Pt-bpt-log-mu(new)

  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Pt-bpt-log-mu(new) as PDF for free.

More details

  • Words: 1,677
  • Pages: 5
HCL30784.blogspot.com

Bµi tËp ph−¬ng tr×nh logarit, mò.

Bµi 1 Gi¶i c¸c ph−¬ng tr×nh sau a) 22x−3 = 4x

Bµi 6 Gi¶i ph−¬ng tr×nh sau x

57 = 75

2 +3x−5

1

3

b) 9x − 2x+ 2 = 2x+ 2 − 32x−1

Bµi 7 Gi¶i c¸c ph−¬ng tr×nh sau

c) 9x − 3x − 6 = 0 d) 9x

2 −1

− 36.3x

2 −3

a) 2 −

√ x 5 3 +

b) 4x+



x2 −2

c)

√ x−10 3 − 84 = 0

10

− 5.2x−1+



x2 −2

2

x

2

+ 9cos

b) 4cos 2x + 4cos

2



3−

√ x √ √ x √ 2 + 3 + 2 = ( 5)x x

d) 3x − 4 = 5 2

=6

e) 125x + 50x = 23x+1

Bµi 3 Gi¶i ph−¬ng tr×nh sau a) 9sin

√ x √ x 3 + 2 + 3 = 4x

b) 3x + 4x = 5x

+3=0

Bµi 2 Gi¶i c¸c ph−¬ng tr×nh sau a)

x

Bµi 8 Gi¶i c¸c ph−¬ng tr×nh sau

x

= 10

a) 8.3x + 3.2x = 24 + 6x

x

=3

b) 4x

Bµi 4 Gi¶i c¸c ph−¬ng tr×nh sau √ tan x √ tan x + 3−2 2 =6 a) 3 + 2 2 p p √ cos x √ cos x b) 7+4 3 + 7−4 3 =4 √ x √  √ x √ c) 2+ 3 + 7+4 3 2− 3 = 4(2+ 3) Bµi 5 Gi¶i c¸c ph−¬ng tr×nh sau

2 −3x+2

+ 4x

2 +6x+5

= 42x

2 +3x+7

c) 52x = 32x + 2.5x + 2.3x Bµi 9 Gi¶i ph−¬ng tr×nh sau 2x+1 − 4x = x − 1 Bµi 10 Gi¶i ph−¬ng tr×nh sau 2

6log6 x + xlog6 x = 12

a) 18.4x − 35.6x + 12.9x = 0

Bµi 11 Gi¶i ph−¬ng tr×nh sau

b) 25x + 10x = 22x+1

5x .8

x−1 x

= 500

log(100x2 )

c) 4log(10x) − 6log x = 2.3

√ x √ x d) 5 − 21 + 7 5 + 21 = 2x+3

3

Bµi 12 Gi¶i ph−¬ng tr×nh sau x2 +1 x2 − x − 1 =1

+1

HCL30784.blogspot.com

Bµi 13 Gi¶i ph−¬ng tr×nh

Bµi 21 Gi¶i ph−¬ng tr×nh

2 x − 3 x −x = |x − 3|2

log2 (x2 + 3x + 2) + log2 (x2 + 7x + 12) = 3 + log2 3

Bµi 14 Gi¶i ph−¬ng tr×nh 25x − 2(3 − x).5x + 2x − 7 = 0

Bµi 22 Gi¶i ph−¬ng tr×nh log9 (x2 − 5x + 6)2 =

Bµi 15 Cho ph−¬ng tr×nh m9x + 3(m − 1)3x − 5m + 2 = 0 T×m m ®Ó ph−¬ng tr×nh ®· cho: a) cã nghiÖm b) Cã hai nghiÖm tr¸i dÊu c) Cã hai nghiÖm ph©n biÖt ©m. d) Cã hai nghiÖm x1 , x2 tháa ®iÒu kiÖn 0 < x1 < 1 < 2 < x2 Bµi 16 Gi¶i c¸c ph−¬ng tr×nh sau a) log4 (x + 3) − log4 (x − 1) = 2 − log4 8 2

b) log21 (4x) + log2 ( x8 = 6)

1 x−1 log√3 ( ) 2 2

+ log3 |x − 3| Bµi 23 Gi¶i ph−¬ng tr×nh log 2 + log2 4x = 3 x

Bµi 24 Gi¶i ph−¬ng tr×nh √ log4 (x+1)2 +2 = log√2 ( 4 − x)+log8 (4+x)3 Bµi 25 Gi¶i ph−¬ng tr×nh log2 x + log3 x + log5 x = 1 Bµi 26 Gi¶i ph−¬ng tr×nh

