Quadratic Formula: PROOF −𝑏± 𝑏 2 −4𝑎𝑐
If 𝑎𝑥 2 + 𝑏𝑥 + 𝑐 = 0, Then 𝑥 = 2𝑎 ________________________________________________________________________________________ 𝑎𝑥 2 + 𝑏𝑥 + 𝑐 = 0 Complete the square. Move the constant to the other side.
𝑎𝑥 2 + 𝑏𝑥 = −𝑐 Remove the coefficient of x2.
𝑎𝑥 2 𝑏𝑥 −𝑐 + = 𝑎 𝑎 𝑎 𝑥2 +
𝑏𝑥 𝑐 = − 𝑎 𝑎
Add new constant to each side. (1/2 the coefficient of x)2.
𝑏𝑥 𝑥 + + 𝑎
2
1 𝑏 2 𝑎
2
𝑐 = − + 𝑎
1 𝑏 2 𝑎
2
Simplify.
𝑥2 +
𝑏𝑥 𝑏2 𝑐 𝑏2 + = − + 𝑎 4𝑎2 𝑎 4𝑎2
𝑥2 +
𝑏𝑥 𝑏2 −4𝑎𝑐 + 𝑏 2 + = 𝑎 4𝑎2 4𝑎2 Perfect square.
𝑏 2𝑎
𝑥+
2
=
𝑏 2 − 4𝑎𝑐 4𝑎2
Properties of square roots. Take the square root of each side.
𝑥+
𝑏
2
2𝑎
𝑏 2 − 4𝑎𝑐
=±
4𝑎 2
Simplify.
𝑥+
𝑏 2𝑎
=
± 𝑏 2 − 4𝑎𝑐 2𝑎
Solve for x.
𝑥=
± 𝑏 2 − 4𝑎𝑐 𝑏 − 2𝑎 2𝑎
The QUADRATIC FORMLA.
𝑥=
−𝑏 ± 𝑏 2 − 4𝑎𝑐 2𝑎
Proof complete.
-Sgt Ryals, USMC