Production Technology Solutions for Volume – I _ Classroom Practice Questions 04.
Chapter‐ 1
Ans: (a)
Sol: Q = 1.6 10-3 m3/sec
Metal Casting
A = 800 mm2 Q=AV
01.
Ans: (d)
1.6 10-3 = (800 10-6) V
Sol: Permeability number =
VH PAT
V = 2 m/sec =
2
2 = 0.203m h = 2 9.81
For standard specimen H = D = 5.08 cm P = 5 gm/cm2, V=2000 cc, T= 2 min PN =
02.
2000 5.08 50.1 2 2 5 5.08 2 4
= 203 mm 05.
Ans: (c)
Sol: Vol. of casting =
Ans: (c)
Sol: Net buoyancy force = Weight of core –
=
weight of the liquid = V.g ( – d )
2 d h g d 4
AC = Amin = sprue base area
2 0.12 0.18 9.81 11300 1600 4
=
400 200 mm2 2
G.R.= 1:1.5:2 Pouring time =
Ans: (a)
Volume Sol: Pouring time = A C Vmax
150 2 200 4
ht = 200+ 50 = 250 mm
= 193.6N 03.
2 D L 4
3534291 mm3
which is displaced by core
2gh
2 10
6
=
Volume of Casting A C. Vmax 3534291
200 2 9810 250 17671 2 9810 250
8 Sec
200 2 10000 175
= 5.34 sec ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
:2: 06.
ME – GATE_ Vol – I_Solutions 07.
Ans: (c)
Sol: The dimension of pouring basin will not
Sol:
affect the pouring time
Ans: (c) 1
1 hpb =50 mm 2
2
Let V = maximum velocity of molten metal
hs= 200 mm
in the gating system, 3
d = dmin = dia. Sprue bottom
h = height of sprue = 200 mm Pouring time = P. T
V
A2 = 650 mm2
volume. of casting A c Vmax
353 2 d V 4
Q = flow rate = 6.5 105 mm3/s g = 104 mm/sec2
= 25
6.5 105 1000 mm 2 / Sec V2 = 650
35 3
= 2gh pb 2 10 4 h pb
2183.6 / d 2 …… (1) 2 d 25 4 To ensure the laminar flow in the gating
hpb = 50 mm = height of molten metal
system Re 2000
ht = total height of molten metal above
in the pouring basin the bottom of the sprue = 200 + 50mm
For limiting condition Re = 2000
Q A2 V2 A3V3 A3 2 10 4 250
V d Vd = R e 2000 2000 V
= 6.5 105 mm 3 / s
Vd
A3 = 290.7 mm2
2000 2000 0.9 1800 … (2) d d d
Ans: (d)
Sol: dtop = 225 mm
ht = 250 + 100 = 350 mm
From (1) and (2)
Volume flow rate Q = 40×106 mm3/sec
2183.6 1800 d d2 d
08.
Vbottom = 2183.6 1.21mm 1800
= 2620 mm/s Q = Atop×Vtop=Abottom×Vbottom Abottom =
ACE Engineering Publications
2 g ht = 2 9810 350
40 10 6 =15267.17 mm2 2620
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
:3: 4 15267.17
dbottom =
Production Technology 2
2
6 2
2
09. Ans: (b)
2R 2R = 1.54 = a 1.61R
Sol: A2V2 = A3V3 2252 2 9810 100 4 d 2b 2 9810 350 4
2
SP M SP D 6 D = a Cub M Cub a
=139.42 mm
SP M SP cyl M cyl 2
2 2 D D 2R Sp 6 = 1.306 = D 1.75 R D cyl 6
db = 164.5mm
So aspiration will not occur. 12.
Common Data for 10 & 11
2
Ans: 1.205
Sol: Casting – 1 (circular) 10. Ans: (a)
Diameter = 20mm, length = 50mm
11. Ans: (b)
Casting -2 (elliptical)
Sol: 3 castings of spherical, cylindrical and
Major/Minor = 2, length = 50mm, C.S. area of the casting -1 = C.S area of the
cubical
casting -2
Vsp = Vcube 4 3 R a 3 3 a =R
3
solidification time of casting 1 solidification time of casting 2
4 = 1.61 R 3
Vcyl = VSp
2
V A c2 M = c1 = c1 M c2 Vc 2 A c1 Vc1 = d 2 h = 20 2 50 4 4
D 2 H R3 4 3
= 15707.96 mm3
D 3 R 3 (D H) 4 3 1
D=
3
16 3 16 3 R R 1.75R 3 3
Ac1 = 2 d 2 dh 4 20 2 2 20 50 4 = 3769 mm2
ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
:4:
C.S area of cylinder = C.S area of ellipse 2 4 20
13.
= 20 – 10 = 10 sec Time 1 2
Latent heat Q
Latent heat = time Q = 10 10 = 100 kJ
Minor axis = 14.14mm
Latent heat/kg =
Major axis = 2 minor axis = 28.3mm a 2 b2 2
Perimeter = 2
14.
28.3 where a = major axis /2 = 14.14 mm 2 b = minor axis /2
14.14 = 7.07 mm 2
Perimeter = 70.24 mm Surface area of ellipse = perimeter length + 2 C.S. area = 70.2450 + 314 2 = 4140 mm2 = AC2 Volume of the ellipse = C.S area length = 314 50 = 15708 mm3 = Vc2 solidifica tion time of casting 1 solidifica tion time of casting 2
M = c1 M c2
2
2
V Ac2 15707.96 4140 = c1 15708 3769.9 Vc 2 A c1 = 1.205 ACE Engineering Publications
Q = 10 kW
Time taken for removing latent heat
2 (min .axis) 2 4
4 Minor axis = 20 2 2 4
Ans: 50
Sol: m = 2 kg,
maj.axis min .axis 4 =
ME – GATE_ Vol – I_Solutions
2
100 = 50 kJ/kg 2
Ans: (a)
Sol: Circular disc casting Squared disc casting C1 ; d 20cm
C2 a 20cm
t 10cm ;
t 10cm
As V C1 1.4 Freezing ratio (F.R) = X1 = As V R As As V C1 1 .4 V R As As V C2 V C2 X1 1.4 As As V R V C1 1.4 As A s 0.4 V V C1 C2 Volumetric ratio,(V.R) = Y1 =
VR 0 .8 VC
VR = 0.8 VC1 Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
:5:
Now Y2
0.8VC1 VR VC 2 VC2
0.8 20 2 10 4 = 0.628 20 20 10 15.
Production Technology Common Data for Q.16 & Q. 17 16. Ans: (a)
17. Ans: (a)
Sol: In centrifugal casting
Centrifugal force = FC = ma = m r 2 a = r2
Ans: (b)
75 g =
Sol: VC = 40 × 30 × 0.3 = 360 cc
VSc = shrinkage volume =
75 ×9810 = N 2 D
3 360 10.8 cc 100
Volume of riser Vr = =
4 2 2
Constant = N 2 D
75 9810 37273 2 2
2 d h 4
Constant = N 2 D 37273
2 4 4 50.24 cc 4
D=
0.5 0.52 = 0.51 m = 510 mm 2
N
37273 37273 = 8.55 RPS D 510
Vr ≥ 3 Vsc Vr 3 10.8 32.4cc Vr ≥ 3 VSc → Satisfied
r C
18.
where r = time taken for riser material to solidify C = time taken for casting to solidify Mr Mc
Sol:
Ans: 51.84 mm
R m R C m C mc
V V A s r A s casting V 360 As 240 30 30 0.3 0.3 40 V d 4 = 0.666 As r 6 6 360 = 0.147 2442
D (2 N)2 2
2
80 120 20 280 120 120 20 80 20
mc = 7.05 mR
d side riser given 6
mR 1.5 mC
d = 51.84 mm
r > C
Hence diameter of riser = 4 cm ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
:6: 20.
ME – GATE_ Vol – I_Solutions
Ans: 0.05 s
Sol: Momentum is considered as constant
Chapter‐ 2
Momentum of water = Momentum of liquid
Welding
metal pressure time pressure time density density 200 0.05 400 time 1000 2000
time 0.05 s
01.
Ans: (a)
Sol: V0 = 80 V,
IS = 800 A
Let for arc welding V = a+bL For power source, Vp = V0–
V0 I Is
For stable V = Vp a b L V0
V0 I Is
When L = 5, I = 500 a + b × 5 = 80 –
80 500 30 800
a + 5b = 30 when L = 7, I = 460 a b 7 80
80 460 34 800
By solving, b = 2, a = 20 V = a + bL = 20 + 2L 02. Ans: 4860 W, 1.5 mm Sol: For power source,
Vp = 36 –
I 60
Va = 2L + 27 At equilibrium conditions Va = VP 27 + 2 L = 36 –
ACE Engineering Publications
I 60
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
:7:
Production Technology
V0 40 4 I s 50 5
I 36 27 2L 9 2L 60
I = 60 (9 – 2L)
4 V0 140 250 5
If current is 360 Amps 360 = 60 (9 – 2L) 9 – 2L =
= 140 + 200 = 340
360 6 60
V0 4 V 5 340 5 Is 0 425 A Is 5 4 4
2L = 9 – 6 = 3 L=
3 1 .5 2
04.
Ans: 26.7 sec
Sol: Rated Power = Vr Ir = 50 ×103
If L = 1.5 mm,
Ir
V = 27 + 2 ×1.5 = 27+ 3 = 30 V I = 60 (9 – 2 ×1.5) = 360 A
Dr = 50% (rated duty cycle)
P = 30 ×360 = 10800 W
If Id = 1500 A (desired current)
If L = 4 mm, V = 27 + 1.5 ×4 = 33 V
Desired duty cycle,
I = 60 (9 – 1.5 ×4) = 180 A
2
I 2 D 2000 Dd = r 2 r 0.5 0.89 Id 1500
P = 33 × 180 = 5940 W Change in power = 10800 – 5940 = 4860 W
Dd =
If the maximum current capacity is 360A,
Ans: 425
05.
Sol: V = 100 + 40 L ,
Arc on time = 0.8930 Total welding time
= 26.7 sec
the maximum arc length is 1.5mm 03.
