Problem 6 Algebra

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Problem 6 Algebra as PDF for free.

More details

  • Words: 437
  • Pages: 1
Problem 6: Algebra

AIME 1984 #15

Problem: Determine w2 + x2 + y 2 + z 2 if x2 22 − 1 x2 2 4 −1 x2 62 − 1 x2 82 − 1

Solution: Rewrite as

y2 22 − 32 y2 + 2 4 − 32 y2 + 2 6 − 32 y2 + 2 8 − 32 +

z2 22 − 52 z2 + 2 4 − 52 z2 + 2 6 − 52 z2 + 2 8 − 52 +

w2 22 − 72 w2 + 2 4 − 72 w2 + 2 6 − 72 w2 + 2 8 − 72 +

=1 =1 =1 =1

x2 y2 z2 w2 + + + = 1, where t = 22 , 42 , 62 , 82 t − 1 t − 32 t − 52 t − 72

So we have (x2 )(t − 9)(t − 25)(t − 49) + (y 2 )(t − 1)(t − 25)(t − 49) + (z 2 )(t − 1)(t − 9)(t − 49) + (w2 )(t − 1)(t − 9)(t − 25) = (t − 1)(t − 9)(t − 25)(t − 49) Rearranging, we have (t − 1)(t − 9)(t − 25)(t − 49) − [(x2 )(t − 9)(t − 25)(t − 49) + (y 2 )(t − 1)(t − 25)(t − 49) + (z 2 )(t − 1)(t − 9)(t − 49) + (w2 )(t − 1)(t − 9)(t − 25)] = 0 Now this equation is equivalent to (t − 4)(t − 16)(t − 36)(t − 64) = 0, since the roots of the polynomial two lines above are t = 22 , 42 , 62 , 82 , because that’s what we substituted. So (t − 1)(t − 9)(t − 25)(t − 49) − [(x2 )(t − 9)(t − 25)(t − 49) + (y 2 )(t − 1)(t − 25)(t − 49) + (z 2 )(t − 1)(t − 9)(t − 49) + (w2 )(t − 1)(t − 9)(t − 25)] = (t − 4)(t − 16)(t − 36)(t − 64). Each of the coefficients on each side for t4 , t3 , t2 , t, 1 must be the same. We will equate the t3 coefficients. They are −1 − 9 − 25 − 49 − (x2 + y 2 + z 2 + w2 ) = −4 − 16 − 36 − 64 ⇒ −84 − (x2 + y 2 + z 2 + w2 ) = −120 ⇒ x2 + y 2 + z 2 + w2 = 36

Solution was written by 1234567890 and compiled from Art of Problem Solving Forums.

Related Documents