Protein Engineering

  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Protein Engineering as PDF for free.

More details

  • Words: 1,158
  • Pages: 32
Prepared by : Danda Pani Chapagain Pramod Niraula Gopal Karki Mukesh Maharjan Ujjwal Bhushal Prem Bhat Bijaya Sharma

Submitted to: Dr. Pramod Aryal (lecturer of Animal  Biotechnology, SANN College, Gaihridhara)

The design and construction of new proteins or enzymes with novel or desired functions by modifying amino acid sequences by using recombinant deoxyribonucleic acid technology(RDT). Protein engineering is the application of science, mathematics, and economics to  the process of developing useful or valuable proteins. It is a young discipline, with  much research currently taking place into the understanding of protein folding and  protein recognition for protein design principles.

The major assumptions of the method are: (1) mutation does not significantly change the structure of the folded state (2) the target groups do not make new interactions with new partners during the course of reaction energy

DESIGNING  BETTER PROTEIN

Biochemical  Thermodynamics

Structure

Folding 

Methods of protein engineering  : ¾ Site Directed Mutagenesis (rational design) ¾ Random Mutagenesis (direct  evolution) ¾ DNA  Shuffling ¾ Fusion proteins ¾ Glycosylation ¾ PEGylation

Detailed knowledge of the structure and function of the protein is used to make  desired changes.  This has the advantage of being generally inexpensive and easy, since site‐directed  mutagenesis techniques are well‐developed.  For the rational design we should have detailed knowledge of gene sequence and  protein structure . However, there is a major drawback in that detailed structural knowledge of a protein  is often unavailable, and even when it is available, it can be extremely difficult to  predict the effects of various mutations.

• Computational protein design algorithms seek  to identify amino acid sequences that have low  energies for target structures.

1)  To alter a single amino acid residue by  mutating the codon that encodes for that  amino acid. ATG GCC GGA GAC GAG ACT ACT AAA ATG GCC GGA GTC GAG ACT ACT AAA translates to….. Met ‐ Ala ‐ Gly ‐ Asp ‐ Glu ‐ Thr ‐ Thr ‐Lys Met ‐ Ala ‐ Gly ‐ Val ‐ Glu ‐ Thr ‐ Thr ‐Lys

Application

Medicine

Example: • Effectiveness of Ribonuclease (RNase) used in  anti tumor therapy can be improved by this  site directed mutagenesis.

Asn

Leu Cys Cys Lys+

Dimerization After Protein Engineering By site directed mutagenesis

Leu

Arg Arg

Cys cys

Gln

Engineered Dimeric human  pancreatic RNase Lys+

Native Monomeric  Human Pancreatic  RNase

2) To create a new restriction site for manipulation of DNA without introducing an amino acid change. AAT TCG CAT TCT ATG GGT ACC  Asn‐ Ser ‐ His ‐ Ser ‐ Met ‐ Gly ‐Thr NcoI AAT TCG CAT T(CC ATG G)GT ACC Asn‐ Ser ‐ His ‐ Ser ‐ Met ‐ Gly –Thr New restriction site, no change in amino acid sequence.   TCT = Ser, TCC = Ser

• Possible without knowledge about  sequence/structure • Generation of mutant libraries • efficient screening

Random mutagenesis is applied selection regime is used (for protein) variants 

Further rounds of mutation and selection are then applied produces superior results to rational design

Error prone PCR: • based on the principle that Taq polymerase is  capable of annealing incompatible base‐pairs  to each other during amplification under  imperfect PCR conditions.