50 10 3 2000 A 25
Ans: 27.78 mm/sec
Sol: Power = P = 4 + 0.8L – 0.1L2
L = 1 to 2 mm , I = 200 to 250 A
For optimum power
L = 1, I = 250
dP 0 0.8 – 0.2L = 0 dL
V = 100 + 401 = 140 V0
V0 250 Is
L = 2, I = 200 V V = 100 + 40 2 = 180 V0 0 200 Is 40 50 ACE Engineering Publications
V0 Is
L
0.8 4 mm 0 .2
P = 4 + 0.8L – 0.1 L2 = 4 + 0.8 ×4 – 0.1 × 42 = 5.6 kW Energy losses = 20% , = 80%
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
:8:
Area of weld bead (WB)
ME – GATE_ Vol – I_Solutions
l = 1 m =1000 mm;
t = 30 mm,
1 = 2 AB AC 2
d = 4 mm,
= 5 tan 30 × 5 = 14.43
Lt = 450 mm; LS = 50 mm,
5 tan 30 A B 300
A1 = 4 30 = 120 mm2
600
A2 = A3 =
5
1 30 tan 30 30 = 259.8 mm2 2
Total volume of weld bead
C
= volume of weld bead + crowning
Volume of W.B = 14.43 × 1000 3
= 14433 mm
-6
Weight of W.B = 14433 × 10 × 8 = 115.5 g Heat required for melting of W.B = 115.5 ×1400 = 161.66 kW Time for welding =
161.66 36 Sec 0.8 5.6
1000 Welding speed = 36
27.78 mm/sec
= 1.1 volume of weld bead = 1.1 (A1+2A2)1000 = 703560 mm3 Volume /Electrode =
D2 Le 4
2 4 (450 50) = 1600 4
No of electrodes required
Total volume of weld bead volume / Electrode
703560 139.96 140 1600
x = 200mm (given) Common data for 06, 07 & 08. 06.
Ans: (d)
08.
Ans: (c)
07. Ans: (d)
No of electrodes/pass = No of passes =
1000 5 200
140 28 5
Total Arc on time
Sol: 30mm
(2) (1) (3) 30o 30o
=
1000 28 280 minutes 100
Total weld time =
280 466.67 minutes 0.6
4mm
ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
:9: 09.
Ans: 0.64 mm & 2.1 mm
Production Technology 11.
Sol: Given AC = 10 mm,
Ans: (b)
Sol: Filling rate of weld bead = filled rate by
O1A = O1C = 7 mm,
electrode
O2A = O2C = 20 mm
Area of W.B × Speed =
O2
A
B
r=20
E
4
d2 f
1.2 2 4000 4 25.12 mm2 Area of W.B= 180
r=7
D
C
Common data for 12 & 13
O1
12.
Ans: 2000 J
Sol: H.G = I2 R
= (10000)2×200×10-6×
Height of Bead = BD = O1D – O1B = O1D–
O1 A2 AB 2
= 20 – 20 5 2
2
13.
5 2000 J 50
Ans: 1264 J
Sol: h = 2t – 2 × 0.1 t = 1.8 t
= 1.8 ×1.5 = 2.7 mm
= 0.64 mm
D = 6 t 6 1.5 = 7.35 mm Depth of Penetration = BE = O1E–O1B = O1 E
O2 A AB 2
= 7 7 2 52
2
= 2.10 mm
0.1 t h
0.1 t
Common Data Q. No 10 and 11 10.
Ans: (c)
Sol: I = 200,
V = 25,
speed = 18 cm /min
D = 1.2 mm, f = 4 m /min, = 65%, Heat input =
VIη speed 25 200 0.65 60 18
Vol. of nugget = =
4
D2h
7.352 2.7 = 114.5 mm2 4
Heat required = Volume × ×heat required /g = 114.5 10 3 8 1380 = 1264 J
= 10.83 kJ / cm ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 10 : 14.
Ans: 2.3 & 4.6 MJ Sol: RC = 0.85 nr
17.
Ans: (b)
Sol: Heat dissipated = 360 – 344 = 16 J
= Resistivity of metal
18.
R C1
0.85 2 10 5 = 1.082105 25 0.02
R C2
0.85 2 10 5 = 5.41 106 50 0.02
(i) Ans: (a), (ii) Ans: (b)
Sol: P = 2 kW = 2 103 Watt,
2
V2 V (Heat generation)1 = I2R = R = R R
(H.g)1 =
ME – GATE_ Vol – I_Solutions
V = 200 mm/min, L = 300 mm Heat required (HR) = 40 Kcal = 401034.2 Joule Welding time =
300 1.5 min 1.5 60 200 = 90sec
52 = 2310546.04 1.082 10 5
Heat input = 2 103 90 Joule
52 (H.g)2 = = 4621072.08 5.41 10 6
HI =
HR 40 10 3 4.2 0.9333 HI 2 10 3 90 = 93.33%
15.
Ans: (c)
19.
Sol: Heat generated = Heat utilized
Sol: Heat supplied = Heat utilized
I2R = Vol. of nugget × × H. R/g
0.5 J = m (S.H. + L.H) = V (SH+LH)
I 2 200 10 6 0.1
= (a×h) (Cp (Tm–Tr)+LH)
2 0.005 1.5 10 3 8000 1400 103 4
= 0.05 × 10-6 × h × 2700 [896 (933 – 303) + 398 × 103]
I = 4060 A
h = 0.00385 m = 3.85 mm
Common Data Q. 16 & Q. 17 16.
20.
Ans: (c)
Sol: I = 3000 A,
Ans: (d)
Ans: (c)
Sol: Volume to be melted = (110 2 100 2 ) 2 4
= 0.2, R = 200 Ω
Volume of nugget = 20 mm3
3298.66 mm3
2
Heat generation = I R = 30002 ×200×10-6 ×0.2 = 360 J
Heat required = V c p Tm Tr LH -9
= 800020×10 ×500(1520 –20)+1400×10 = 344 J ACE Engineering Publications
Total heat required = 3298.66 × 10-9 × 64.4 ×106 = 212.4 Joules
3
P = VI = V
V V 2 30 2 21.43 42 R R
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 11 :
Total heat required = heat to be generated 212.4 = Pt t=
21.
212.4 10 sec 21.43
23. Ans: 61.53 % Sol: Thermal efficiency =
Ans: (a)
= 200
4
10 0.5 7854 2
Heat required 100 Heat supplied
Heat required = 10 × 80 = 800 J thermal =
Sol: Frictional force F = Pressure × Area ×
800 100 = 61.53 % 1300
24. Ans: 464.758 A Sol: Dd = 100% = 1, Ir = 600A, Dr = 0.6
3 Torque = F Radius 4
D d I 2r D r I d2
3 Torque = 7854 5 10 3 29.45 4
1 600 2 2 I d2 600 2 0.6 0.6 Id
Power, P =
22.
Production Technology
2NT 60000 2 4000 29.45 = 12.33 kW 60000
Id = 464.758A 25.
Ans: 17
Sol: Number of electrodes
Ans: 0.065 sec
Sol: Given:
3
Volume = 80 mm , Current (I) = 10000 A, E = 10 J/mm3, Qlost = Heat lost = 500 J, R = 0.0002 ohms Total energy supplied during process = [(80 × 10) + 500] J Qtotal = 1300J = i2Rt 1300 = (104)2 × 0.0002 × t t = 0.065 seconds
Total volume of metal deposited Volume deposited from one electrode Total Volume of metal deposited 2 3 450 50 4
17mm 30o
2mm
x tan 30 17 mm
30o
19mm
2
o
x = 9.814 mm 1 Area 9.814 17 2 2 19 1.1 1.15 2 Volume 204.85mm 2 1.1 1.15 180 = 46645.30767mm3 Number of electrodes = 17
ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 12 :
ME – GATE_ Vol – I_Solutions
cosCS = 1 Cs = 0
Chapter‐ 3
= 90 – CS = 90
Metal Cutting
tan b sin cos tan i tan cos sin tan s
Common Data for Q. 01 & 02 01.
Ans: (a)
02.
Ans: (d)
tanb = sin tani+costan tanb = sin90 tani + 0 b = i = 10 Common Data for Q.04, 05 & 06
Sol: Vf
04. Ans: (c)
Vs
06.
90
Ans: (d)
Sol: d = t1 = 2 mm,
Vc
VC 0.5m / s,
Vc = 40 m/min; Vf = 20 m/min = 10o;
r
Vf 0 .5 Vc
=0
FC 1200,
FT 800, 300
tan 1
800 33.690 1200
Power = P = FC VC 1200
0.5 cos10 o tan 1 28.33 1 0 . 5 sin 10
60 60
= 1200 W Length of shear plane = LS
V Vs f cos sin
=
20 cos10 = 41.5 m/min sin 28.33 07.
t1 2 4mm sin sin 30
Ans: (a)
Sol: For theoretically minimum possible shear
03. Ans: 10
strain to occur
Sol: f = 0.25 mm/rev,
t1 = 0.25,
w = b = 15 mm
tan tan 33.69 0.67
r cos tan 1 1 r sin
05. Ans: (b)
i = 10, = ?
t1 = f cosCS
0.25 = 0.25 cosCS ACE Engineering Publications
2 90 90 90 6 48 o 2 2
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 13 :
Production Technology
Common Data for Q. 08 & 09 08. 09.
Ans: (c) Ans: (c)
Sol: = 6 ,
VC 1 m / s
b = w = 3,
r
t1 L 2 60 60 0.59 t 2 L1 D 0 32
r
t1 t 0.1 t2 1 0.169 t2 r 0.59
0.59 cos 35 = 36.150 tan 1 1 0.59 sin 35
d = t1 = 1 mm use 2 90 o
t2 = 1.5 mm;
r
tan
1 2 t1 0.67 t2 1.5 3
FT 80 FC 200
80 tan 1 200
0.67 cos 6 35.62 0 tan 1 1 0.67 sin 6
35 21.8 56.8o
For minimum energy condition use
tan tan 56.8 1.52
2 + = 90
(In general < 1)
90 2 90 6 2 35.62
Hence
tan tan 24.76 0.461 40.2 m / min Area of shear plane = As = Ls × b
t b 1 3 5.2 mm 2 = = 1 sin sin 35.62
Vf VC
Common Data for Q. 10 & 11
11.
Ans: (d)
friction
0.5276 0.55 1.04 r V f rVc = 0.59 ×10 = 5.9 m/min
Vs
Vf 5.9 cos cos 35 sin sin 36.15 8.42 m / min
Sol: D 0 32 mm,
FC = 200 N,
classical
1 1 ln ln r 0.59 35 2 2 180
Vf rv c 0.67 1 60
Ans: (d)
applying
theorem
= 24.76
10.
by
= 35, K1 = 0.1 mm, VC = 10 m/min,
L2 = 60 mm, ACE Engineering Publications
FT = 80 N
12.
Ans: 56.23
Sol: = 10,
t1 = 0.125,
Fc = 517 N;
FT = 217 N
t2 = 0.43;
Cm = 2 + –
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 14 : r
14.
t 1 0.125 0.29 t2 0.43
tan ( ) =
Cm = 2 16.73 + 32.77 – 10 = 56.23 Ans: 272 N & 436 W
Sol: S0 = 0.12 mm = t1, a 2 t 2 0.22
Fs =
15.
