PUNTO FIJO.
E1) Utilice el mΓ©todo de Punto Fijo para localizar la raΓz de π(π₯) = π π₯ β 3π₯ 2 con un valor inicial de X0 = 0, e iterar hasta que el error estimado sea menor a 0.001. Tenemos que: π(π₯) = π π₯ β 3π₯ 2 βΉ π₯ = βπ π₯ /3 βΉ π(π₯) = βπ π₯ /3
π
ππ
0 1 2 3 4 5 6 7 8 9
0 0.577350269 0.770565198 0.848722038 0.88254533 0.897597545 0.904378445 0.907449899 0.908844565 0.909478553
βππ+π β ππ β 0.577350269 0.193214929 0.07815684 0.033823292 0.015052215 0.0067809 0.003071454 0.001394666 0.000633988 < 0.001
Tenemos π(π₯) = βπ π₯ /3 : π₯0 = π(π₯0 ) = 0 π₯1 = π(π₯0 ) = π(0) = βπ 0 /3 = 0.577350269 π₯2 = π(π₯1 ) = π(0.577350269) = βπ 0.577350269 /3 = 0.770565198 π₯3 = π(π₯2 ) = π(0.770565198) = βπ 0.770565198 /3 = 0.848722038 π₯4 = π(π₯3 ) = π(0.848722038) = βπ 0.848722038 /3 = 0.88254533
Sabemos βπ₯π+1 β π₯π β |π₯1 β π₯0 | = |0.577350269 β 0| = 0.577350269 |π₯2 β π₯1 | = |0.770565198 β 0.577350269| = 0.193214929 |π₯3 β π₯2 | = |0.848722038 β 0.770565198| = 0.07815684
|π₯4 β π₯3 | = |0.88254533 β 0.848722038| = 0.033823292
E2) Utilice el mΓ©todo de Punto Fijo para localizar la raΓz de π(π₯) = π₯ 2 β 5π₯ β π π₯ con un valor inicial de X0 = 0, e iterar hasta que el error estimado sea menor o igual a 0.0001. Tenemos que: π(π₯) = π₯ 2 β 5π₯ β π π₯ βΉ π₯ = ( π₯ 2 β π π₯ )/5 βΉ π(π₯) = ( π₯ 2 β π π₯ )/5
π
ππ
0 1 2 3 4 5 6
0 -0.2 -0.15574615 -0.166303907 -0.163826372 -0.164410064 -0.164272677
βππ+π β ππ β -0.2 0.04425385 0.010557757 0.002477535 0.000583692 0.000137387 β€ 0.0001
Tenemos π(π₯) = ( π₯ 2 β π π₯ )/5 : π₯0 = π(π₯0 ) = 0 π₯1 = π(π₯0 ) = π(0) = ( 02 β π 0 )/5 = β0.2 π₯2 = π(π₯1 ) = π(β0.2) = (( β0.2)2 β π β0.2 )/5 = β0.15574615 π₯3 = π(π₯2 ) = π(β0.15574615) = ( (β0.15574615)2 β π β0.15574615 )/5 = β0.166303907 π₯4 = π(π₯3 ) = π(β0.166303907) = ( (β0.166303907)2 β π β0.166303907 )/5 = β0.163826372
Sabemos βπ₯π+1 β π₯π β |π₯1 β π₯0 | = |β0.2 β 0| = β0.2 |π₯2 β π₯1 | = |β0.15574615 β (β0.2)| = 0.04425385 |π₯3 β π₯2 | = |β0.166303907 β ( β0.15574615)| = 0.010557757 |π₯4 β π₯3 | = |β0.163826372 β (β0.166303907)| = 0.002477535