Protein, Sintesis Protein, Metabolisme Protein Blok 6 2018.pptx

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Protein, Sintesis Protein, Metabolisme Protein Blok 6 2018.pptx as PDF for free.

More details

  • Words: 2,141
  • Pages: 86
PROTEIN, SINTESIS PROTEIN DAN METABOLISMENYA

1

Protein Makromolekul yang terdiri dari > 100 asam amino yang dihubungkan dengan ikatan peptida. Polipeptida : kurang dari 100 asam amino Berperan penting dalam berbagai fungsi fisiologis dalam tubuh manusia

2

Asam Amino Mempunyai gugus asam (-COOH) dan gugus amino (–NH2) , sehingga dapat bersifat asam atau basa. Hidrolisis sempurna protein akan menghasilkan 20 macam asam amino. DNA mengkode 20 macam asam amino. Mempunyai atom C asimetris, mengakibatkan adanya D dan L isomer. Asam amino dalam tubuh manusia ada dalam bentuk L-asam amino. Atom C yang mengikat gugus asam (-COOH) dan gugus amino (–NH2) disebut C-alpha, berikutnya B-beta, Cgamma dst. 3

Penamaan asam amino dapat disingkat dengan satu huruf atau 3 huruf

4

5

6

Chemical properties of amino acids Non-polar and hydrophobic Neutral Basic

Polar and hydrophilic

Acid

7

Macam-macam asam amino Rantai R-nya berupa rantai alifatis : glisin, alanin, valin, leusin, isoleusin Rantai R-nya mengikat gugus –OH : serin, treonin, tirosin Rantai R-nya mengikat S : sistein dan metionin

Rantai R-nya mengikat gugus asam atau amidanya : aspartat, asparagin, asam glutamat, glutamin Rantai R-nya mengikat gugus basa : arginin, lisin, hidroksilisin, histidin Rantai R-nya mengikat cincin aromatis : histidin, fenilalanin, tirosin, triptofan, Asam amino : prolin dan hidroksi prolin 8

Asam amino esensiil : asam amino yang diperlukan tetapi tidak dapat dapat disintesis oleh tubuh (valin, leusin, isoleusin, lisin, treonin, fenilalanin, triptofan dan metionin).

Asam amino semi esensiil : asam amino yang dapat disintesis tubuh, tapi tidak cukup untuk mendukung pertumbuhan anak-anak (arginin dan hisitidin).

9

Asam amino proteinogenik : asam amino yang menyusun protein tubuh manusia (20 macam).

Di dalam tubuh manusia terdapat asam amino yang penting, tetapi tidak ikut menyusun protein (asam amino nonproteinogenik). Misalnya : 1. Sitrulin yang berperan dalam siklus urea. 2. GABA (gamma-amino butyric acid) berperan sebagai neurotransmitter 3. Homosistein berperan dalam metabolisme asam folat 4. Karnitin sebagai transporter lipid dalam sel 10

Protein Diet dan Sintesis Protein Protein Diet Digesti, Absorpsi

Asam Amino

11

• Limiting amino acid (asam amino pembatas): asam amino yang terdapat dalam jumlah paling sedikit dalam suatu bahan makanan dibandingkan dengan kebutuhan.

• Asam amino pembatas diantaranya adalah Lisin → gandum Metionine → kacang dan polong2-an Triptofan → jagung (gelatin tdk mengandung triptofan)

12

Peptida Polimerisasi asam L-alpha amino oleh ikatan peptida merupakan strukutur dasar protein. Apabila asam amino < 100 disebut polipeptida; apabila asam amino > 100 disebut protein. Polipeptida pada bidang kesehatan: hormon : insulin, TRH Glutation antibiotik : valinomisin, gramisidin A vaksin : peptida virus antitumor : bleomisin 13

Ikatan Peptida

dipeptida : 2 residu asam amino, 1 ikatan peptida

tripeptida : 3 residu asam asam amino, 2 ikatan peptida penulisan dengan 3 atau 1 huruf Glu-Ala-Lys-Gly-Tyr-Ala E A K

G Y A

adanya ikatan peptida dapat ditunjukkan dengan reaksi biuret 14

Protein Klasifikasi Berdasar bentuk molekul Protein fibrosa : bentuk memanjang, sumbu panjang : pendek > 10. Contoh : kolagen, keratin, fibrin, miosin Protein globuler : bentuk membulat, sumbu panjang : pendek 3:1 atau 4:1. Contoh : albumin, globulin, insulin, enzim Struktur menentukan fungsi protein 15

Berdasar elemen penyusunnya Protein sederhana : bila dihidrolisis sempurna akan menghasilkan asam amino saja. Contoh : albumin, globulin, glutelin, prolamin, histon dan protamin

Protein terkonjugasi : mengandung gugus non-protein (gugus prostetis). Contoh : nukleoprotein, glikoprotein, lipoprotein, fosfoprotein, metaloprotein, kromoprotein Berdasar kelarutannya albumin : larut dalam air dan larutan garam globulin : larut dalam larutan garam protamin : larut dalam etanol 70 80% histon : larut dalam larutan garam 16