Ans: (a)
16.
Ans: (b)
Sol: D = 100 mm, f = 0.25 mm/sec,
d = 4 mm V = 90 m/min
S0 .t.S sec tan 1
FC = 1500 N
S 400
FT
FC = N = 1500
FC
F
N
FT = F
t = 2 – 0,
1200 cos(30 33.69) 639.23N cos 33.69
Common Data for Q. 15 & 16
Major cutting for, b = pz = Fc S0 = 0.12,
FT FC
800 = tan 1 = 33.69 1200
217 10o tan 1 = 32.77 517
t = 2.0 mm,
FC cos cos
Fs =
0.29 cos10 tan 1 = 16.73 1 0.29 sin 10
13.
Ans: (d)
Sol: = 30, FT = 800 N, Fc = 1200 N
r cos tan 1 1 r sin
F tan 1 T FC
ME – GATE_ Vol – I_Solutions
t2 a2 0.22 1.83 t1 S0 0.12
Common Data for Q. 17 & 18
=0 Pz = 0.12×2.0×400(1.83sec0–Tan0+1)
Power = p = FC VC p Z
Vf r
52.6 p Z Vf 271 1.83 60
ACE Engineering Publications
Ans: (b)
&
18. Ans: (b)
Sol: VT a f b d c K
= 272 N
= 436 W
17.
a = 0, 3 f2
f1 , 2
b = 0, 3,
c = 0, 15
d 2 2d
T1 T2 60
V1T1a f1b d1c V2T2a f 2b d 2c
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 15 :
V2 f1 V1 f 2
b
d1 d2
1 = 2 0.3 2 V2 1.11 V1
Production Technology 20.
c
Ans: (b)
Sol: Let Q = no. of parts produced
T.C on E.L = T. C on T.L
0.15
1.11
30 60 Q 80 500 Q 160 60 60
40Q 500 16Q
V V % change in speed = 2 1 11% V1
40 Q 16Q 24Q 500
Productivity is proportional to MRR
Q=
% change in productivity =
MRR 2 MRR 1 MRR 1
21.
f d V f d V = 2 2 2 1 1 1 = 11 % f 1d 1 V1
C1 = 1.1 × 130 = 143, V = V1 = 90 m/min 1
130 0.12 VT n C T 21.4 min 90
T0 , V0 = original tool life and velocity If V1 1.2V0
T1 0.5 T0
V2 0.9V0 ,
143 V T C T 90
T2 ?
1
V T V0 T n 1 1
Ans: (a)
Sol: n = 0.12, C = 130
19. Ans: 49.2 % Sol:
n 0
T1 V 0 V1 T0 V ln 0 ln 1 V 1.2 n 1 0.263 T1 ln (0.5) ln T0
1n
V T2 T0 0 V2
n
V T0 0 0.9V0
1 0.263
22.
= 1.4927T0
T2 T0 1.4927T0 T0 0.4927 T0 T0
1
0.12
47.4 min
Ans: (a)
Sol: Tool life = T1
T2 V1 50rpm ,
% change in tool life
ACE Engineering Publications
1
Increase in tool life = 47.4 – 21.4 = 26 min
V0 T0n V2 T2n 1
1
Increased tool life = 47.4 min
n
=
500 20.83 21 24
500 50, 10 122 12.2, 10 V2 80 rpm
The feed and depth of are same in both cases V1T1n V2 T2n
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 16 : V2 80 ln V1 50 0.47 0.333 n 50 T 1.41 ln ln 1 12.2 T2
18C V2
V T V3 T
n 3
V T3 T1 1 V3
1
n
1
50 0.333 29 50 60
270C V
1 2
270C V n
1
Ans: 30.8 m/min
Sol: TC = 3min,
1 2 0.25
Lm = Rs. 0.5/min
18 150 4 V 270 3 4
Depreciation of tool regrind = Rs 0.5 C = 60, n = 0.2
V = 57.91 m/min
Cg = 3 3 0.5 + 0.5 = 3.5 n
0.2 0.5 60 . 1 0.2 3.5 24.
25.
t1= f.sin = 0.15 sin75 = 0.144
0.2
= 30.8 m/min
t2 = 0.36, r
t1 0.402 t2
chip reduction coefficient = t2/t1
18C 270C Sol: C m , Ct , VT 0.5 150 V TV TC = k + Cm + Ct
k
18C 270C V TV
k
18C V
1 K 2.5 r r cos tan 1 1 r sin 0.402 cos10 = 23.18o tan 1 1 0.402 sin 10
270C 1
C n V V
18C 270C V 1 V Cn
ACE Engineering Publications
Ans: 2.5 & 23
Sol: =10
Ans: 57.91
k
1 1 0.25 18C 1 V2 n
18 270 3 V2 2 4 V 150
Tg = 3 min,
n Lm VOpt = C . 1 n C g
1 1 n 0
Cn
C
23.
dTC 0 dV
For min TC,
ln
n 1 1
ME – GATE_ Vol – I_Solutions
1 1 n
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 17 : 27. Sol:
Production Technology
Ans: 0.944
Chapter‐ 4
T = 60 min VA
67
600.11
Machining
42.70 m / min
01.
77 45.22 m / min VB = 600.13
Sol: Time / cut =
Under similar conditions with same tool life
V
cutting velocity on material B is greater than
the
material
A.
Ans: (i) 20 min, (ii) 50 min
Hence
the
L 576 20 min fN 0.2 144
DN 100 144 45.2 m / min 1000 1000
75 VT 0.75 75 T V
machinability of material ‘B’ is higher than the material ‘A’.
1.333
75 = 45.2
VA 42.7 0.944 VB 45.22
1.96 min
No. of tool changes = 28. Ans: 12 Sol: Given,
20 1 9.2 10 1.96
(Because 1 tool is already mounted on W.P) t1 = 0.2 mm,
Total change time / piece = 20 + 10 × 3
w = 2.5 mm, Fc = 1177 N, Ft = 560 N As the cutting is approximated to be orthogonal. tani = cos tan b – sin tan s tan 0 = cos tanb – sin tan s = cos30 tan7 – sin30 tan s
1 0.75
s = 12
ACE Engineering Publications
= 50 min 02.
Ans: (a)
Sol: For producing RH threads the direction of rotation of job and lead screw must be in the same direction, for this if the designed gear train is simple gear train use 1, 3, 5 odd number idle gear to get same direction of rotation, if the designed gear train is compound gear train use 0, 2, 4,.. even number of idle gears to get same direction. In the given problem the designed gear train is a compound gear train, to change the hand of the thread it requires to change the direction of rotation of job and lead screw for this use 1, 3, 5… odd number of idle gears.
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 18 : 03.
Ans: (b)
07.
Sol: Train value = Gear ratio =
3.175 40 127 not possible 6 40 240
=
127 1 20 40 6 20
127 20 possible 40 120
=
f = 1 mm/stroke, M=
4. Thread cutting
VC = 1 m /sec,
1 2
Time per two pieces =
= P job PL.S
N follower N driver
=
Tdriver P driver Tfollower Pfollower
Pspindle PLs.S
N L.S N Spindle
Time/piece =
09.
B 1 1 M f V
310 2000 1 0.5 = 930 sec 1 1000 930 465 sec 2
Ans: (d)
Sol: Shaping operation
P = pitch N L.S
Ans: (b)
= 50 + 900 + 50 + 50 + 900 + 50
2. Taper turning
Sol: Gear Ratio = Train value =
N Spindle
300 1 100 min 0.3 10
Sol: L = 2m
Ans: (d)
G.R =
B 1 f No. of D.S
Time/cut =
08.
f = 0.3 mm /stroke
B = 300 + 5 + 5 = 310
3. under cutting
06.
B = 300 min,
Ans: (c)
Sol: 1. Plane turning
05.
Ans: (b)
Sol: No. of D.S/min = 10
pitch of job threads pitch of lead screw threads
=
04.
N follower N Driver
ME – GATE_ Vol – I_Solutions
PL.S PSpindle / job
=
6 3 = 2 2 2
Ans: (d)
M = 0.6 ,
Double stroke / time = 15 N = time / D.S = 1/15 Average speed, V =
Sol: With this any change in UV will also
changes the speed of lead screw, the pitch of the threads produced depends on the speed of work and speed of lead screw. Us will not affect the speed of the work ACE Engineering Publications
L = 500 mm
L 1 M V
500 1 0.6 =12000 mm / min 1 15
= 12 m / min
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 19 : 10.
Ans: (c)
Production Technology 12.
Sol: Total depth to be removed = 30 – 27
Sol: D = 15 mm, Vc = 20 m/min,
= 3 mm
N
2 = 0.67 3
Given, m =
1000 V 1000 20 = = 425 rpm D 15
N = 425rpm
feed = 0.5,
f = 0.2 mm /rev
depth = 2 V = 60 m/min
Time for idle time = 20s
Approach 50 m length wise Over time 50 min
Tool change time = 300 s Time/hole =
Approach 5 m width wise Over time 5 m Time/cut =
L 0.5D fN fN
15 2 0.617 min 0.2 425 45
L 1 M B f V
= Tm = machining time
l = 800, i)
L = 800 + 50 + 50 = 900
No. of holes produced / drill
B = 400 + 5 + 5 = 410 Time / cut =
900 1 60000
= 2 410 3 0.5
ii)
No. of cuts =
3 1.5 2cuts 2
Sol: Time per hole = L/f.N
= 25/(0.25 300) = 1/3 min = 20sec.
Total time/hole
= 0.617
13.
Ans: (b)
14.
Ans: (b)
Sol: Given n = 6,
Dmax = 25 mm Dmin = 6.25 mm
Because dia of drill bit was not given, hence
V = 18 m/min
AP1 is zero. r=
ACE Engineering Publications
20 300 60 162 60
= 0.9812 min = 58.87 = 59 sec
Total time = 20.5×2 = 41 mins Ans: (b)
100 162 0.617
= Tm + idle time + Tool change time
= 20.5 min
11.
l 45 mm
T = 100 min,
n 1
N max N min
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 20 :
Nmax =
1000V 1000 18 6.25 D min
Time/cut =
Nmin =
1000V 1000 18 25 D max
r=
N max = N min
6 1
25 6.25
5
ii)
AP1 =
No. of teeth = 30 (Not required) Module = 3 mm
1 100 100 2 90 2 2
L = 200 + 28.2 + 5 + 5 = 238.2
Radial depth= Addendum+1m+1.25m
Time/cut =
= 2.25 module = 2.25 3 Radial depth = 6.75 mm
16. Sol: Part size = 200 × 80 × 60 mm
D = 100 mm,
17.
