Qual Presentation

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Qual Presentation as PDF for free.

More details

  • Words: 1,402
  • Pages: 51
Plasma Wakefield Accelerators using Multiple Bunches by

Themos Kallos

University of Southern California Wednesday, May 9th 2007ad

SLAC

CERN • SLAC: 50 GeV e- over 3km  17MV/m • LHC : 7 TeV p+ over 27km • ILC : 500 GeV e- over 30km, $6.5B - Too long, too expensive •Limited by wall breakdown

Witness e-

p 

2 c

p



Electric field

e2 n p

 0 me

ATF

SLAC

• 35 MeV/m over 1.7cm Goals: 1. Monoenergetic bunches

• 50 GeV/m over 90cm (higher I, np ) • Energy doubling! (42 GeV84 GeV)

2. Multiply the energy Yakimenko et al., 2003 & Blumenfeld et al., 2007

400

 The transformer ratio is always less than 2: E  2

Wakefield

E+

200

ebeam

0

-400 0 2

1

x 10

4

2

3

Time [ps] Energy Spectrum after 10mm of plasma

 i.e., A small 5 witness at best gains twice the energy of a single symmetric driver

4

Drive Bunch

1.5

Witness Bunch

 How can we do better?

Initial Spectrum

1

Final Spectrum

0.5 0

E

E-

-200

# of particles [100,000 total]

Wakefield Amplitude [MeV/m]

Wakefield and beam density, 1e+016cm-3

54

56

58 60 62 eBeam Energy [MeV]

64

66

68

λp

λp

2m 50 GeV/m

100 GeV

100 GeV

200 GeV

2m 4x50 GeV/m

100 GeV

4 x 100 GeV

500 GeV

ACT II The 2-bunch experiment

 2 Bunches in energy  2 Bunches in time? Figure by W.Kimura

x E Next: In time

Figures by W.Kimura

BEAM SPLITTER

Bolometer signal (arb. unit s)

Detector

TRANSLATING MIRROR

1

.

0.5

0

High Energy Bunch only

0.5

MIRROR CTR LIGHT

3

2

1

0 1 P osition (psec)

2

3

1

1μm Ti foil

 Corresponds to σz1 =150fs, σz2=90fs  Charge Ratio Q1:Q2 = 2:1  500fs apart

Bolometer signal (arb. unit s)

e-BEAM

Fit

.

0.5

0

Both bunches

0.5 3

2

1

0 1 P osition (psec)

2

3

Next: Plasma

n  n0 e

T = 0.6μs

T = 0.3μs



t t0 T

Plasma ON

4x1015 cm-3

[MeV/m] Wakefield (MV/m) EAmplitude

D

[100,000 total] # of particles # Particles

Plasma OFF

W

Wakefield and beam density, 4e+015cm-3 200

0

-200 0

3000 2000

0.5

1

1.5

2

2.5 3 Time [ps] Initial Spectra

3.5

4

4.5

5

Drive beam Witness beam Initial Final

1000 0 56

57

58

59 60 eBeam Energy [MeV]

 -1.3MeV over 6mm  -200MeV/m

61

62

(Witness)

63

1x1016 cm-3

[MeV/m] Wakefield (MV/m) E Amplitude

D

[100,000 total] # of particles # Particles

Plasma OFF Plasma ON

W

Wakefield and beam density, 1e+016cm-3 200 0 -200 0

3000 2000

0.5

1

1.5

2

2.5 3 Time [ps] Initial Spectra

3.5

4

4.5

5

Drive beam Witness beam Initial Final

1000 0 56

57

58

59 60 eBeam Energy [MeV]

61

62

 +0.9MeV over 6mm  +150MeV/m (Witness)

63

E (MV/m)

Wakefield Amplitude [MeV/m]

# Particles

1x1016 cm-3

# of particles [100,000 total]

Plasma OFF Plasma ON

W

Wakefield and beam density, 1e+016cm-3 200

0

-200 0

0.5

1

1.5

2

2.5 3 Time [ps] Initial Spectra

3.5

4

4.5

5

5000 Drive beam Witness beam Initial Final

4000 3000 2000 1000 0 56

57

58

59 60 eBeam Energy [MeV]

61

62

63

 -1.0MeV over 6mm  -165MeV/m (Witness only)  Unloaded gradient: 165+150=315MeV/m (Driver only)

T = 0.3μs

 To be submitted to PRL

ACT III The 100-bunch experiment

13

eBeam Density [cm-3]

x 10

IFEL Microbunched eBeam

3 2 1 0 -1 3.8

4

4.2 4.4 Time [ps]

4.6

Next: Exp. Layout

Electron Beam

Microbunches

Ipeak≈100A σr=75μm

45 MeV

Ipeak≈600A

IFEL Buncher

Capillary Plasma

Energy Diagnostic

1500μm

Wiggler np=1019 cm-3

Laser Beam

λ0=10.6μm, 200ps

Ppeak≈50MW

10.6μm

Resonant for λp=10.6μm

Requirements: Establish Microbunching  Establish 1019 cm-3 Plasma Density Next: IFEL

Energy exchange between electrons and laser E-Field

Position



dW    e ve  Elaser dt

Energy

Position

Energy

Energy

Energy

2%

Position

Position 254cm

Next: In time, CTR

FFT

The spectrum contains all the information of the geometry of the eBeam

Plasma Density [cm-3 ]

