BiS 271
Spring, 2006
Biomechanics and Materials
V. Material Properties V.1 Properties of Materials
Prof. Young-Ho CHO Department of BioSystems, KAIST http://biosys.kaist.ac.kr Phn: +82-42-869-8699
E-mail:
[email protected]
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
http://mems.kaist.ac.kr
Spring 2006, KAIST
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
[Note] Analysis of mechanical deformation
V.1.1 Mechanical Properties
How strong is it? Under what sort of deformation?
(1) Young’s Modulus (2) Mechanical Strength (yield, ultimate, fracture)
Tension
(3) Poisson’s Ratio
Compression
(4) Residual Stress (thermal, intrinsic) (5) Hardness
Torsion Shear
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
[Review] Stress-Strain Curve
[Review] Tensile Test
σu σy
• Specimen is “pulled” in tension at a constant rate • Load (F) necessary to produce a given elongation (ΔL) is monitored • Load vs elongation curve • Converted to stress-strain curve
Prof. Young-Ho Cho
BiS271: Biomechanics & Materials
Spring 2006, KAIST
(1) Young’s modulus
σf
σe
σ e : Elastic Limit σ y : Yield Strength σ u : Ultimate Strength σ f : Fracture Toughness
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
[Note] Resonant Test Method for Young’s Modulus The test structure is driven in the parallel direction to the silicon substrate by the electrostatic force. From the measured natural frequency of the test structure, Young’s modulus can be estimated.
σy
beam
Young’s modulus = modulus of elasticity σe
Measure the dimension of the test structure and the natural frequency
Hooke’s Law:
σ ( stress ) = Eε ( strain) σ Young ' s modulus, E = ε
truss
2 π 2 f n2 mL 3 E = tw 3
plate
1 12 mb where m = m p + mt + 4 35 [KAIST]
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
[Note] Blister Test for Young’s modulus and residual stress Pressurizing or blistering a diaphragm with pressure-deflection measurements Measurement of residual tensile stress and Young’s modulus. cylinder
Yield Strength: Strength when a definite amount of plastic strain has occurred (0.2%)
TP7658 polymer [Al Technology Inc.]
micrometer
(2) Yield Strength
Norm alized Displacem ent vs. Pressure 4500000
tube knob Dial pressure gauge microscope 3 σtd ⎡ E ⎤ td p = C1 2 + C2 ⎢ 4 a ⎣1 − ν ⎥⎦ a BiS271: Biomechanics & Materials
Normalized Pressure
4000000
specimen
3500000 3000000
Yield strength
2500000 2000000
E = 0.198 GPa
1500000
σ = 1.45 MPa
1000000 -0.002
0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
Normalized Displacement
[KAIST]
• Young Modulus : 0.198GPa • Residual Stress : 1.45MPa Prof. Young-Ho Cho
Spring 2006, KAIST
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
[Note] Fracture Toughness
(3) Ultimate and Fracture Strength
*Energy required to fail → area under stress-strain curve. Ultimate Strength: Maximum stress
Fracture Toughness: Stress at Fracture
smaller toughness (ceramics)
Engineering tensile stress, σ
larg er toughness (metals, PMCs) smaller toughnessunreinforced polymers
Engineering tensile strain,
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
ε
Spring 2006, KAIST
[Note] Blade Test for Fracture Toughness
[Note] Pull Test for ultimate strength
Inserting blade
Pre-inserted blade Silicon
δb
Pyrex #7740 glass Silicon wafer
a
Bonded area
H Crack propagation length 10mm
3h 2δ 2 G= 4 b 3 c1a (1 + γη ) [Nagoya Univ.]