• Error prone PCR:

Error prone PCR: • • • • • • • • • • • • •

7 mM MgCl2 add H2O to 100 μl 1 μl Taq 2 μM Primer as 2 μM Primer s 100 ng Template 0,2 mM dATP 0,2 mM dGTP 1 mM dCTP 1 mM dTTP 0,5 mM MnCl2 20 mM Tris (pH 8.4) 50 mM KCl

4°C 72°C 10 min 72°C 3 min 58°C 45 s 30 x 94°C 95°C 3 min

restriction

In vitro homologous recombination of pools of selected genes by random fragmentation and polymerase chain reaction reassembly To mimic the natural design process and speed it up by directed selection in vitro toward a simple specific goal. For example: protein engineering

What do we need? • applied to sequences > 1Kb • Presence of homologous regions separating  regions of Diversity • Scaffold‐like protein structures may be  particularly Suitable for shuffling

Phylogenetic tree of 4 cephalosporinase genes

% sequence similarity

Chimeric DNA  sequences 

Alpha interferons (IFN‐s) are members of the diverse  helical‐bundle superfamily of cytokine genes.  •

The human IFN‐s (Hu‐IFN‐s) are encoded by a family of over 20 tandemly  duplicated nonallelic genes that share 85–98% sequence identity at the amino  acid level. 



These proteins have potent antiviral and antiproliferative activities that have  clinical utility as anticancer and antiviral therapeutics. Although the utility of  chimeric IFNs derived from this gene family has been recognized, only a small  fraction of the 1026 possible chimeras have been explored either in natural  human evolution or by the methods of modern molecular biology; and only  one natural IFN‐ subtype, Hu‐IFN‐2, has been used in clinical studies. 



The most active engineered IFN‐, IFN alfacon‐1, is a consensus of 13 wild‐type  Hu‐IFN‐ genes that is currently used in hepatitis C therapy.

• A novel protein engineered by fusing the  protein coding sequence of one gene to the  protein coding sequence of a different gene.

Can be used to direct toxins to a target site. (IL‐2  +  Diptheria toxin) aa 2nd ‐133 human IL‐2   + 1st ‐389 aa of diptheria toxin targets IL‐2 receptors on CTCLs to kill them Denileukin diftitox (Ontak) ‐ FDA approved for cancer 30% patients have 50% reduction in tumor burden

CTCL = cutaneous T‐cell lymphoma

Ontak     

IL‐2 + diptheria toxin  fusion protein

Ontak binds to surface of lymphoma  cells via IL‐2  receptor Once internalized, diptheria toxin  kills cell.

•Add/remove glycosylation sites •Change biochemical feature/activity of the protein •Improve stability

Altering Glycosylation Sites :

• Use site‐directed mutagenesis to introduce new  glycosylation sites. • Erythropoietin as an example ¾ direct relationship between carbohydrate content  (sialic acid) and its serum half life and biological   activity in vivo ¾

Inverse relationship with receptor binding (i.e.,  more glycosylation means poorer binding)

• Hypothesis was: the more glycosylation ‐‐> longer half life ‐‐> more activity ‐‐> reduced binding affinity • Hyperglycosylated EPO (Aranesp) • ¾ ¾ ¾

In vivo no loss of drug function increased serum half‐life (3‐fold longer) reduced frequency of administration

• FDA approved 1/30/03 for anemia

• Similarly, PEGylation (monomethoxypolyethylene  glycol ) is also in use to improve the protein stability  and activity. • Protein drugs have: ¾ relatively short half‐lives ¾ wide tissue distribution ¾ potential for immunogenicity 

• It is used to design the novel protein that has  the enhanced activity. • Protein engineering is the combination of  science, mathematics and management. • It can be applied in the fields like‐ medicine,  industries,agriculture etc… • Since it is very tough task, many researches is  still done.



Glick.B,R, Pasternark,j,j, Molecular Biotechnology, Principles in Applications of Recombinant DNA,IIIrd edition ,ASM press washington D.C.



Fresht,A. Structure and Mechanism in protein science,w.h. freeman and company, New York.



Chawala,H.S. Introduction to Plant Biotechnology, IInd edition, Oxford and IBH publishing Co.Pvt. Ltd.,New Dehli.



http://www.w3.org



http://nar.oxfordjournals.org



http://ncbi.nlm.nih.gov/pubmed



http://www.upei.ca

Related Documents

Protein Engineering
October 2019 7
Protein
April 2020 26
Protein
November 2019 55
Protein
June 2020 23