Plasma Density for Various Capillary Lengths 60kV Discharge, 0.6mm Diameter 1.06E+19 9.6E+18 8.6E+18 7.6E+18 6.6E+18 5.6E+18 4.6E+18 3.6E+18 2.6E+18 1.6E+18 6E+17

 We do not have above 1019 yet… 20mm

Typical error bar

16mm 12mm new pulser 8mm new pulser 6mm 4mm new pulser

0.0

0.5

1.0

1.5

Neutral Gas Pressure [atm]

2.0

 Small ionization fractions (<10%)  Large energy density required…  …in very short time  Plasma current (kA) deflects beam  Dynamic pressure yields lower density (2-7 times)

Photos by J.H.Chen

Encore The 7-bunch experiment

 If Mohamed can’t go to the mountain, the

mountain must go to Mohamed

 1019cm-3 at 10.6μm 1018cm-3 at 33.5μm

 Create ~30μm microbunches by using a metal grid to block portions of the initial eBeam

Time Energy

Energy

Energy z

Time

Time

x

Distance  350μm separation  200μm wide (fwhm) Add small witness bunch!

Muggli et al., 2007

 6x50pC drivers  λp = 50μm  np = 4.4x1017 cm-3

Wakefield Amplitude [MeV/m]

Wakefield and beam density, 4e+017cm -3 400 eBeam Wakefield

200 0 -200 -400

0

0.2

0.4

0.6

0.8

1 Time [ps]

1.2

1.4

1.6

1.8

2

# of particles [100,000 total]

Energy Spectrum after 10mm of plasma 10000 8000 6000 4000 2000 0

54

56

58

60 62 eBeam Energy [MeV]

64

66

68

Wakefield Amplitude [MeV/m]

Wakefield and beam density, 4e+017cm -3 400 eBeam Wakefield

200 0 -200 -400

0

0.2

0.4

0.6

0.8

1 Time [ps]

1.2

1.4

1.6

1.8

2

# of particles [100,000 total]

Energy Spectrum after 10mm of plasma 10000 8000 6000 4000 2000 0

54

56

58

60 62 eBeam Energy [MeV]

64

66

68

Wakefield Amplitude [MeV/m]

Wakefield and beam density, 4e+017cm -3 400 eBeam Wakefield

200 0 -200 -400

0

0.2

0.4

0.6

0.8

1 Time [ps]

1.2

1.4

1.6

1.8

2

# of particles [100,000 total]

Energy Spectrum after 10mm of plasma 10000 8000 6000 4000 2000 0

54

56

58

60 62 eBeam Energy [MeV]

64

66

68

Wakefield Amplitude [MeV/m]

Wakefield and beam density, 4e+017cm -3 400 eBeam Wakefield

200 0 -200 -400

0

0.2

0.4

0.6

0.8

1 Time [ps]

1.2

1.4

1.6

1.8

2

# of particles [100,000 total]

Energy Spectrum after 10mm of plasma 10000 8000 6000 4000 2000 0

54

56

58

60 62 eBeam Energy [MeV]

64

66

68

Wakefield Amplitude [MeV/m]

Wakefield and beam density, 4e+017cm -3 400 eBeam Wakefield

200 0 -200 -400

0

0.2

0.4

0.6

0.8

1 Time [ps]

1.2

1.4

1.6

1.8

2

# of particles [100,000 total]

Energy Spectrum after 10mm of plasma 10000 8000 6000 4000 2000 0

54

56

58

60 62 eBeam Energy [MeV]

64

66

68

Wakefield Amplitude [MeV/m]

Wakefield and beam density, 4e+017cm -3 400 eBeam Wakefield

200 0 -200 -400

0

0.2

0.4

0.6

0.8

1 Time [ps]

1.2

1.4

1.6

1.8

2

# of particles [100,000 total]

Energy Spectrum after 10mm of plasma 10000 8000 6000 4000 2000 0

54

56

58

60 62 eBeam Energy [MeV]

64

66

68

Average Temperature [F]

85 75 65 55 45 35 25

Los Angeles VS ATF

LA ATF

Time Source: Weather.com

Thank you!

Bane et al., 1985

• The transformer ratio is 2π-times proportional to the number of plasma wavelengths under the beam • Not trivial to create these beams! Next: Multiple beams

OSIRIS (Fortran)

Themosiris (matlab)

Particle zpositions ,v

• Quasi 2D

i

i

• No field updates  Lorentz dp  Force   dt

EvB c

t

  En, m , Bn, m

  n, m , j n, m

• x1000 faster • Plasma density scans

2n n  n  n , E  bunch t 2 t

Hγ(434nm)

Hβ(486nm)

Hα(656nm)

Kaganovich et al., 1997

Ratio of CTR harmonics

10

8

10

6

10

4

10

2

10

0

Experiment Data Range

0

Ratio of CTR harmonics vs microbunching Ratio of 1st/2nd Ratio of 1st/3rd Ratio of 2nd/3rd

0.5 1 1.5 z of each microbunch [ m]

 All 3 data sets agree around σz=0.7μm

2

Theory & Simulation

Wakefield Evolution @65MeV – Resonant Case 7GeV/m 1

2

3

The electron beam density x100 (1), the theoretical wakefield (2) and the Osiris simulated wakefield (3) after 1mm of propagation in the plasma. Units: 1=300GeV/m

Related Documents

Qual Presentation
May 2020 15
Qual Palavra ?
August 2019 27
Qual Es El Islam ?
December 2019 13
Qual O Seu Dom.docx
June 2020 11