[KAIST]
[UCLA] Prof. Young-Ho Cho
BiS271: Biomechanics & Materials
Spring 2006, KAIST
[Note] Ductility
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
(4) Poisson’s Ratio, υ
A
Isotropic material
F L
Ductility: degree of plastic deformation at fracture ⎛ A − AF % Reduction in Area = ⎜⎜ 0 ⎝ A0
⎛ L f − L0 ⎞ ⎟⎟ × 100 % EL = ⎜⎜ ⎝ Lo ⎠
υ=−
εy εx =− εz εz
⎞ ⎟⎟ ×100 ⎠
Spring 2006, KAIST
to extension caused by tensile stress strain curve • υ = 0.26 to 0.35 for common metal alloys
⎛ L f − L0 ⎞ ⎟⎟ × 100 % Elongation = ⎜⎜ ⎝ L0 ⎠
Prof. Young-Ho Cho
• Elastic strain in compression perpendicular • Cannot be directly obtained from stress-
• υ < 0.25 for ceramics • υ has a maximum value of 0.50 (no volume
Brittle Materials have a fracture strain of less than approx. 5%
BiS271: Biomechanics & Materials
Pyrex glass
h
change)
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
[Example]
A cylindrical rod is made of steel having poisson’s ratio,0.3, is deformed under tensile loading. The initial length of the rod is 4m, and its original diameter is 1m. When the elongation is 0.1m, calculate the change in diameter of given rod.
ε radial = −υε longit
L=4m Tensile load
d=1m
(5) Hardness 1) Hardness - Material’s resistance to localized plastic deformation - Test tools: Rockwell, Brinell, Knoop, Vickers 2) Hardness vs. Tensile Strength
ε radial = −0.3 × 0.1 = −0.03 Δd = d × ε radial = 1× (−0.03) = −0.03m
For metals, su = 3.45 HB [MPa] or 500 HB [psi] 3) Assumptions for material dimension and loading conditions: (e.g.) material thickness > 10 X indentation depth
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
(6) Residual Stress • Residual Stress :
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
1) Thermal residual stress Origin - thermal expansion coefficient mismatch ε=0 αf αf
σ r = σ rt + σ ri Thermal stress
αs
Intrinsic stress
T = Td
ε rt = (α f − α s )(Td − Tr )
εrt
αs T = Tr αf > αs → εrt > 0 : tensile αf < αs → εrt < 0 : compressible
(ex) Poly silicon on (100) Silicon wafer αf = 2.8x10-6 /K, αs = 3.2x10-6 /K, Td = 625°C & Tr = 25°C → εrt = -2.4x10-4 BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
2) Intrinsic residual stress
3) Residual Stress Control
Origin – many !!
Doping (+, -) ~ ionic radius effect in substitutional site
Si B Si
σri > 0 (tensile)
Si
P
Si
σri < 0 (compressive)
Atomic peening (-)
(ex) Boron doping in Poly-Silicon
Material composition Process conditions
densified compressive film in ion bombardment by atoms
Compensate dopant strain
Void (+)
(ex) Sputtering ~ gas pressure, substrate bias
Gas entrapment (-)
PECVD
~ everything affects residual stress
Shrinkage during cure (+)
LPCVD
~ temperature
Grain boundaries (complex, poorly understood) Etc. Prof. Young-Ho Cho
BiS271: Biomechanics & Materials
Spring 2006, KAIST
[Note] Disk or Curvature Method for residual Stress Disk method is based on a measurement of the deflection in the center of the disk substrate before and after processing.
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
[Note] Beam Buckling Method for Residual Stress The test structure, composed of a series of clamped-clamped beams, is used to measure the compressive residual stress. When a clamped-clamped beam is buckled, the compressive residual stress can be estimated.
Assumption Euler’s formula for elastic instability : no internal moments from gradients in residual stress
• Substrates ; thin, transversely isotropic, no bow • Film ; thin, uniform, constant stress • System ; uniform temperature, mechanically free
σ =
1 E T R 6 (1 − ν ) t
Thin Film
substrate BiS271: Biomechanics & Materials
When the critical load clamped beam for buckling is
2
Pcr = E
4π 2 I 2 Lc
Then, the residual stress is
-
σ = E
+
[KAIST] Prof. Young-Ho Cho
Spring 2006, KAIST
4π 2 1 A L 2c
BiS271: Biomechanics & Materials
[KAIST] Prof. Young-Ho Cho
Spring 2006, KAIST
[Note] Gauge Needle Method for Residual Stress
The test structure measures strain by interconnecting two opposed beams such that third beam to rotate as a gauge needle. The rotation of a gauge needle quantifies the residual strain.