Berdasar fungsinya Katalisis : enzim

Kontraksi : aktin, miosin Regulasi gena : histon, faktor transkripsi Hormon : insulin Proteksi : fibrin, imunoglobulin Pengaturan : kalmodulin Struktural : kolagen, elastin, keratin Transport : albumin, hemoglobin, transferin Biosignal : reseptor hormon

17

Struktur Protein Struktur protein primer Struktur rantai polipeptida yang berupa urutan asam amino yang dihubungkan dengan ikatan peptida

Struktur protein sekunder Terbentuknya alpha-helix atau beta-sheet, beta-bends, loops dan coils karena adanya interaksi-interaksi kimia Interaksi kimia yang menentukan struktur sekunder yaitu ikatan hidrogen, interaksi hidrophobik, interaksi elektrostatik, interaksi van der Waals 18

Struktur protein tersier Struktur protein yang melipat (folding) menjadi struktur 3 dimensi

Struktur protein kuartener Beberapa rantai polipeptida/protein yang bergabung menjadi satu. Tiap polipeptida/protein disebut dengan subunit, bisa sama (homo) atau berbeda (hetero)

Protein yang terdiri dari 2 subunit yang sama disebut homodimer, bila subunit berlainan disebut heterodimer.

19

Structure of eucaryotic cells lysosomes

cell membrane

mitochondria nucleus nucleolus

rEPR (ribosomes)

sEPR centrosome cytoplasm

Golgi 20

NUKLEUS • Pusat simpanan informasi dalam sel • Informasi ditulis dalam bentuk nukleotida • Nukleotida : Basa nitrogen Gula 5 karbon (pentosa): Deoksiribosa (DNA) atau dan Fosfat

ribosa (RNA)

21

22

23

Watson and Crick DNA   

 

Double helix Bases in the inside Sugar-phosphat backbone on the outside Two strands run in opposite direction Bases are paired by hidrogen bonds (A-T, G-C)

24

Figure 4-3 Molecular Biology of the Cell (© Garland Science 2008)

• Informasi di dalam nukleus dibagi ke dalam buku berupa “kromosom” (molekul DNA yg dapat diamati di dalam sel selama mitosis) • Buku dibagi mjd beberapa bagian/chapter berupa “gen”.

25

26

SINTESIS PROTEIN LOKASI

27

DOGMA MOLEKULAR gene expression? -

Transkripsi : sintesis RNA dari DNA template

- Translasi : formasi sebuah protein (rangkaian asam amino) dari RNA

28

Sintesis Protein PROSES

Transkripsi terjadi di dalam inti, sedangkan translasi/transformasi terjadi di sitoplasma 29

• Proses dimana molekul DNA dikopi menjadi rantai komplementer RNA (messenger RNA=mRNA)

• Proses pengkodean mRNA menjadi protein dengan menggunakan beberapa jenis RNA 30

DNA REPLICATION • Semiconservative process

• Each parental strands serves as a template • Central enzyme DNA polymerase

• Catalyze joining of deoxyribonuclease 5’ triphosphat (dNTP)

31

32

DNA polymerase E. coli • 3 types of polymerase • Polymerase I repair of DNA damage • Polymerase II unknown • Polymerase III replication

Eukariot • 5 types of polymerase • , ,   most active in dividing cells  replication •   located in mitocondria replication in mitocondria •   active in nondividing and dividing cells  repairing of DNA damage

33

Properties of DNA polymerase

Critical implications for DNA replication • Synthesize DNA only in 5’ to 3’ direction adding a dNTP to the 3’ hydroxyl group of a growing chain 34

DNA synthesis

35

Origin of replication

• Unique sequence of DNA • Serves as a specific binding site for proteins that initiate the replication process 36

Origin of replication • Bacterial & viral genome  single ORI • E.coli 4x106 bp  1 ORI  30 min • Mamm 3x109 bp  1 ORI  30,000 min (3 weeks) • Complex structure  rate of replication  10x lower • Mamm replication few hours multiple ORI • Mammalian genome  30,000 ORI

• Specific sequence (+ 100 bp)  Autonomously Replicating Sequence (ARS)

37

Origin of replication • ARS  11 bp highly conserved sequence binding site of Origin Replication Complex (ORC)  initiate DNA replication • 1 ORI  2 replication forks  DNA being actively replicated

38

39

Steps of replication 1. 2. 3.

Binding of an initiator protein (ORC) to ARS Unwind the origin DNA Recruit the other protein

• Helicase • Single stranded DNA-binding protein Unwinding and exposing the template DNA • Brace and sliding-clamp protein Maintain association of polymerase with its template

40

Protein in replication fork

• Helicase Catalyze the unwinding of parental DNA Ahead of the replication fork

41

Single-stranded DNA-binding protein

Stabilize the unwound template DNA Keep it in an extended singlestranded state

42

Figure 5-16 Molecular Biology of the Cell (© Garland Science 2008)

Topoisomerase Parental DNA unwind  DNA ahead is forced to rotate

Catalyze the reversible breakage and rejoining DNA strands

43

Figure 5-21 Molecular Biology of the Cell (© Garland Science 2008)