Z = 12,
238.2 1.25 min 0.1 12 159
Ans: (b)
1000 V 000 50 159 rpm D 100
=
f t 0.1 mm , AP = OR = 5 mm 1 D D2 w 2 2
100 2 80 2
20 mm
L = l AP1 AP OR
40 No. of teeths 40 28
3 12 = 1 = 1 7 28
With symmetrical milling
1 = 100 2
L f t Nz
Sol: Crank rotation =
V = 50 m/min,
= 28.2 mm
Pressure angle = 200 (Not required)
AP1
1 D D 2 w i2 2
= 80 + 2 × 5 = 90
Sol: Hobbing process
i)
230 1.2 min 0.1159 12
Where, wi = w+ 2(Of)
Ans: (d)
N=
L f t NZ
If offset = 5mm with asymmetrical milling AP1 =
= 1.3195 = 1.32 15.
ME – GATE_ Vol – I_Solutions
9 = 1 21 1 complete revolution and 9 holes in 21 hole circle.
= 200 + 20 + 5 + 5 = 230 ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 21 : 18.
Production Technology
Ans: (d)
Sol: d = 70 mm ,
Z = 12 teeth O1
V = 22 m/min ft = 0.05 mm/tooth
A
1000 V fm = ftZN, N d
B
t
l
Ans: (b)
Sol: Crank rotation = 1
10 1 4 1 360 30 3 3
N=
= 480 Job rotation =
20.
d
AP1
1000 22 = 60 mm/min fm = 0.05 12 3.14 70 19.
O2
1000V 1000 120 = 254.64 rpm 150 D
Approach = AP1 + O1O2 =
CR 480 = = 12 40 40
d D d
0.5150 0.5 = 8.645 mm
=
Total time/machining = No. of cutsTime/cut
Ans: (b)
Sol: Given,
No. cuts =
Total depth 2 =4 depth per cut 0.5
Time/cut =
L AP = fN fN
Dtool = 15 cm = 150 mm Feed = 0.08 mm/rev Depthmax = 0.5 mm = d Length of workpiece, l = 200 mm
200 8.645 = 10.227 min 0.08 255
=
Cutting Velocity, V = 120 m/min
Total time = 10.227 4 = 40.91
Total depth to be cut = 2 mm
= 41 min 21.
Ans: 8.05 min
Sol: Broaching machine
P = 1.5 kW d1 = 20 mm enlarged to df = 26 mm t = 25 mm p = 10 mm/tooth h = 0.075 mm/tooth ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 22 :
V = 0.5 m/min
nr
Equation for time for broaching operation =
ME – GATE_ Vol – I_Solutions
Length of tool travel Linear velocity of tool
d r 4.4 44 teeth h r 0.1
Cutting length = effective length = Le = L r LS L f
Length of tool travel = L
= 44 × 22 + 8 × 20 + 4 × 20
= t + Le + AP + OR
= 1208mm
As (AP + OR) is not given so take it zero Le = effective length or cutting length Depth of cut d =
26 20 =3 2
23.
Ans: (b)
Sol: Out of all conventional method grinding is
one which required largest specific cutting
n = no. of teeth = d/h = 3 / 0.075 = 40
energy.
Le = np = 40 10 = 400mm
1) Because of random orientation of
Le = 400 mm
abrasive particles, rubbing energy losses
Time for broaching = =
t Le V
will be very high 2) Lower penetration of abrasive particle
25 400 = 8.05 min 0.5 100
3) Size effect of the larger contact areas between wheel and work.
Time for broaching = 8.05 min 24. Ans: (a) 22. Ans: (c)
Sol: Common alignment test for shaper and lathe
Sol:
are (1) Straightness (2) Flatness. Runout is used in lathe.
4.5 mm
Parallelism used in shaper. 25.
Ans: (a)
Sol: The
d total 4.5 mm
curvature
given
is
the
concave
curvature hence it increases the stress
df 0
concentration factor therefore it is used for
d S n s h s 0.0125 8 0.1
supply
d r d total d f d s
of
lubricating
oil
to
bearing
mounting
= 4.5 – 0.1 = 4.4 ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 23 : 26.
Production Technology
Ans: 18
Sol: The output per annum = 800 52
Chapter‐ 5
= 41600 units.
Metal Forming Process
The rejection rate is 20%. The quantity to be produced (including rejection) =
Re quiredoutput (1 rejection rate)
01.
Ans: (a)
Sol: y 1400 0.33
41600 = 52,000 units (1 0.2)
At maximum load, true strain
Total time required for turning
1 y 1400 3
= 52,000 40/60
1 3
0.33
971 MPa
= 34666.6 hours Production time required with 80 per cent
02.
efficiency = 34666.6 /0.8 = 43333.3 hours
Sol: A0p = C.S area of P originally
Time available per lathe per annum
A1p = C.S area of P after 1st reduction
= 48 52 = 2496 hrs
= 0.7 A0p
Number of lathes required =
Time required (hrs) Time available hrs
=
43333.33 = 17.36 = 18 2496
Ans: (b)
A2p = 0.8 × 0.7 × A0p = 0.56 A0p Aop p True strain in " P" ln A 2p Aop ln 0.56 A op
No. of lathes required = 18
= 0.58
A0Q = C.S area of Q originally A1Q = C.S area of Q after 1st reduction = 0.5 A0Q A0Q Q ln A 1Q 03.
ln 1 = 0.693 0.5
Ans: (a)
Sol: do = 25,
di = 5mm
y 315 0.54 ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 24 :
d A n o n o A1 di
2
2
25 n 3.22 5 y 315 (3.22) 0.54 592 MPa.
06. Ans: (a) Sol: Ho = 20 mm,
b = 100 mm H1=18 mm, R = 250 mm, N 10 rpm,
H0 = 4.5 mm
H = 0.089 R
H1 = 2.5 mm
L length of deformation zone RH
H = 2 Droll = 350, Rroller = 175 mm Strip wide = 450 mm = b Average coefficient of friction = 0.1 y = 180 MPa RSF = Pavg projected area =
2 L y 1 bL 3 4H RH = 175 2 = 18.7
L= 4=
H 0 H1 4.5 2.5 = 3.5 2 2 0.1 18.7 1801 450 18.7 4 3.5 3
2
RSF = 1982.64 kN = 1.98 MN
250 2 22.36 mm H
20 18 19 2
Favg R.S.F
L y b L 1 4H 3
2
0.089 22.36 300 100 22.36 1 4 19 3
2
= 795 kN. T Favg a , Where a = moment arm L
0.3L to 0.4 L T Favg 0.4L 795 10 3 0.4 22.36
05. Ans: (a) Sol: Ho = 4,
y 300 MPa
H 20 18 2mm
04. Ans: 1.98 MN Sol: Given:
ME – GATE_ Vol – I_Solutions
= 7110 kN-mm
H1 = 3mm, R = 150mm,
= 7.11 kN-m
N = 100 rpm. Velocity of strip at neutral point = Surface Velocity of rollers
300 100 DN 1000 60 1000 60
Pav
2 NT 2 10 7.110 60 60 7.44 kW / roller
Total Power = 7.44 × 2 = 14.88 kW
= 1.57 m/sec ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 25 : 07.
Production Technology 10.
Ans: (d)
Ans: (b)
Sol: Ho = 16 mm,
Sol: do = 15 mm,
H1 = 10 mm,
df = 0.1 mm
R = 200 mm Angle of Bite tan 1 tan 1
08.
%Reduction=
H R
16 10 9 .9 200
Ans: (a)
a)
Sol: Given rolling process
d 0 d1 Ist draw do
d1 d 2 2nd draw d1
3 stages with 80% reduction at each stage 0 .8
Initial thickness H0 = 30 mm
dia reduced in the draw dia before draw
d o d1 do
Final thickness = H1 = 14 mm
d1 0.2 d o 3mm
Droller = 680 = R = 340 mm
d2 = 0.2. d1 = 0.6mm
y = 200 MPa
d3 = 0.2 .d2 = 0.12mm
Thickness at neutral Hn = 17.2 Forward slip = =
V1 H 1= n 1 Vn H1
b)
d1 = 0.2. d0 = 3 d2 = 0.2. d1 = 0.6 d3 = 0.2. d2 = 0.12
V H Backward slip = 1 0 1 n Vn H0
17.2 = 42.6% 43% 30
4 stages with 80% reduction in 1st 3 stages followed by 20% in 4th stage
17.2 1 = 0.2285 = 23% 14
1
(Error is 20%)
d4 = 0.8. d3 = 0.096 c)
(Error is 4%)
5 stages, with 80, 80, 40, 40, 20 etc d1 = 0.2. d0 = 3 d2 = 0.2. d1 = 0.6
09.
Ans: (b)
d3 = 0.6. d2 = 0.36
Sol: Roll separation distance
= 2 R + H1 = 2 300 + 25 = 625 mm
d4 = 0.6. d3 = 0.0216 d5 = 0.8. d4 = 0.1728
(Error is 72%)
From the given multiple choice B, the final diameter of wire close to 0.1 mm.
ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 26 : 11. Ans: (a)
ME – GATE_ Vol – I_Solutions
Common data for Q 12, 13 & 14
Sol: Given wire drawing process
d0 = 6 m,
d1 = 5.2 mm
12.
0
Die angle = 18 , diameter land = 4 mm
Ans: (b) ,
13. Ans: (c),
14. Ans: (a)
Sol: Initial inside diameter of tube
Coefficient of friction = 0.15
d0 = 52 mm,
H0 = 2.6
Yield dress = 260 MPa
H1 = 1.8,
D1 = 50 mm
A0 =
2 6 = 136 = 21.237 4 4
A1 =
2 5.2 = = 21.237 4 4
2d = 24=12, =0.12 2.6mm 1.8 mm
Drawing stress = 2 1 B A 1 = y 1 B A 0
B
52mm
50 mm
B = cot =
1 1 Die angle = 18 =90 2 2
=9
For stationary mandrel B =
B = 0.15 cot90 = 0.947 2 = 126.958MPa
B=
0 1 0.947 21.27 1 = 260 0.947 28.270
0.947
1 1.29 1.8 2 / y 1 1.129 2.6
1.19
2 L R1
(By considering friction) = 260 + (130260) e
Total drawing load = tA1 = 178.05 21.237 = 3.781 kN ACE Engineering Publications
2/y = 0.64
20.154 2.6
total = 260 81.94 = 178.05 MPa
0.12 0.12 =1.29 Tan (12)
B 1 B H1 1 2 y B H 0
= 260(2.056)(0.2375) Total drawing stress 2 = y + (2y) e
1 2 Tan
13.
Movable mandrel B = cot = (0.12)cot(12) = 0.564 0.564 1 0.564 1.8 2 / y 0.519 1 0.564 2.6
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 27 : 14.