The narrow beams amplify and transform deformations caused by residual stress into opposing displacement of the apices, where vernier scales are positioned to quantify the deformation.
Type B ; uniform response over the widest range of stress
FEM Analysis determines correction factor C f
σ = EC f
[Note] Bent-Beam Strain Gauge Method for Residual Stress
yY ( LA + LB )( LC + 0.5Y )
y L / 2 = 2(
σ=
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
V.1.2 Electrical Properties
tan θ A kL )(tan ) where k = k 4
E⎛ FL ⎞ ⎜ ΔL′ + ⎟ L⎝ 2 Ewt ⎠
F / EI
where L′ = −
BiS271: Biomechanics & Materials
1 L / 2 ∂y 2 ( ) dx 2 ∫0 ∂x
Prof. Young-Ho Cho
Spring 2006, KAIST
(0) Electrical Quantities 1) Charge(q) : Coulomb[C] ≡ 1A⋅s - 1C = charge of 6.24×1018 electrons = charge transfer of 1 A⋅sec - Charge of single electron = 1.602 × 10-19 C
(0) Electrical Quantities (1) Resistance
2) Current(i) : Ampere[A] ≡ 1C/s
(2) Capacitance
3) Voltage(v) : volt[V] ≡ 1W/A - energy/charge or power/current
(3) Inductance
4) Electric field strength(E) : [V/m] ≡ N/C
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
[Note] Electrical Elements and Properties Resistance
Inductance
I
Capacitance
I
V
R
(1) Resistance Resistance
I
V
L
V
R=
ρL A
1
C
ρ (resistivity) L [Henry]
R [Ohm]
V =L
V = RI V I= R
I =C
dV dt
1 I = ∫ Vdt L
V=
ER = ∫0 VIdt = RI 2T
ER = ∫0 VIdt 1 = LI 2 2
ER = ∫0 VIdt 1 = CV 2 2
Dissipation
Storage (K.E.)
Storage (P.E.)
T
T
T
Prof. Young-Ho Cho
BiS271: Biomechanics & Materials
1 Idt C∫
Spring 2006, KAIST
ΔA Δd ΔL =2 = −2ν A d L
π d2 4
3
ΔL ⎞ ⎛ Δd = −ν ⎜Q ⎟ d L ⎠ ⎝
F [Farad]
dI dt
For a wire of diameter, d : A =
L
A
3 → 2
ΔR ΔL ΔA Δρ = − + R L A ρ
2
ΔR ΔL Δρ = (1 + 2ν ) + R L ρ 4 Dimensional Effect (Strain gauge) Prof. Young-Ho Cho
BiS271: Biomechanics & Materials
Piezoresistive Effect (Semiconductor gauge) Spring 2006, KAIST
(2) Capacitance • Piezoresistive effect comes from the effect of strain on the energy surface d
• Gauge factor (strain sensitivity)
(ΔR R ) = (1 + 2ν ) + (Δρ ρ ) G≡ (ΔL L ) (ΔL L )
Area : A where ν : Poisson's ratio
C =ε
[Note] • metal
:G=2~5
• p-Si
: G = 100 ~ 170
• n-Si
: G = -100 ~ -140
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
A A = ε 0ε r d d
ε = ε0 εr : permittivity [ F/m] ε0 = 8.85 pF/m εr = relative permittivity (dielectric constant)
Spring 2006, KAIST
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
V.1.3. Thermal Properties
(3) Inductance Inductors store energy in a magnetic field
(1) Heat Capacity & Specific Heat (2) Thermal Conductivity (3) Thermal Expansion (4) Temperature Coefficient of Resistance (5) Thermoelectric Effects
L = Inductance [V-s/A]
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
• As the material absorbs heat, its temperature rises • Quantitative: The energy required to increase the temperature of the material (J/mol·K)