Proteins in replication fork • Accessory protein: • Sliding-clamps protein  Proliferating Cell Nuclear Antigen (PCNA)  bind

to adjacent brace protein, forming a ring around the template DNA

Maintain the association of the polymerase with its template  allowing uninterrupted synthesis of DNA

44

45

Figure 5-18c Molecular Biology of the Cell (© Garland Science 2008)

46

47

48

49

The Replication Forks • Each fork  2 parental strands of DNA  2 new daughter strands • Facts: • 2 parental strands run in opposite direction (antiparallel)  continuous synthesis : • 1strand be synthesize 5’ to 3’ direction • 1strand be synthesize 3’ to 5’ direction

• DNA polymerase only catalyze polymerization 5’ to 3’ direction

50

The replication fork • 1 strand is synthesized continuously  leading strand • 1 strand is formed from small, discontinuous pieces lagging strand • Small pieces of newly synthesized DNA  Okazaki fragments

51

52

Synthesize of lagging strand • FACT !! • DNA polymerase requires a primer  cannot initiate synthesis de novo

• How is the synthesis of Okazaki fragments initiate? • Short fragment of RNA  serve as primers synthesis of RNA can initiate de novo  primase synthesizes short fragments of RNA

53

Initiation of lagging strand • Primase + polymerase α polymerase α-primase complex  initiate synthesis of RNA de novo complement to the lagging strand template  RNA primer • DNA polymerase  add a new deoxyribonucleotide only to a preformed primer strand that is hydrogen-bonded to the template  Okazaki fragment • Contain RNA-DNA joint 54

55

56

57

58

• Continuous lagging strand  RNA primers removed  replaced with DNA • RNA removal: ▫ RNase H : degrades the RNA strand of RNA-DNA hybrid ▫ Polymerase δ  as an exonuclease : hydrolyze DNA (or RNA) in 3’ to 5’or 5’ to 3’ direction 5’ to 3’ exonuclease  remove ribonucleotide from 5’ end of Okazaki  replaced with dNTP

• Joining gap  DNA ligase

59

60

61

62

Telomere • DNA polymerase  extend primers 5’ to 3’ direction  unable to copy the extreme 5’ end special mechanisms are required to replicate terminal sequence • Terminal sequence (telomere)  tandem repeats of simple sequence DNA  replicate by unique enzyme  telomerase

63

Telomerase • Capable to maintain telomeres  catalyzing telomere synthesis in the absence of DNA template • A reverse transcriptase  synthesize DNA from RNA template • Carries its own template RNA  complement to the telomere

64

65

Figure 5-41 Molecular Biology of the Cell (© Garland Science 2008)

66

67

TRANSKRIPSI Transcription • Process of copying DNA to RNA • Differs from DNA synthesis in that only one strand of DNA, the template strand, is used to make mRNA • Does not need a primer to start • Can involve multiple RNA polymerases • Divided into 3 stages • Initiation • Elongation • Termination

68

69

70

Transcription: The final product

71

72

TRANSLASI

tRNA • Is in a clover shaped structure • Brings the amino acids to the mRNA • Has an anticodon loop to recognise the codons in the mRNA (by Watson-Crick base pairing) • Is responsible for the specificity of the codon recognition

73

tRNA Charging • Aminoacylation is the process of adding an aminoacyl group to a compound. • It produces tRNA molecules with their CCA 3' ends covalently linked to an amino acid • Each tRNA is aminoacylated(or charged) with a specific amino acid by an aminoacyl tRNA synthase. • There is normally a single aminoacyl tRNA synthetase for each amino acid, despite the fact that there can be more than one tRNA, and more than one anticodon, for an amino acid.

74

75

Process of Translation • Initiation • Recognition and specificity • Elongation • Termination • Recognition of STOP codons • Usage of release factors

76

mRNA attaches to small ribosomal subunit

77

Translation - outline

78

Translation. mRNA used to make polypeptide chain (protein)

79

1.

•First the mRNA attaches itself to a ribosome (to the small subunit). •Six bases of the mRNA are exposed. •A complementary tRNA molecule with its attached amino acid (methionine) base pairs via its anticodon UAC with the AUG on the mRNA in the first position P. •Another tRNA base pairs with the other three mRNA bases in the ribosome at position A. •The enzyme peptidyl transferase forms a peptide bond between the two amino acids. •The first tRNA (without its amino acid) leaves the ribosome. 80

Translation 2

The ribosome moves along the mRNA to the next codon (three bases). The second tRNA molecule moves into position P. Another tRNA molecule pairs with the mRNA in position A bringing its amino acid. A growing polypeptide is formed in this way until a stop codon is reached.

81

End of Translation

A stop codon on the mRNA is reached and this signals the ribosome to leave the mRNA. A newly synthesised protein is now complete! 82

Translation Termination

83

Translation mRNA to Polypeptide

84

KODON (KODE GENETIK)

85

SUMMARY OF PROTEIN SYNTHESIS

86

Related Documents

Metabolisme Protein
June 2020 12
Sintesis Protein
June 2020 8
Protein
April 2020 26
Protein
November 2019 55
Protein
June 2020 23