Production Technology
Floating mandrel B=0
d2 = d1 2 B 1 1 B
h 2 n 0 y h1
1 2B C= = 0.756 1 B
1
2.6 = n = 0.367 1.8
Dia of wire in 2nd stage = 3.424 mm d1 = d0 c
Common data for Q 15. & 16.
d2 = d1 c = 4.530.756 = 3.424 > 1.34
15.
Ans: 6
&
Sol: d0 = 6 mm,
16. Ans: 3.4
d3 = d2 c
df = 1.34 mm
= 3.424 0.756
Given ideal condition
= 2.589>1.34
= 60
= 0.2
d4 = d3c = 1.957>1.34
f = 60 MPa
d5 = d4 c = 1.4797 > df
Maximum reduction condition 2 y
d6 = d5c = 1.1186 < df
2B 1 B d1 =11= 1 B d 0
B = cot; d B 1 1 1 B d0 d1 d0
2B
Hence No. of stages = 6 Common data for Q 17, 18
B = 1.9 2B
17. Sol:
B 1 1 B =
1 1 B
Ans: (c) &
400 y 200 0.2
d1 2 B 1 d0 1 B 1
1 21.9 1 6 d1 = d 0 2 B 1 1.9 1 B
d1 = 4.53 ……… (1) stage
ACE Engineering Publications
18. Ans: (b)
0.4
do = 12.214,
Lo = 100m
df = 10mm,
Lf =?
y before 200 MPa , y after 400 MPa
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 28 :
Ao Lo = Af Lf
22. Ans: 1
d A L f L o o L o o Af df
Sol: Let, d1 = d2 = d
2
h1 = height of first cylinder h2 = height of second cylinder
2
12.214 100 150m 10
Assume h1 < h2
True strain in the drawing process 2
d A n o n o 0.4 A1 d1
From the graph
y at 0.2 , y 300 MPa
19.
Ans: (b)
20.
Ans: (c)
ME – GATE_ Vol – I_Solutions
Let % reduction in height = 10% Ist cylinder
h0 hf 0.1 h0 h0 – hf = 0.1 h0 hf = h0 – 0.1 h0 = 0.9 h0 A0h0 = Af hf d02h0 = df2 hf
Sol: (Extrusion force)min = y A 0
10 10 2 = 78539.8N 4
Extrusion force
(E.F) min 78539.8 ext 0.4
= 196346.5 N = 196 Tons
df d0
= 1.054 d0 = 1.054 (d0)1 IInd cylinder
A0h0 = Afhf d02h0 = df2 hf df d0
21. Ans: (b) Sol: Extrusion constant = K = 250
do = 100 mm,
df = 50 mm
Extrusion Force = A o K ln
Ao Af
h0 h0 d0 hf 0 .9 h 0
d0
Ratio
h0 hf h0 = 1.054 (d0)2 0 .9 h 0
d 0 1 d 0 2
1.054d 0 1 1 1.054d 0 2
2
100 100 2 250 ln = 2.72 MN. 4 50
ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 29 : Common data for Q 23 & 24
Production Technology 27.
Ans: 7.26
Sol: 23.
0.3= 1.328
Ans: 7068 J & 24. Ans: 0.354 m
Sol: do = 100 mm, h f 40 mm , df do
ho = 50 mm, y 80 MPa
A B H0
O C
H1
ho 50 100 111.8mm hf 40
Fi min A 0 y
O
1002 80 628.318 kN 4
Ff min A f y
(111.8) 2 80 4
785.350 kN
Fmin
F Ff min i min 706.834 kN 2
Ho = 10 mm,
500 0.3
H1 = 7 mm, R=
1000 = 500 mm 2
Angle of bite () = tan
7068 H 0.354 m 2 10 103
1
= tan 1
W.D Fmin (h o h f ) 7068J 2 W H
B
1.328
H R
D C
10 7 = 4.429 500
OD OB
OD = 500cos1.328 = 499.865 DC = 500 – OD = 0.1343 mm
25.
Ans: (b)
26.
Ans: 58%
Thickness of neutral point = At point B = 7 + 2 0.1343 = 7.2686 mm
Sol: Area after 1st pass = A1 = (1 – 0.4)A0
= 0.6 A0 Area after 2nd pass = A2 = (1 – 0.3)A1 = 0.7 0.6 A0 = 0.42 A0 Overall % reduction = (1 – 0.42) 100 = 58 %
ACE Engineering Publications
29. Ans: 7.687 MPa, 19.7 % Sol: d0 = 6.25 mm;
= 0;
d1 = 5.60 mm; y = 35 N/mm2
B = cot = 0 B 1 B A1 0 2 y 1 B A 0 0
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 30 :
ME – GATE_ Vol – I_Solutions
By applying L – Hospital rule
31.
A 2 y n 0 A1
Sol: d0 = 10 mm;
Ans: 20.52 kW
0 .3
d y 2n 0 d1
0.3 1
= 7.687 MPa A 0 A1 d 02 d12 % reduction in area = A0 d 02 = 19.71% 30.
A 0 A1 A 1 1 A0 A0
d1 = 8.36 mm B = cot = 0.1cot(6o) = .951 1 B A 1 2 y 1 B A 0
Ans: 29.85 tons
B
1 0.951 0.951 240 1 0.7 0.951
Sol: Initial size = 2525150mm
Final size = 6.25100150mm = 0.25;
d 12 d 02
= 141.687 MPa Drawing load = 2 A 1 141
2
y = 0.7kg/mm
As given piece is pressed; height is reduced h0 = 25;
Fd 141.687 d12 4
hf = 6.25
= 141
A0 = 25150; Af = 100150
P (motor) =
2hrf Forging force = y A f 1 3h f
(Ac)circular = (Ac)non – circular rf2 100 150
2 d 1 4
P
8.36 2 = 7777.364 = 7.8 kN 4 Fd v motor
7.8 2.5 0.95
P = 20.52 kW
rf = 69.098mm Forging force 2 0.25 69.098 = 0.7 15 10 3 1 3 6.25 = 29847.44kg = 292.80kN
ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 31 :
Production Technology 05.
Chapter‐ 6
Fp max .Kt
Sol: Fp
Sheet Metal Operation
Common data for Q. 1 to 5 01.
Ans: (b)
Kt I 40 0.6 1.25 17.14 kN 0.6 1.25 1
Fb
Ans: (b)
Sol: For punching operation
Fb max kt kt I
80 0.6 1.25 34.28 kN 0.6 1.25
F FP Fb 51.42 kN
Punch size = Hole size = 12.7 Die size = punch size + clearance = 12.7 + 2 0.04 = 12.78
Common data for Q. 06, 07 & 08 06. Ans: 83.6 N Sol:
02.
Ans: (a)
100
Sol: Die size = Blank size = 25.4mm
Punch size = Die size 2(radial clearance)
30
50mm 450
= 25.4 2(0.04) Punch size = 25.32 mm 03.
80mm
20
20
P 100 30 20 2 80 50 288.28
Ans: (b)
Fmax Pt u 288.28 2 145 83.6 kN
Sol: Fmax = Fp max + Fb max
= 12.7 1.25 800 25.4 1.25 800 = 40 +80 = 120 kN
07.
Ans: 66.88 J
Sol: Work done in blanking open
= Fmax.K.t 04.
Ans: (c)
= 83.61030.42103
Sol: Force required is Max [Fpunch, Fblank]
= 66.88 J
force required is Max [40, 80] force required = 80 kN
08.
Ans: 1.98 mm
Sol: I = ?
F = 24 kN ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 32 :
Fmax = 83.6 kN
12.
F(Kt + I) = Fmax Kt
Sol: d = 25 mm, t = 2.5 mm → piercing
I=
Diameter clearance C 0.0064 K t 0.0064 2.5 350 = 0.3 mm In piercing
Ans: (a)
Sol: Fmax
Ans: (d)
u 350 MPa
Fmax Kt Kt F
83.6 0.4 2 0.4 2 = 1.98 mm = 24 09.
ME – GATE_ Vol – I_Solutions
P.S = H.S = 25 mm.
5 5 dt u dt u
D.S = P.S + C = 25 + 0.3 = 25.3 Fmax dt u 25 2.5 350
Fmax 1.5d 0.4t u
= 68.72 kN.
1.5 0.4 dt u 1.5 0.4
2 3 KN
13.
Sol: Die size = Blank size = 25 – 0.05
= 24.95
Common Solution for Q. 10 & 11
Punch size = Die size – clearance = 24.95 – 2 0.06 = 24.83
10. Ans: (a) 11.
Ans: (a)
Ans: (b)
Sol: t = 5 mm, L = 200 mm, τu = 100 MPa,
K = 0.2 W.D = Fmax Kt = L × t × τu × K.t = 200 × 5 × 100 ×0.2 × 5
Common data for Q. 14 & 15 14.
Ans: (b)
Sol: Draw Ratio =
100 10 3 100 N m (or ) J only 1000
d1 =
13.22 = 7.34 > 5cm 1.8
d2 =
7.34 = 4.08<5 cm 1.8
Shear provided over a length of 20 200 mm 200 = 10 mm 400
n=2
Fmax Kt = F (Kt + I) 100 10 3 0.2 5 9.09 10 kN F 0.2 5 10
Dia.before Dia.after
15.
Ans: (a)
Sol: D d 12 4d 1 h 1 ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 33 :
Production Technology
4d 1 h 1 D 2 d 12
d 2 82.48 0.8 65.984 30
D 2 d 12 13.22 2 7.34 2 h1 = 4.11 mm 4 d1 4 7.34
d 3 65.984 0.8 52.7 30 d 4 52.7 0.8 42.2 30
P1 Dt y
d 5 42.2 0.8 33.7 30
= 132.22 1.5 315
d 6 33.7 0.8 27 30
196238 N = 196.238 kN
n=6
–3
E = P1h1 = 196.2384.1110 = 806.6 kJ 19. 16.
Ans: (b)
Sol: DRR 1 0.4
Ans: 52.7 mm
Sol: d3 = 52.7 mm D d1 D
d 1 D1 0.4 30.2 0.6 18.12 d 2 d 1 1 0.25 18.120.75 13.59
20.
Ans: 144.42
Sol:
d 100 16.66 15 to 20 6 r
d 3 d 2 1 0.25 13.590.75 10.19
D d 2 4dh
d3 < 12 n = 3
r 2
100 2 4 100 25 17.
Ans: (b)
= 138.42 +23
Sol: P1 Dt y 30.2 2 35 6641.3 21
P1
2 2 d 1 d 1 2 t 4
6,641.3
2 18.12 2 18.12 2 2 4 = 65.5 MPa
6 2
D total D 2 3 144.42 mm 21.
Ans: (d)
22.
