Plasma Wakefield Accelerators using Multiple Bunches by
Themos Kallos
University of Southern California Wednesday, May 9th 2007ad
SLAC
CERN • SLAC: 50 GeV e- over 3km 17MV/m • LHC : 7 TeV p+ over 27km • ILC : 500 GeV e- over 30km, $6.5B - Too long, too expensive •Limited by wall breakdown
Witness e-
p
2 c
p
Electric field
e2 n p
0 me
ATF
SLAC
• 35 MeV/m over 1.7cm Goals: 1. Monoenergetic bunches
• 50 GeV/m over 90cm (higher I, np ) • Energy doubling! (42 GeV84 GeV)
2. Multiply the energy Yakimenko et al., 2003 & Blumenfeld et al., 2007
400
The transformer ratio is always less than 2: E 2
Wakefield
E+
200
ebeam
0
-400 0 2
1
x 10
4
2
3
Time [ps] Energy Spectrum after 10mm of plasma
i.e., A small 5 witness at best gains twice the energy of a single symmetric driver
4
Drive Bunch
1.5
Witness Bunch
How can we do better?
Initial Spectrum
1
Final Spectrum
0.5 0
E
E-
-200
# of particles [100,000 total]
Wakefield Amplitude [MeV/m]
Wakefield and beam density, 1e+016cm-3
54
56
58 60 62 eBeam Energy [MeV]
64
66
68
λp
λp
2m 50 GeV/m
100 GeV
100 GeV
200 GeV
2m 4x50 GeV/m
100 GeV
4 x 100 GeV
500 GeV
ACT II The 2-bunch experiment
2 Bunches in energy 2 Bunches in time? Figure by W.Kimura
x E Next: In time
Figures by W.Kimura
BEAM SPLITTER
Bolometer signal (arb. unit s)
Detector
TRANSLATING MIRROR
1
.
0.5
0
High Energy Bunch only
0.5
MIRROR CTR LIGHT
3
2
1
0 1 P osition (psec)
2
3
1
1μm Ti foil
Corresponds to σz1 =150fs, σz2=90fs Charge Ratio Q1:Q2 = 2:1 500fs apart
Bolometer signal (arb. unit s)
e-BEAM
Fit
.
0.5
0
Both bunches
0.5 3
2
1
0 1 P osition (psec)
2
3
Next: Plasma
n n0 e
T = 0.6μs
T = 0.3μs
t t0 T
Plasma ON
4x1015 cm-3
[MeV/m] Wakefield (MV/m) EAmplitude
D
[100,000 total] # of particles # Particles
Plasma OFF
W
Wakefield and beam density, 4e+015cm-3 200
0
-200 0
3000 2000
0.5
1
1.5
2
2.5 3 Time [ps] Initial Spectra
3.5
4
4.5
5
Drive beam Witness beam Initial Final
1000 0 56
57
58
59 60 eBeam Energy [MeV]
-1.3MeV over 6mm -200MeV/m
61
62
(Witness)
63
1x1016 cm-3
[MeV/m] Wakefield (MV/m) E Amplitude
D
[100,000 total] # of particles # Particles
Plasma OFF Plasma ON
W
Wakefield and beam density, 1e+016cm-3 200 0 -200 0
3000 2000
0.5
1
1.5
2
2.5 3 Time [ps] Initial Spectra
3.5
4
4.5
5
Drive beam Witness beam Initial Final
1000 0 56
57
58
59 60 eBeam Energy [MeV]
61
62
+0.9MeV over 6mm +150MeV/m (Witness)
63
E (MV/m)
Wakefield Amplitude [MeV/m]
# Particles
1x1016 cm-3
# of particles [100,000 total]
Plasma OFF Plasma ON
W
Wakefield and beam density, 1e+016cm-3 200
0
-200 0
0.5
1
1.5
2
2.5 3 Time [ps] Initial Spectra
3.5
4
4.5
5
5000 Drive beam Witness beam Initial Final
4000 3000 2000 1000 0 56
57
58
59 60 eBeam Energy [MeV]
61
62
63
-1.0MeV over 6mm -165MeV/m (Witness only) Unloaded gradient: 165+150=315MeV/m (Driver only)
T = 0.3μs
To be submitted to PRL
ACT III The 100-bunch experiment
13
eBeam Density [cm-3]
x 10
IFEL Microbunched eBeam
3 2 1 0 -1 3.8
4
4.2 4.4 Time [ps]
4.6
Next: Exp. Layout
Electron Beam
Microbunches
Ipeak≈100A σr=75μm
45 MeV
Ipeak≈600A
IFEL Buncher
Capillary Plasma
Energy Diagnostic
1500μm
Wiggler np=1019 cm-3
Laser Beam
λ0=10.6μm, 200ps
Ppeak≈50MW
10.6μm
Resonant for λp=10.6μm
Requirements: Establish Microbunching Establish 1019 cm-3 Plasma Density Next: IFEL
Energy exchange between electrons and laser E-Field
Position
dW e ve Elaser dt
Energy
Position
Energy
Energy
Energy
2%
Position
Position 254cm
Next: In time, CTR
FFT
The spectrum contains all the information of the geometry of the eBeam
Plasma Density [cm-3 ]
Plasma Density for Various Capillary Lengths 60kV Discharge, 0.6mm Diameter 1.06E+19 9.6E+18 8.6E+18 7.6E+18 6.6E+18 5.6E+18 4.6E+18 3.6E+18 2.6E+18 1.6E+18 6E+17
We do not have above 1019 yet… 20mm
Typical error bar
16mm 12mm new pulser 8mm new pulser 6mm 4mm new pulser
0.0
0.5
1.0
1.5
Neutral Gas Pressure [atm]
2.0
Small ionization fractions (<10%) Large energy density required… …in very short time Plasma current (kA) deflects beam Dynamic pressure yields lower density (2-7 times)
Photos by J.H.Chen
Encore The 7-bunch experiment
If Mohamed can’t go to the mountain, the
mountain must go to Mohamed
1019cm-3 at 10.6μm 1018cm-3 at 33.5μm
Create ~30μm microbunches by using a metal grid to block portions of the initial eBeam
Time Energy
Energy
Energy z
Time
Time
x
Distance 350μm separation 200μm wide (fwhm) Add small witness bunch!