p
energy input (J/mol) temperature change (K)
• Specific Heat, c: Heat capacity per unit mass (J/kg·K) Specific Heat (J/Kg-K)
BiS271: Biomechanics & Materials
C c= m
Heat Capacity (J/mol-K) Mass (kg)
Prof. Young-Ho Cho
Spring 2006, KAIST
increasing c
dQ C= dT
Spring 2006, KAIST
[Note] Heat Capacity: Comparison
(1) Heat Capacity and Specific Heat
heat capacity (J/mol-K)
Prof. Young-Ho Cho
BiS271: Biomechanics & Materials
c p (J/kg-K) material at room T ? Polymers 1925 Polypropylene 1850 Polyethylene 1170 Polystyrene 1050 Teflon ? Ceramics Magnesia (MgO) 940 Alumina (Al 2 O 3 ) 775 Glass 840 ? Metals Aluminum Steel Tungsten Gold
BiS271: Biomechanics & Materials
c p : (J/kg-K) C p : (J/mol-K)
900 486 128 138
Prof. Young-Ho Cho
Spring 2006, KAIST
(2) Thermal Conductivity
(2) Thermal Conductivity
• General: The ability of a material to transfer heat. • Quantitative: temperature dT gradient q = −k heat flux dx (J/m2-s)
• Proportionality constant (k) that relates heat flow rate (dQ/dt) and temperature gradient (dT/dx) k=−
thermal conductivity (J/m-K-s)
1 dQ dx A dt dT
• Fourier’s Law is analogous to Fick’s Law T2 > T 1
T1 x1
x2
heat flux
q = −k
• Atomic view: Atomic vibrations in hotter region carry
7 KAIST Spring 2006,
Prof. Young-Ho Cho
1) Mechanism of Heat Transfer in Solids
• Heat transport by free electrons as they gain kinetic energy and migrate to low T areas (in Metals)
T2 > T 1
T1 x1
x2
heat flux
1 dQ A dt
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
2) Heat Transfer in Metals
• Heat transport by atomic vibrations as they move from high T to low T regions
• k = k a + ke
q=
• k in J/(s·m·K)
energy (vibrations) to cooler regions.
BiS271: Biomechanics & Materials
dT dx
A
• Free electrons are the main contributor to heat transport in high purity metals due to high velocities and lack of scattering • Alloying metals (solid solution) introduces scattering centers and the heat transfer reduces
e BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
4) Thermal Conductivity: Comparison
3) Heat Transfer in Ceramics
Material
k (W/m-K)
Energy Transfer
247 52 178 315
By vibration of atoms and motion of electrons
Magnesia (MgO) 38 Alumina (Al 2 O 3 ) 39 1.7 Soda-lime glass Silica (cryst. SiO 2 ) 1.4
By vibration of atoms
? Metals
Aluminum Steel Tungsten Gold
• They lack the free electrons of metals
? Ceramics
increasing k
• Phonon transport dominates and drops with rising temperature
? Polymers Polypropylene Polyethylene Polystyrene Teflon
Prof. Young-Ho Cho
BiS271: Biomechanics & Materials
Spring 2006, KAIST
(3) Thermal Expansion
0.12 0.46-0.50 0.13 0.25
By vibration/ rotation of chain molecules
Selected values from Table 19.1, Callister 6e.
