = δ E1 = ε − δ

Ome

 δ δ  = x3 − 2δx + 2δ 3 x



x δ det  δ x δ δ

= (x − δ) x2 + δx − 2δ 2 2

= (x − δ) (x + 2δ) = 0

x=ε−X



_`q€|XdItie

OPe

= E2 = ε − δ = ε + 2δ

E1 E3

tGJMdPjpj`dPq2k•tiJRq2“S;k•tiJR‚Œ“q2kW¡‚!f E1,2

  r   1 1 1  1  −2  √ 0 , 6 2 1 −1

=

E3

=



1 1 √  1  3 1

zHj`JRvU dPe%kqƒ~yeKL(w™~Djp~Dq€L P zGj`U‚+zI|Xkk k

|hpk |1i| 

 |ψ1 i  |ψ2 i  = |ψ2 i

  

2

|ψ (t = 0)i = |1i

= |h1|pk i|

√1 2 √1 6 √1 3

0 − √26 √1 3

P1

=

P2

=

P3

=

1 2 1 6 1 3

62

Uj`‚ŒS



2

√1 2 √1 6 √1 3

L UjYcgNˆ_pj`U;aINiL(e%kW¡v]f UcXQ eKtiv–j



 |1i  |2i   |3i

JROPe

t=0 |1i =

|ψ (t)i = =

1 1 1 √ |ψ1 i + √ |ψ2 i + √ |ψ3 i 2 6 3

_YwDL

i

i

i

e − ~ E1 t , e − ~ E2 t , e − ~ E3 t

‚Œ“qL:wDLTOPe

i i i 1 1 1 √ e− ~ E1 t |ψ1 i + √ e− ~ E2 t |ψ2 i + √ e− ~ E3 t |ψ3 i 2 6 3 1 − i E1,2 t 1 i e ~ (2 |1i − |2i + |3i) + e− ~ E3 t (|1i + |2i + |3i) 3 3

2

P2 (t) = |h2|ψ (t)i| 2 1 −iE t 1 − i E3 t 1,2 ~ ~ (2 |1i − |2i + |3i) + e (|1i + |2i + |3i) = h2| e 3 3 2 1 i 1 i = − e− ~ E1,2 t + e− ~ E3 t 3 3     E3 − E 1 4 3δ 1 2 − 2 cos t = sin2 t = 9 ~ 9 2~

†E

‚™‚Œ“q2kWâ~f

_YwDL

Related Documents