2

c) log√5 (4x − 6) − log5 (2x − 2)2 = 2 Bµi 17 Gi¶i ph−¬ng tr×nh

log2 x log3 x = 1 Bµi 27 Gi¶i ph−¬ng tr×nh

log3 (3x − 1) log3 (3x+1 − 3) = 6 Bµi 18 Gi¶i ph−¬ng tr×nh

  1 log4 2 log3 (1 + log2 (1 + 3 log2 x)) = 2 Bµi 28 Gi¶i ph−¬ng tr×nh

x

x + log2 (9 − 2 ) = 3 Bµi 19 Gi¶i ph−¬ng tr×nh √ log2 (x + 1)2 + log2 ( x2 + 2x + 1) = 6 Bµi 20 Gi¶i ph−¬ng tr×nh log2 (x2 + x + 1) + log2 (x2 − x + 1) 4 x2 + 1) = log2 (x4 − x2 + 1) + log2 (x4 +

2 log 1 (4 − x) 1 4 + =1 log6 (x + 3) log2 (x + 3) Bµi 29 Gi¶i ph−¬ng tr×nh log7 x = log3 (2 +



x)

Bµi 30 Gi¶i ph−¬ng tr×nh x + xlog2 3 = xlog2 5

HCL30784.blogspot.com

Bµi 31 Gi¶i ph−¬ng tr×nh

Bµi 34 T×m m ®Ó ph−¬ng tr×nh log3 (x2 + 4mx) + log 1 (2x − 2m − 1) = 0

logx (x + 1) = log3 2

3

cã duy nhÊt nghiÖm.

Bµi 32 T×m m ®Ó ph−¬ng tr×nh lg(x2 + mx) = lg(x + m − 1) Bµi 33 Gi¶i ph−¬ng tr×nh √ √ (2 + 2)log2 x + x(2 − 2)log2 x = 1 + x2

Bµi 35 Gi¶i ph−¬ng tr×nh √ log2 (1 + x) = log3 2 Bµi 36 Gi¶i ph−¬ng tr×nh 25log0,2 (sin

cã duy nhÊt nghiÖm.

2

x+6 sin x cos x+5)

1 36

=

Bµi tËp bÊt ph−¬ng tr×nh logarit, mò.

Bµi 1 Gi¶i bÊt ph−¬ng tr×nh

Bµi 6 Gi¶i bÊt ph−¬ng tr×nh x

4x+1 − 16x < 2 log4 8

3x+1 − 22x+1 − 12 2 < 0

Bµi 2 Gi¶i bÊt ph−¬ng tr×nh √ √ x−1 ( 5 + 2)x−1 ≥ ( 5 − 2) x+1

Bµi 7 Gi¶i bÊt ph−¬ng tr×nh

Bµi 3 Gi¶i bÊt ph−¬ng tr×nh

Bµi 8 Gi¶i ph−¬ng tr×nh

32x √ 9 x−1

− 8.3x−



x−1

−9>0

Bµi 4 Gi¶i bÊt ph−¬ng tr×nh 2 +1

4x2 + x.2x

2

2

+ 3.2x > x2 .2x + 8x + 12

Bµi 5 Gi¶i bÊt ph−¬ng tr×nh 2x−x2 +1

25

2x−x2 +1

+9



8.3

√ x+ 4 x

+9

√ 4

x+1



≥9

x

log3 (x2 + x + 1) − log3 x = 2x − x2 Bµi 9 Gi¶i bÊt ph−¬ng tr×nh √ √ log2 (x − x2 − 1) log3 (x + x2 − 1) √ = log6 (x − x2 − 1) Bµi 10 Gi¶i ph−¬ng tr×nh