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
8 KAIST Spring 2006,
1) Atomic analysis
• Materials change size when heating. L final − L initial = α( Tfinal − Tinitial ) L initial
α= T init Linit T final
linear coefficient of thermal expansion (1/K)
Lfinal
1 ΔL L ΔT
• Bond strength determines α…the greater the bond energy, the smaller α • Generally
αceramics < αmetals < αpolymers
• Atomic view: Mean bond length increases with T.
increasing T
r(T 1 ) r(T 5 )
Bond energy
T5 T1
BiS271: Biomechanics & Materials
Bond length (r) bond energy vs bond length curve is 밶symmetric
Prof. Young-Ho Cho
Spring 2006, KAIST
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
2) Thermal expansion coefficient properties
3) Comparison α (10 -6 /K)
Material
α
• In general, thermal expansion coefficient increases with temperature increasing
• Can have negative α • Can have α near zero
Prof. Young-Ho Cho
BiS271: Biomechanics & Materials
Spring 2006, KAIST
where
E = hf = h
• Radiation : Energy transfer by electromagnetic wave phenomena Thermal radiation
10-8
10-6
10-2
101
102
104 λ[m]
Infrared(IR) UV Visible ray (0.39 μm ~ 0.78 μm)
X-ray
BiS271: Biomechanics & Materials
λ
[eV]
h : plank constant = 6.63x10-34 J·s = 4.135x10-5 eV·s f : wave frequency v : wave velocity λ : wave length
• Ep = eΦ (work function)
e
Elevel eΦ
Cosmic ray
v
• Energy band diagram 10-4
Spring 2006, KAIST
- Photon has no mass but energy
• Radiation (Thermal, Optical)
10-10
Prof. Young-Ho Cho
BiS271: Biomechanics & Materials
(1) Light and its spectrum
10-12
• Q: Why does α generally decrease with increasing bond energy?
(2) Optical Energy
V.1.4. Optical Properties
• Spectrum
at room T ? Polymers 145-180 Polypropylene 106-198 Polyethylene 90-150 Polystyrene 126-216 Teflon ? Metals Aluminum 23.6 Steel 12 Tungsten 4.5 Gold 14.2 ? Ceramics Magnesia (MgO) 13.5 Alumina (Al 2 O 3 ) 7.6 Soda-lime glass 9 Silica (cryst. SiO 2 ) 0.4
Micro wave
Prof. Young-Ho Cho
Radio (RF)
Χ
Evacuum Econduction Ef
Egap
• E = Χ (electron affinity)
(forbidden band)
e
Evalance
e
Spring 2006, KAIST
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
v=0
Spring 2006, KAIST
V.1.5. Bio-chemical Properties
(3) Refraction
(1) Surface Energy
- index of refraction, n
n=
where
c v
c : light velocity v : wave velocity
Quantifies the disruption of chemical bonds when a surface is created
(4) Reflection - reflectivity, R where light
Ir R= Ii
Surface area ∝ Surface Energy Volume
Ir : intensity of reflected Ii : intensity of incident light
- Normal incident light
⎛ n2 − n1 ⎞ R=⎜ ⎟ ⎝ n2 + n1 ⎠
2
where
n1, n2 : indices of refraction
Prof. Young-Ho Cho
BiS271: Biomechanics & Materials
Spring 2006, KAIST
V.1.5. Bio-chemical Properties
Hydrophilic θ < 90o
γ LG Gas θ
(2) Thermo-mechanical
Solid
Hydrophobic
γ SL = γ SG − γ LG cos θ
θ > 90
γ SL : Solid - Liquid Surface Tension γ SG : Solid - Gas Surface Tension γ LG : Liquid - Gas Surface Tension θ : Contact Angle
o
Mechanical
(3) Opto-mechanical (4) Chemo-electrical (5) Opto-electrical
γ SG
BiS271: Biomechanics & Materials
Spring 2006, KAIST
(1) Electro-mechanical
Young’s Equation
Liquid
Prof. Young-Ho Cho
V.1.6. Material property interactions
(2) Contact Angle
γ SL
BiS271: Biomechanics & Materials
Electrical
Thermal
(6) Thermo-electrical (7) Thermo-chemical (8) Chemo-mechanical
Optical
Chemical
(9) Opto-chemical (10) Thermo-optical Prof. Young-Ho Cho
Spring 2006, KAIST
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
(1) Electro-mechanical: Piezo-electric
Electrical Charge induced by the external force F
Asymmetric charge distribution in the material structure
Q = dF = dσA = dεEA
• Voltage potential → Polarization of internal charge → Relative displacement of internal charges → Deformation (strain)
where, d is charge sensitivity coefficient (matrix) and E is Young’s Modulus of the material. Change in length per unit applied voltage
Piezoelectric material : Quartz, PZT (Lead Zirconate Titanate), Zinc Oxide, ZnO, Lithium Niobate
εε A 1 εε εε Δl C = ⋅ Δl = o r ⋅ ⋅ Δl = o r ⋅ Δl = o r ΔV ΔQ l dF ldσ dE Δl ε oε r = ≈ 1.23nm / V ΔV dE
Δl is independent of l, only depends on the voltage ΔV and material properties -> Stack for large Δl BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
(2) Thermo-mechanical
• Occurs due to: - uneven heating/cooling - mismatch in thermal expansion.