Ans: (c)
Sol: Number of earing defects produced =2n
Where n is an integer So possible option is 64.
Common data for 18 & 19 18. Ans: 6
23.
Sol: D d 2 4dh 30 2 4 30 150
Sol: B1 15 0.5 2 180
137.47 d 1 D 0.6 137.47 0.6 82.48 30 ACE Engineering Publications
Ans: 467 mm
180
= 50.265 mm
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 34 :
B 2 6 0.5 2 90
= 10.99 mm 180
C = Clearance = 0.0032 t t = thickness = 1 mm
L 0 98 204 92 B1 2B 2
where, = 240 N/mm2
= 466.245 mm
C = 0.0032×1× 240 = 0.0495 mm = 0.05 mm
2mm
Die size = 10 + 2 × 0.05 = 10.1 mm
15
Force required = s × d × t
92 98
100 6 mm
= 240 × × 10 × 1 = 7.536 kN
8m
204
8
ME – GATE_ Vol – I_Solutions
8
220m
24.
Ans: (b)
25. Ans: 3 Sol: D d 2 4dh 50 2 4 50 100 150mm 0 .4
D d1 D
0.4150 = 150 – d1 d1 = 90mm > 50 d2 = d1(1–0.4) = 54 > 50 d3 = 32.4 < 50
n=3 26.
Ans: 7.536 kN
Sol: Punching a 10 mm circular hole from 1 mm
thickness sheet: Punch size = Blank size = 10 mm Die size = Punch size + 2 C ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 35 :
Production Technology 04. Sol:
Chapter‐ 7
Ans: (c) D
Metrology t t = 0.01 to 0.015mm
7.1 Limits, Fits & tolerances
When, t = 0.01 mm 01.
D = 30.01 + 20.01 = 30.03 mm
Ans: (a)
Sol: For Clearance fit
= 30.05 + 2 0.01 = 30.07 mm
L- hole > H- shaft
When, t = 0.015 mm D = 30.01 + 20.015 = 30.04 mm
02.
Ans: (c)
Sol: Hole = 40
= 30.05 + 2 0.015 = 30.08 mm 0.050 0.000
0.08
mm ,
D 30 0.03 mm
Min. clearance = 0.01 mm, Tolerance on shaft = 0.04 mm , Max. clearance of shaft = ? 0.01 = L.hole – H.shaft
05.
Ans: (d) 0.01
Sol: A = 25.2 0.02
0.01 = 40.000 – H.shaft
B = 30.4 0.01
H.shaft = 40.000 – 0.01 = 39.99mm
C = 32.7 0.02
H.shaft – L.shaft = 0.04 L.shaft = 39.99 – 0.04 = 39.95
Tmax = Lmax Amin Bmin – Cmin = (118 + 0.08) (25.2 0.02) (30.4
0.01) – (32.7 – 0.02)
Max. clearance = H.hole – L.shaft = 40.05 – 39.95 = 0.10 mm
= 29.83 = 300.17 Tmin = Lmin Amax Bmax Cmax
03.
Ans: (d)
= (118 0.09) (25.2 + 0.01) (30.4
Sol: Xmax = 50.02 – (37.985 + 9.99) = 2.045
Xmin = 49.98 – (38.015 + 10.01) = 1.955 X = Xmax Xmin= 0.09 Dimension X = 2 ± 0.045
+ 0.01) (32.7+ 0.02) = 29.57 Tmin = 30 0.43 0.17
T = 30 0.43
ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 36 : 06.
(i)
Anc: (c)
ME – GATE_ Vol – I_Solutions Ans: (c)
Allowance = (L.L)hole (H.L)Shaft 07. (i) Ans: (d)
Sol: Let the vertical distance between the holes
(H.L)shaft = 65 0.09= 64.91 mm
is ‘y’
Tolerance = (HL)shaft (LL)shaft
2450.05
25
y
30
0.05 = 64.91 – (LL)shaft
(LL)shaft = 64.86 mm
x
60
0.09 = 65 – (H.L)shaft
Shaft = piston = 65
0.09 0.14
2500.2
(ii)
0.2 0.0
Ans: (a)
(L.L)hole = 65 mm (Tolerance)hole = (HL)hole (LL)hole
sin30 =
y y = 245sin30 245
0.05 = (HL)hole – 65
(HL)hole = 65.05 mm
ymax = 245maxsin30max
Hole = Bore = 65
= (245 + 0.05)sin(30 +15/60) = 123.45
0.05 0.00
0
ymin = (245 0.05)sin(30 15/60) = 121.55 (iii) Ans: (b) (ii)
Max Clearance = 65.05 – 64.86
Ans: (c)
= 0.19 mm
xmax = 250max– (60min+(30/2)min+ymin+(25/2)min) = (250 + 0.2) (60 +15+121.55+12.5) 09.
= 41.15mm xmin = 250min –(60max+(30/2)max + ymax + (25/2)max) = (2500.2) (60.2 + 30.025/2 + 123.45 +
Sol: Amax = 15max + 30max
= 15.06 + 30.1 = 45.16 Amin = 15min + 30min = 44.84
25.025/2)
A = 45 ± 0.16. = A ± ∆A
= 38.625 mm Tolerance on X = Xmax – Xmin = 2.525 mm
Bmax = Amax – 20min = 45.16 – 19.93 = 25.23 mm Bmin = Amin – 20max
08. Sol: L Hole = BS = 65mm
H Hole = BS + Tolerance = 65.05mm ACE Engineering Publications
= 44.84 – 20.07 = 24.77 mm
B ± ∆ B = 25 ± 0.23.
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 37 :
Production Technology
10.
C 100
Sol: Let
C = center distance between holes Cmax = max. Outer distance of pins – sum of min rod holes.
11. Sol: For the given conditions
X 100.1
C =100±0.1
14.875 9.875 2 2
= 112.475 mm
9.9 0.025
14.9 0.025
0.075 0.275
15.05 10.05 C X 2 2 15 0.05 x
Xmax = 100 max
9 .9 14.9 2 max 2 max
9.925 14.925 100.1 2 2 = 112.525 mm Xmin = 100 min
99.9
C = 99.925 mm
10 0.05
9 .9 14.9 2 min 2 min
Because C is lying in between the limits, the assembly is possible. 12.
Ans: (b)
Sol: Fundamental deviation of hole ‘h’ is zero. 13. 0.03
Sol: Hole = 20 0.00
Min. interference = 0.03mm,
9.875 14.875 2 2
Max. interference = 0.08 mm 0.03 = L.shaft – H.hole
= 112.275 mm
L.shaft = 0.03 + 20.03 = 20.06 mm
15 10 C max X max 2 min 2 min
0.08 = H.shaft – L.hole H.shaft = 0.08 + 20.00 = 20.08mm
14.95 9.95 112.525 2 2
0.08
shaft 20 0.06
= 100.075 mm 15 10 C min X min 2 max 2 max
15.05 10.05 112.525 2 2
14. Sol: H. Limit
H
0.021 B.S
L. Limit
= 99.725 mm ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 38 :
ME – GATE_ Vol – I_Solutions
= H.hole – L.shaft B.S F.D=0.02mm f
H. Limit
= (25.021) (24.947) = 0.074 mm
Tol = 0.033mm
L. Limit
(iv) Ans: (a) Size of the GO plug gauge = max. material limit of hole = L.hole = 25 mm
D 18 30 23.24mm i 0.453 D 0.0010 1.3m FD of hole H = 0
(v)
Size of the NOGO plug gauge = min.
FD Shaft = 5.5(23.24)0.41 = 20m
material limit of hole = H.hole = 25.021 mm
Hole tolerance, IT7 =16i = 20.8m = 21m = 0.021 mm Shaft tolerance, IT 8 = 25i
(vi) Ans: (c) Size of the GO ring gauge = max. material
= 32.5m = 33m
limit of shaft = H.shaft = 24.98 mm
= 0.033mm L - hole = basic size =25 mm H - hole = 25 + 0.021 = 25.021 mm
(vii) Ans: (d) Size of the NOGO ring gauge = min.
H - shaft = 25 – 0.02 = 24.98 mm
material limit of shaft = L.shaft = 24.947
L - shaft = 24.98 – .033 = 24.947 mm (i)
Ans: (a)
L- hole > H- shaft Clearance fit (ii)
Ans: (b)
mm (viii) Ans: (a)
Ans: (b)
15.
Ans: (c)
Allowance = difference between max.
Sol: D 18 30 23.2
material limits = L.hole – H.shaft
i 0.45 3 D 0.001 D 1.3
= 25.00 – 24.98 = 0.02 mm
IT8 = 26i = 26 × 1.3 = 33.8 = 34 m = 0.034 mm
(iii) Ans: (b)
0.034
0.02
Shaft 250.053 , Hole = 25
0.021 0.00
Hole size 25H 8 25 0.000
Max clearance = different between minimum material limits ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 39 : 16.
Production Technology
Ans: (a)
Hole 50
Sol: D 50 80 63.24 mm
i = 1.86 microns = 1.9 microns
H. Limit
IT8 = 25i = 47.5 microns
0.025 0.000
0.042
p 0.026
Tolerance = 0.0475 mm
B.S =50
L. Limit
F.D = –5.5 D0.41 = – 5.5 × 63.240.41 = 30 Microns = 0.03 mm H. shaft = 60 – F.D = 60 – 0.03 = 59.97 mm
0.042
Shaft 50 0.026
L. shaft = H. shaft – Tolerance
L.hole = B.S = 50
= 59.97 – 0.047 = 59.923 mm. 17.
H.hole – L.hole = Tolerance = 0.025 mm H.hole = L.hole + Tolerance = 50.025 mm
Ans: (d)
Max. interference = difference between
Sol: Case (i) 25H7
max. material limits = H.shaft – L.hole
L.L = 25.00
= 50.042 – 50.00 = 0.042 mm
U.L = 25.021
Min. interference = difference between min.
Case (2) 25 H8
material limits = L.shaft - H.hole
UL = 25.033
= 50.026 – 50.025 = 0.001 mm
Case (3) 25H6, UL - ? (UL)H8 (UL)H7 = (UL)H7 (UL)H6 25.03325.021 = 25.021 (25 + x) x = 0.009
19.
Ans: (c)
20. Ans: (b)
(UL)H6 = 25.009
Sol: To calculate exactly the data was not given
in the problem. But for shaft “h”,
18. (i) Ans: (a) , (ii) Ans: (a),
H – Shaft = 25.000
(iii) Ans: (a), (iv) Ans: (c)
L – Shaft = less than 25. And h7 → 7 indicates IT 7 not 7 microns.
Sol: H
H. Limit
21. Ans: (a)
0.025 50
L. Limit
Sol: GO size = max. material limit of hole
= 20.01 mm NOGO size = min. material limit of hole = 20.05 mm
ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 40 : 22.