2x−x2

≥ 34.15

logx (cos x−sin x)+log 1 (cos x+cos 2x) = 0 x

5

HCL30784.blogspot.com

Bµi 11 Gi¶i bÊt ph−¬ng tr×nh log2

Bµi 21 Gi¶i bÊt ph−¬ng tr×nh √ log5 ( 3x + 3) logx 5 > 1

x2 + 8x − 1  ≤2 x+1

Bµi 22 Gi¶i bÊt ph−¬ng tr×nh Bµi 12 Gi¶i bÊt ph−¬ng tr×nh log2



log2 x + log3 x < 1 + log2 x log3 x

15  log 1 (2 − ) ≤ 2 2 16 x

Bµi 23 Gi¶i bÊt ph−¬ng tr×nh   logcos x logsin x (sin x + cos 2x) > 0

Bµi 13 Gi¶i ph−¬ng tr×nh log2 (2x + 1) + log3 (4x + 2) = 2

Bµi 24 Gi¶i vµ biÖn luËn bÊt ph−¬ng tr×nh

Bµi 14 Gi¶i c¸c bÊt ph−¬ng tr×nh sau

xloga x+1 > a2 x

a) log2 (2x + 1) + log3 (4x + 2) ≤ 2 b) log2 (2x +1)+log3 (4x +2)+log5 (3x +4) ≤ 3 Bµi 15 Gi¶i bÊt ph−¬ng tr×nh (4x − 12.2x + 32) log2 (2x − 1) ≤ 0 Bµi 16 Gi¶i bÊt ph−¬ng tr×nh √ √ log3 x2 − x − 6+log 1 x − 3 > log 1 (x+2) 3

3

Bµi 17 Gi¶i bÊt ph−¬ng tr×nh p log9 (3x2 + 4x + 2)+1 > log3 (3x2 +4x+2) Bµi 18 Gi¶i bÊt ph−¬ng tr×nh

Bµi 25 Cho a ≥ 1, b ≥ 1, chøng minh r p p a+b ) log2 a + log2 b ≤ 2 log2 ( 2 Bµi 26 Cho a > 0, b > 0, chøng minh log 1 a + log 1 b ≥ 2 log 1 ( 2

2

2

a+b ) 2

Bµi 27 Gi¶i ph−¬ng tr×nh 2sin x + 2cos x = 21−

√ 2 2

Bµi 28 Gi¶i ph−¬ng tr×nh 2 log3 cot x = log2 cos x

1 log√2 (x−2)+log2 |x−4|−1 Bµi 29 T×m m ®Ó mäi nghiÖm cña bÊt ph−¬ng 2 tr×nh 1 1 Bµi 19 Gi¶i bÊt ph−¬ng tr×nh ( )x > 3 3 4x − 2  1 ®Òu tháa m·n bÊt ph−¬ng tr×nh logx2 ≥ |x − 2| 2 x2 + (1 − 2m)x + m − 5 < 0 Bµi 20 Gi¶i bÊt ph−¬ng tr×nh Bµi 30 T×m m ®Ó bÊt ph−¬ng tr×nh |x − 5|  1 4x + 2m.2x − 3m + 4 > 0 tháa logx3 ≥ 6 6x 3 a) ∀x ∈ R b) ∀x > 0 c) ∀x ∈ [0, 1] log4 (x2 −7x+12)2 <

HCL30784.blogspot.com

Bµi tËp tù rÌn luyÖn.

Bµi 1 Gi¶i c¸c ph−¬ng tr×nh sau

Bµi 4 Cho ph−¬ng tr×nh logarit sau q 2 log3 x + log23 x + 1 − 2m − 1 = 0

a) log4√(x + 1)2 + 2 = log√2 4 − x + log8 (4 + x)3

a) Gi¶i ph−¬ng tr×nh khi m = 2.

b) lg4 (x − 1)2 + lg2 (x − 1)3 = 25 c) log2

√ 3

p x + 3 log2 x =

b) T×m m ®Ó ph−¬ng tr×nh √ cã Ýt nhÊt mét nghiÖm thuéc ®o¹n [1, 3 3 ]

4 3

d) logx2 (2 + x) + log√2+x x = 2 Bµi 2 Gi¶i c¸c ph−¬ng tr×nh sau a) log2 (4x + 4) = x − log 1 (2x+1 − 3) 2

b) log3 (9x+1 + 4.3x − 2) = 3x + 1 c) log3

 x2 + x + 3  = x2 + 3x + 2 2x2 + 4x + 5

d) | ln(2x − 3) + ln(4 − x2 )| = | ln(2x − 3)| + | ln(4 − x2 )| Bµi 3 Gi¶i c¸c ph−¬ng tr×nh sau a) log1995 (tan x) = cos 2x b) logx

 3x + 2  x+2

>1

c) |1 + logx 2009| < 2 d) logx (log3 (9x − 72)) ≤ 1

7