T room
ΔL
L room
T
compressive
σ keeps
ΔL = 0
σ(ΔT) = Eα(T0 – Tf)
Spring 2006, KAIST
Prof. Young-Ho Cho
A strongly focused laser beam has the ability to catch and hold particles (of dielectric material) in a size range from nm to µm.
Spring 2006, KAIST
d=10um
The basic principle behind optical tweezers is the momentum transfer associated with bending light The forces are in the order of 0.01 to 300pN. Possible to manipulate particles like atoms, molecules (even large) and small dielectric spheres
- Upon heating (Tf>T0), Compressive Stress (σ<0) - Upon heating (Tf
0) BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
(3) Opto-mechanical: Optical tweezer
Thermal Stress
•For a constrained solid
BiS271: Biomechanics & Materials
BiS271: Biomechanics & Materials
V. Emiliani et.al., Optics Express, Vol.12(2004)
Prof. Young-Ho Cho
Spring 2006, KAIST
In the Rayleigh Regime (diameter of particle is very small compared to the wavelength, D « λ)
(4) Chemo-electrical: Electro-wetting ElectroWetting
Scattering force due to the radiation pressure on the particle 2
Fscat =
2 I o 128π 5r 6 ⎛⎜ n p − 1 ⎞⎟ nm 2 4 c 3λ ⎜⎝ n p + 2 ⎟⎠
I o : Intensity r : Radius of spherical particle
λ : Wave lenght of light n p : Refractive index of the particle nm : Refractive index of the medium
α : Polarizability of particle
Gradient force due to the Lorenz force acting on the dipole, induced by the electromagnetic field 2 2 3 nb nb r 3 ⎛⎜ np −1 ⎞⎟ 2 Fgrad = − α∇E = − ∇E2 2 2 ⎜⎝ np 2 + 2 ⎟⎠
Prof. Young-Ho Cho
BiS271: Biomechanics & Materials
Spring 2006, KAIST
γ SL = γ SG − γ LG cos θ
γ SL
θ
Prof. Young-Ho Cho
Spring 2006, KAIST
Prof. Young-Ho Cho
Spring 2006, KAIST
γ SL : Solid - Liquid Surface Tension γ SG : Solid - Gas Surface Tension γ LG : Liquid - Gas Surface Tension θ : Contact Angle
Gas
Liquid
BiS271: Biomechanics & Materials
External voltage applied. Charge density at EDL changes so that γSL and the contact angle decrease or increase.
Droplet Manipulation using Electro-Wetting (UCLA)
Young’s Equation γ LG
No external voltage applied. Charges are distributed at the electrode-electrolyte interface, building an EDL.