Ans: (d)
ME – GATE_ Vol – I_Solutions
03.
Ans: (d)
04.
(i) Ans: (c)
Sol: To produce an interference fit, L-shaft must
be greater than H-hole. For this with multiple choice D it is possible because For D:
L-shaft = 20 – 0.02 = 19.98 mm,
Sol: sin =
h L
h = sin30o 125=62.5 mm
H-shaft = 20 + 0.02 = 20.02 mm L-hole = 20 – 0.035 = 19.965mm, H-hole = 20 – 0.03 = 19.97mm, Hence, L-shaft (19.98) > H-hole (19.97)
(ii) (A) Ans: (a)
0.005 0 d tan 30 = 4.76 62.5 125
7.2 Angular Measurements
(B) Ans: (a) 01. Sol:
Ans: (a)
dh r2 r1
Sine bar
Slip gauges
0.001 0 d tan 30 = 2 62.5 125
Given sine bar length = 200 = l
(C) Ans: (b)
Angle =325 6 = 32.085
dh = 0.002
Slip gauge height = h say
0 0.002 d tan 30 = 4 62.5 125
sin
h
(D) Ans: (d)
sin 32.085 0
h 200
dh = 0.005 0 0.005 d tan 30 = 10 125 62.5
h = 106.235 02.
d 2 d1 0.002 0.001 2 2
Ans: i-(b), ii-(a)
Sol: l = 50 , L = 500
05.
Sol: Gradient of spirit level
50 0.08
= Sensitivity specified in mm/m
0.08 0.32 200 200 50
h = h + 0.32 = 28.87 + 0.32 = 29.19 Sin
h 29.19 82332 L 200
ACE Engineering Publications
Ans: 0.048 mm/m
06.
10 1000 = 0.04845 mm/m. 3600 180
Ans: (d)
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 41 :
Production Technology 7.3 Taper Measurement
07. Sol: (i) Ans: (b)
Ans: 19.2
01.
h h1 sin = 2 w
Sol: 2.5
h2 h1 = 100sin30 = 50
O2
h2 = h1 + 50 = 75
50
/2
(ii) Ans: (d)
15
h 25 sin(30) 100.005
08.
h1
h2
h = 75.0025 mm
h2 = 75.0025 + 0.005 = 75.0075 mm
Ans: (a)
Sol: L = 250 mm,
d 2 d1 2h1 h 2 d 2 d1
sin / 2
30 15 252.5 30 15
d = 20 mm
90 250
= 21.2 deg 09.
= 19.2
Sol: tan / 2
Sol: = 2732
5 8.66
= 60
o
125 h
= 27.533 h sin = 25
15 = 1/6 105 15
02. Ans: 60
Ans: 11.556 mm
32 = 27 o 60
O1
sin / 2
h = 100 – (d/2) = 100 – 10 = 90 mm sin
30
105=5
O2 O1
h = 11.556 mm 36.345=31.34 36.34 40 50 ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 42 : 03.
05.
Ans: 112.41 mm
Sol:
ME – GATE_ Vol – I_Solutions Ans: 78.074 mm
Sol:
70 mm 30 mm h2
h1 C
h1+r1=O2A+r2+h2
O2
B A
D
12.5mm
O1 d1 = 100 m
A
12.5mm
C
M
Diameter = O1C+O1A+O2D
d1 2
O1O 2 2 O 2 A 2
O1O 2 r1 r2 =75
d2 2
X
= 70 + 50 30 25 = 65 D 50 75 2 65 2 25
37.5 2
= 112.4165 mm
75 = 37.5 – = 37.5 – 2910 2 = 820
le OBC
Ans: 43.33 mm
sin 37.5 =
Sol:
OB
O2
d = 25
42 O1
O
+ = 4550 + 2910 = 75
O2A = h1 + r1 – r2 – h2
04.
A
35
BC OB
12.5 BC 20.533 sin 37.5 sin 37.5
le OAB cos 820 =
OA OB
OA = OB cos 820 = 20.316 mm X = M – (OA + R) O1A =
25 17 18.33 2
2
D = r + O1A + r
= 110.89 – (20.316 + 12.5) = 78.074 mm
= 25 + 18.33 = 43.33 mm
ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 43 : 06.
Production Technology
Ans: 1.1
Sol: d2 – d1 = 10 ;
3 Tan 1 = 6 2 28.54
h2 – h1 = 12.138
d 2 d1 sin 2 2 (h 2 h 1 ) d 2 d1
Taper angle 6 0 2 Included angle = 120
= 88.9 Error = 90 – 88.9 = 1.1 09. 07.
Ans: 38.94
Ans: (c)
Sol: tan
Sol:
10 = tan-1(1/3) 18.434 30 10mm
10mm
h D2
D
2
2
30mm 10mm
D
2 Sin 2 hD Sin
2
D 2h D
Z=10 Z=0
10 – (10/3)
D 2 2h D
Distance at Z = 0,
If D = 0, h = 0
10 D 0 210 10 tan 30 210 3
D = 1, h = 1 1 1 Sin 2 2 1 1 3
= 6.67 2 = 13.33 mm
2 19.47 = 38.94 08.
Z=40
1sec
Ans: (d)
1
With probe diameter compensation
3 Sol: Tan 2 28.54
Dactual 13.334 2 r sec = 13.334 + 2 ×(1 sec 18.435) = 15.442 mm.
2
3
15.54 + 8 + 5 = 28.54
ACE Engineering Publications
3
10.
Ans: (d)
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 44 :
1 71 0.11667 2.04103
7.4 Screw Thread Measurements 01.
2 = 91 = 0.15 2.618103
Ans: (d)
P = 0.004
Sol: Major diameter = s + (R2 R1)
De = 30.6651
= 35.5 + (11.8708 9.3768)
= 60 (metric thread)
= 37.994 mm 02.
Virtual correction VC = (0.004 cos30) + (0.0131
Ans: (a)
3.5(0.11667 + 0.15) )
Sol: Minor diameter
VC = 0.01569
= 30.5 + (15.3768 13.5218)
VED = De + VC
= 32.355 mm
= 30.6651 + 0.01569 = 30.6807
Correct answer is (a) 03.
Ans: (a)
p Sol: best wire diameter, d = sec 2 2 3.5 60 = sec = 2 2 2
05.
Ans: (a)
06.
Ans: (d)
R 2 R1 Sol: Sin 2 M 2 M1 R 2 R 1
=
M = 30.5 + (12.2428 13.3768) = 29.366 mm p De = M d tan 2 2 3.5 tan 30 = M 2 2
07.
VC P cos
2 M = 14.701 + (1.155+ tan30) =16.433 2
2
08.
0.0131P 1 2
Ans: 16.433 mm
p Sol: De = M d tan 2 2
Ans: (a)
Sol: VED = De VC
Ans: (d)
Sol: Lead = pitch no of starts
Pitch =
P = pitch error
1.4434 0.8660 22.06 20.32 1.4434 0.8660
= 59.5566 = 593323
= 29.366 – 3.010366 = 26.355 mm 04.
ME – GATE_ Vol – I_Solutions
lead 3 = =1.5 no of starts 2
1, 2 flank angle errors in deg ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 45 : 09.
Production Technology
Ans: (d)
7.5 Surface Finish Measurement
Sol: Rollers will not used to measure pitch
diameter.
01.
p Best size diameter d = sec 2 2
(i)
2 60 = sec 2 2 = 1.1547 = 1.155 10.
Common data Q 11 & 12
(ii)
Ans: (c)
Sol: CLA(Ra) = (h1+h2+h3+……+h10)/n
2 60 = sec =1.155 mm 2 2
Sol: Peaks 35 40 35 42 35
Valley 25 22 18 25 23 Rz =
peaks valleys no of peaks (35 40 35 42 35) (25 22 18 25 23) =15 5
(iv) Ans: (b) Sol:
RMS =
h 12 h 22 h 32 ........ h 2n = 33 n
(or) RMS = 1.1 R a=1.1 30=33
Ans: (a)
p Sol: Deff = M – d tan 2 2 = 16.455 – 1.155.tan30 = 14.7226 mm Ans: 1.732 mm
Sol: The best wire size = (p/2) sec(/2)
= (3/2) sec(60/2)
(v)
Ans: (c)
Sol: If Ra value from 18.75 to 37.5 international
grade of roughness is given by N11. 02.
Ans: (c)
Sol: Ra =
= 1.732 mm = ACE Engineering Publications
300 = 30 10
(iii) Ans: (b)
Ans: (a)
p Sol: Best size diameter, d = sec 2 2
13.
= 4 2 18 = 24
=
= 0.2 cos30 = 0.346
12.
Sol: Rt = max. peak – min.valley
Ans: (d)
Sol: V.C = P.cos 0.0131 P(1+ 2) 2
11.
Ans: (c)
A w
1 1000 HM VM
480 480 1 1000 = 0.8 0.8 100 15000
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 46 :
03.
Ans: (d)
Sol: Rt =
04.
ME – GATE_ Vol – I_Solutions
Chapter‐ 8
0.05 =50 m tan 45
Advanced Machining Methods Numerical Control (NC)
Ans: (c)
Sol:
01.
Ans: (a)
Sol: Pitch of lead screw = 5mm
1 rev = 5mm
40
50
Am = 0.105
1mm = 1/5 rev 200mm = 1/5 200 = 40rev
10
= 40 360 = 14400 deg.
2.5
Am act = 0.105 0.01 2.5 = 0.08 K=
A m act
02.
Ans: (b)
Sol: Pitch of lead screw = 5mm,
3
(10 2.5) 0.04
BLU = 0.005mm
0.082 1 = 0.8 3 2.5 10 0.04 1000
Distance travelled /pulse
Length of travel = 9mm No.of pulses = L/BLU = 9 / 0.005
05.
Ans: (c)
06.
Ans: (c)
= 1800 pulse. 03.
Ans: (b)
Sol: For 1 rev of motor 360 are required 07.
360 pulses are required
Ans: (a)
When motor is rotated by 1 rev 08.
Ans: 2
Sol: R a
lead screw will rotate by 1 rev
h 16 4 16 0 64 2 m n 32 32
When Lead screw is rotated by 1 rev 3.6 mm distance is travelled by axis In total For 360 pulses 360 deg of motor
1 rev of motor 1 rev of lead screw ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 47 :
Production Technology
3.6 mm of linear movement of axis
Pulses per min = feed / BLU
360 pulses = 3.6mm
= 50/0.01 = 5000
1 pulse = 3.6/360 = 0.01mm = 10 microns
07.
Ans: (a)
Sol: 04.