Muggli et al., 2007
6x50pC drivers λp = 50μm np = 4.4x1017 cm-3
Wakefield Amplitude [MeV/m]
Wakefield and beam density, 4e+017cm -3 400 eBeam Wakefield
200 0 -200 -400
0
0.2
0.4
0.6
0.8
1 Time [ps]
1.2
1.4
1.6
1.8
2
# of particles [100,000 total]
Energy Spectrum after 10mm of plasma 10000 8000 6000 4000 2000 0
54
56
58
60 62 eBeam Energy [MeV]
64
66
68
Wakefield Amplitude [MeV/m]
Wakefield and beam density, 4e+017cm -3 400 eBeam Wakefield
200 0 -200 -400
0
0.2
0.4
0.6
0.8
1 Time [ps]
1.2
1.4
1.6
1.8
2
# of particles [100,000 total]
Energy Spectrum after 10mm of plasma 10000 8000 6000 4000 2000 0
54
56
58
60 62 eBeam Energy [MeV]
64
66
68
Wakefield Amplitude [MeV/m]
Wakefield and beam density, 4e+017cm -3 400 eBeam Wakefield
200 0 -200 -400
0
0.2
0.4
0.6
0.8
1 Time [ps]
1.2
1.4
1.6
1.8
2
# of particles [100,000 total]
Energy Spectrum after 10mm of plasma 10000 8000 6000 4000 2000 0
54
56
58
60 62 eBeam Energy [MeV]
64
66
68
Wakefield Amplitude [MeV/m]
Wakefield and beam density, 4e+017cm -3 400 eBeam Wakefield
200 0 -200 -400
0
0.2
0.4
0.6
0.8
1 Time [ps]
1.2
1.4
1.6
1.8
2
# of particles [100,000 total]
Energy Spectrum after 10mm of plasma 10000 8000 6000 4000 2000 0
54
56
58
60 62 eBeam Energy [MeV]
64
66
68
Wakefield Amplitude [MeV/m]
Wakefield and beam density, 4e+017cm -3 400 eBeam Wakefield
200 0 -200 -400
0
0.2
0.4
0.6
0.8
1 Time [ps]
1.2
1.4
1.6
1.8
2
# of particles [100,000 total]
Energy Spectrum after 10mm of plasma 10000 8000 6000 4000 2000 0
54
56
58
60 62 eBeam Energy [MeV]
64
66
68
Wakefield Amplitude [MeV/m]
Wakefield and beam density, 4e+017cm -3 400 eBeam Wakefield
200 0 -200 -400
0
0.2
0.4
0.6
0.8
1 Time [ps]
1.2
1.4
1.6
1.8
2
# of particles [100,000 total]
Energy Spectrum after 10mm of plasma 10000 8000 6000 4000 2000 0
54
56
58
60 62 eBeam Energy [MeV]
64
66
68
Average Temperature [F]
85 75 65 55 45 35 25
Los Angeles VS ATF
LA ATF
Time Source: Weather.com
Thank you!
Bane et al., 1985
• The transformer ratio is 2π-times proportional to the number of plasma wavelengths under the beam • Not trivial to create these beams! Next: Multiple beams
OSIRIS (Fortran)
Themosiris (matlab)
Particle zpositions ,v
• Quasi 2D
i
i
• No field updates Lorentz dp Force dt
EvB c
t
En, m , Bn, m
n, m , j n, m
• x1000 faster • Plasma density scans
2n n n n , E bunch t 2 t
Hγ(434nm)
Hβ(486nm)
Hα(656nm)
Kaganovich et al., 1997
Ratio of CTR harmonics
10
8
10
6
10
4
10
2
10
0
Experiment Data Range
0
Ratio of CTR harmonics vs microbunching Ratio of 1st/2nd Ratio of 1st/3rd Ratio of 2nd/3rd
0.5 1 1.5 z of each microbunch [ m]
All 3 data sets agree around σz=0.7μm
2
Theory & Simulation
Wakefield Evolution @65MeV – Resonant Case 7GeV/m 1
2
3
The electron beam density x100 (1), the theoretical wakefield (2) and the Osiris simulated wakefield (3) after 1mm of propagation in the plasma. Units: 1=300GeV/m