γ SG Solid
Lippmann-Young Equation cos θ = cos θ 0 + θ : Contact angle
1 1
γ LG 2
cV 2
c : Capacitance per unit area V : Applied voltage
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
BiS271: Biomechanics & Materials
(5) Opto-electrical Effects
(6) Thermo-electrical: TCR
1) Photoelectric (PE) 2) Photoconductive (PC) 3) Photovoltaic (PV) Ep(λ) → I(V)
Ep(λ) → R(I,V)
Ep > eΦ
Ep
Ep > Eg
Ep
I
R
Eo
e
Ep
I
n p or metal
Ic
Eb
Thermistor
R
Eo
p Ep
e
n
Ec
cathode
Eb
R(T ) = Ro(1 + αT + βT 2 + γT 3 +)
Ep > Eg
Ep
semiconductor
anode
-
Eg Ev
+
Ec Ef Ev
• nowadays, seldom used
• recombination nose • need bias (external source) → Exposure meter
2) Seebeck effect
3) Peltier effect
• Generation of a thermoelectric voltage due to a temperature difference between the junction of two dissimilar conducting materials
•Electrical E → Thermal E
A
VAB
Spring 2006, KAIST
4) Thomson effect
• Heat transfer due to electrical current heat generation/absorption rate
• Absorption or emission of heat due to carrier movement up or down a temperature gradient
B
T2
* ΔVAB = S AB ΔT
S*AB : Seebeck coeff. (0.2~80 µV/°C) BiS271: Biomechanics & Materials
cp[J/g-K] 0.7 0.9 0.39 1.0
Prof. Young-Ho Cho
BiS271: Biomechanics & Materials
Spring 2006, KAIST
[Note] • Joule heating : Thermal heat conduction (one way) • Seebeck effect, Peltier effect (two way)
[Note] • Seebeck effect = Peltier effect + Thomson effect
• Reverse of Seebeck effect T1
I
A
T2
T1
I
Heat absorption
B
Heat generation
[Note] T ↑ → carrier density ↑ → carrier diffusion ↑ T2
Q p = Π AB I = ( S1* − S 2* ) IT
qT = ∫ φ A IdT
ΠAB : Peltier coeff.
qT : heat/sec/voltage φA : Thomson coeff.
Q p : Amount of Heat Prof. Young-Ho Cho
A
T2
Qp T1 > T2 , V1 > V2
T1
k [W/cm-K] Si 1.48 Al 2.37 Cu 4.01 SiO2 0.014
• no recombination nose • no external source required → Solar cell
Prof. Young-Ho Cho
BiS271: Biomechanics & Materials
1) Temperature Coefficient of Resistance (TCR)
Ep(λ) → V
T1
Spring 2006, KAIST
VAB
QTA
Qp1 T1
[Applications]
B
T2
Qp2
QTB
1) Voltage, current, power temperature measurement in a wide frequency range (Hz ~ GHz) 2) Fluid flow, pressure, thermoconductivity measurement 3) Power generation (~mW) BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
(7) Thermo-chemical
(8) Chemo-mechanical
Surface tension driven fluid motion under temperature gradient
Polymer actuator Voltage-displacement Working principle
Temperature gradient
Polymer actuator shifting a coin
Surface energy gradient
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
BiS271: Biomechanics & Materials
(9) Others
Prof. Young-Ho Cho
Spring 2006, KAIST
References
Opto-chemical interactions Thermo-optical interactions [1] J.J. Wortman and R.A. Evans, “Young’s modulus, Shear modulus, and Poisson’s Ratio in Silicon and Germanium”, J. of Applied Phys., Vol.36, No.1, Jan. 1965, pp.153-156 [2] H. Guckel et al., “Mechanical Properties of Fine Grained Polysilicon : The Repeatability issue”. [3] M. Madou, Fundamentals of Microfabrication, CRC Press, 1997, pp.223-224. [4] Y. B. Gianchandani, “Bent-Beam Strain Sensors,” J. of MEMS, Vol. 5, No. 1(1996), pp.52-58. [5] K. Najafi, K. Suzuki, “A Novel Technique and Structure for the Measurement of Intrinsic Stress and Young’s Modulus of Thin Films,” Proc. IEEE MEMS Workshop, Salt Lake City, 1989, pp.96-97.
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST
BiS271: Biomechanics & Materials
Prof. Young-Ho Cho
Spring 2006, KAIST