Ans: (b)
CNC drill table X axis
pulses
Sol: 10V = 100 rpm
= 100 5 = 500 mm/min That is for 500mm/min = 10V
Pulse generator
Stepper motor
Driver
1mm /min = 10/500 3000mm/min = 10 3000 / 500=60 V BLU = the distance traveled by the table for one pulse of electrical energy input to the
Common Data 05 & 06
motor. 05.
Ans: (b) & 06. Ans: (a)
Sol: A, Stepper motor 200 steps / rev
200 pulses /rev
Hence 200 pulse = 1 revolution of motor = 1 revolution of lead screw = 4mm That is 1 pulse = 4/200 = 1/50 = 0.02mm,
Pitch = 4 mm, no. of starts = 1,
hence BLU does not depends on the
Gear ratio = N0/Ni= 1/4 = U
frequency of pulse generator. But if the
F = 10000 pulses per min 200 pulses 1 rev of motor
1/4 rev of lead screw = 1/4 4 1 mm linear distance. = 1mm linear distance 1 pulse = 1/200 = 0.005mm = 5 microns = 1 BLU
speed of the table means it will get doubled. 08. Ans: 20 Sol: p = 5 mm
1000 pulses 1 rev of motor
1 rev of lead screw Velocity of table = 6 m/min = 6000 mm/min
Feed = BLU pulse /min = 0.005 10000 = 50mm/min For changing BLU = 10 microns = 0.01mm
Gear ratio has to be reduced to 1/2 Feed = BLU pulse /min ACE Engineering Publications
= 100 mm/sec 1000 pulses 1 rev of lead screw 5 mm 1 pulse
5 0.005 mm 1000
BLU = 0.005 mm
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 48 :
Table speed = BLU × Rate of Pulses Rate of pulses =
13.
ME – GATE_ Vol – I_Solutions Ans: (d)
Sol: Appropriate answer but the correct answer
100 0.005
is
= 20000 pulses/sec
N05
X5
Y5
= 20000 Hz = 20 kHz
N10
G02
X10
Y10
R5
Because in CNC part program we are not 09.
Ans: (c)
suppose to indicate information about one
Sol:
axis more than once in one block. 75
14.
centre
55
Ans: 60
Sol: In the combined movement, the tool is
(50,55)
moving for 50mm with a speed of 50
100mm/min. whereas in the same time tool
70
is traveling x-axis by only 30mm. Hence,
10. 11.
Ans: (b)
For 50mm 100mm/min For 30mm
Ans: (a)
100 30 60mm / min 50
Sol: G02 – circular interpolation clockwise
G03 – circular interpolation counter clockwise
15. Ans: (a) Sol: Because diameter of milling cutter is 16mm,
12.
Ans: (c)
the radius is 8mm. the dotted line indicates
Sol: Because the tool has to travel from P1 to P2
in clock wise. Y
mm all around the rectangular slot
P2 = (10, 15)
cutter center position, which is shifted by 8 (–8,58)
Center (15, 15)
P1 = (15, 10) X
(–8,–8)
S
P
(0,50)
(100,50)
(0,0)
(100,0)
R
Q
(108,58)
(108,–8)
If the given shape is rectangular hole, then the answer is (8,8), (92,8), (92,42), (8,42), (8,8)
ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 49 : 16. Sol:
Ans: (a) Y
Q (4,5)
P
33.7
(1,3)
36.9
Production Technology 18.
Ans: (b)
19.
Ans: (a)
Sol: Given coordinates (0,0) to (100, 100) R
Mean, L = 100, depth, d = 2 m
D
3.2
Diameter, D = 10
C O
APC =
X
PQ 2 2 32 = 3.6055 = PC
=
PD = PC cos 3.2 = 3.6
210 2 = 4
Time/slot =
x co-ordinate of point C = 1 + 3.6 = 4.6
17.
d D d
104 104 = fN 50
DC = 3.6 sin 3.2 = 0.2
= 2.08 min
y co-ordinate of point C = 3.0 – 0.2 = 2.8
= 124.8 sec 120
Ans: (a)
20.
Sol: “P” after translation = (1+2, 3+3, –5 –4)
= (3, 6, –9) Rotation about z- axis means
x cos sin y sin cos z 0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1
3 6 9 1
0 6 0 0 6 3 0 0 0 3 0 0 9 0 9 0 0 0 1 1
x y z 1
Ans: 54.166 mm/sec, 10 micron
Sol: f = 500 pulse/rev
p = 5 mm,
N = 650 rpm
(i) v = Np =
650 5 60
v = 54.166 mm/sec Now, 1 min = 650 rev 1 sec =
f 500
650 rev 60
650 60
f = 5416.66 pulse/sec And, v = B.L.U. f = 54.166 BLU 5416.66 B.L.U. = 0.01 mm B.L.U. = 10 microns
Final point = [–6, 3, –9]
ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 50 : 21. Sol:
Ans: 287
= 0.9
Chapter‐ 9 NTM, Jigs and Fixtures
0.9 = 1 pulse 360
360 pulse 400 pulses 0.9
1 revolution = 4 mm pitch = 400 pulses 2.87 mm = 287 pulses 22.
ME – GATE_ Vol – I_Solutions
01. Ans (c) 03.
melting and vaporization associated with cavitation and also erosion & cavitation or
Sol: Pulse rate = N pulse/rev
Feed rate = 15 rpm 4 mm/rev
Ans: (c)
Sol: In EDM the mechanism of MR is due to
Ans: 100 pulse, 60 mm/min
400 15 100 pulse / sec 60
02. Ans: (d)
spark erosion and cavitation 04.
Ans: (d)
Sol: The high thermal conductivity of the tool
= 60 mm/min
material
will
have
high
electrical
conductivity hence the heat generated with in the tool is low and what ever heat generated it will be distributed easily therefore tool melting rate reduces and tool wear reduces. Where as due to specific heat of work material, the rise in temp of W.P is faster and more amount of MR is possible. 05.
Ans: (b)
Sol: Given w = 1 + (2 0.5) = 2
t =5, f = 20 mm/rev MRR = wtf = 2.5.20 = 200 mm/min 06.
Ans: (a)
Sol: As the thermal conductivity of tool material
is high the heat dissipation from the tool is taking place and if the specific heat is high, it needs large amount of heat for raising the temps of tool material up to MP. ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 51 :
Production Technology 10.
Ans: (a)
Sol: In ECM
07. (i) Ans: (a) , (ii) Ans: (c)
MRR gram atomic weight of material
Sol: D = 12mm, t = 50mm, R = 40 ,
C = 20 F, Vs = 220V, Vd = 110V
Current density
Vs Cycle time = R.C ln tc Vs Vd
1 dis tan ce between tool and work
Thermal conduction of electrolyte.
220 = 40 2010–6 × ln 110
11.
6
554 10 sec 0.55 milli sec
Ans: (b)
Sol: I = 5000 A
A = 63, Z = 1, F = 96500
Average power input = W
E 0.5 CVd 2 = tc t c
MRR
AI 5000 63 ZF 1 96500
3.264 g / sec .
= 218 W = 0.218 kW 08.
12. Ans: (a)
Ans: (b)
Sol: For Rough machining i.e. stock removal the
electrolyte should have high electrical conductivity, called passivity electrolyte, where
as
for
finish
machining
the
electrolyte should have low electrical conductivity
called
non–passivity
Sol: A = 55.85, Z = 2, F = 96540
Specific resistance = 2Ω-cm Voltage = 12V Inter electrode gap = 0.2 mm Resistance R
electrolyte will be used.
09. Ans: (b)
I
Sol: In ECM
MRR gram atomic weight of material MRR Current density MRR
1 dis tan ce between tool and work
Sp. Resis tance Inter electrode gap Suface area
2 10 0.2 0.01 20 20
V 12 1200A R 0.01
MRR
AI 55.85 1200 ZF 2 96540
0.3471 g / sec
MRR Thermal conduction of electrolyte. ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 52 : 13.
Ans: 51.542
18.
1 0.009 50 0.009 L 0.02 Sol: R Area Area Area I
V 12 1.5 Area 23.333 Area 50 0.009 R
L = 3 + 6 = 9 m = 0.009 MRR
ME – GATE_ Vol – I_Solutions Ans: (d)
Sol: Relative motion between tool and work
piece is not necessary. 19.
Ans: (c)
Sol:
AI 55.85 23.333 Area ZF 7860 10 6 2 96500
A
B
= 0.98189 Area MRR 0.8590 mm / sec Area
If D = Dmin = 59.9 X1 = distance between center of shaft and
0.8590 60 mm / min
59.9 corner of V – block 2 34.583 sin 60
= 51.542 mm/min 14.
Ans: 680
15.
Ans: (c)
Sol: EDM, ECM and AJM
60.1 X 2 2 34.698 sin 60
are used for
Error in depth = 2(X2 – X1) = 0.223 mm
producing straight holes only but in LBM by maneuvering or bending laser gun
20.
slightly it is possible perform the Zig – Zag
Sol: Resolving the force “F” into Horizontal
F sin 100
hole. 16.
Ans: (b) (Both are Correct)
Sol: In EBM Vacuum is provided to avoid the
dispersion of electrons after the magnetic lense, but this vacuum is giving an addition function of providing efficient shield to the weld bead. 17.
(1) 100 tan (2) 200
1 tan 1 26.565 2 100 223.6 kg Sin
Taking the moments about vertical axis
Sol: Out of all the NTM’s ECM will give large
MRR and EBM will give very small MRR. ACE Engineering Publications
F cos 100 100 200 …… (2)
F
Ans: (d)
………. (1)
xF cos 100 30 100 30 100 20 x = 10 mm
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata
: 53 :
Production Technology
Positional error = 30.025 – 30 = 0.025 mm
21. (i) Ans: (d), (ii) Ans: 10.6 mm Sol: P
(b)
Fixed V – block and movable rectangular block
O2
O1 A
X2
X1 Q
O1
30 30.025
O2 4
3 A
O1 O 2 4 2 3 2 = 5 O1O 2 5 x 2 x 2
(c)
x = 3.5 Block of uniform thickness is preferable because of balanced condition.
x1
30 34.64 Sin 60
x2
30.025 34.66 Sin 60
Positional error = x2 – x1 = 0.0298 mm The positional error is mainly depends on the fixed element. So when fixed V – block and marble V – block is used, the positional error is remains same as (b).
22.
Out of the 3 cases, case (a) is giving lower
Sol:
(a)
Clamping
Fixed rectangular block and movable V –
positional error, hence preferable.
clamp.
O1 O2 · ·
Clamping
30 30.025
ACE Engineering Publications
Hyderabad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow|Patna|Bengaluru|Chennai|Vijayawada|Vizag |Tirupati | Kukatpally| Kolkata