Errata, Hints, and Problem Solutions WRDFFRPSDQ\WKHWH[W
3UREDELOLW\5DQGRP9DULDEOHV DQG6WRFKDVWLF3URFHVVHV)RXUWK(GLWLRQ E\$WKDQDVLRV3DSRXOLVDQG68QQLNULVKQD3LOODL 0F*UDZ+LOO
SUHSDUHGE\*DU\0DWFKHWW 1RUWKURS*UXPPDQ :DONHUV%URRN'ULYH 5HDGLQJ0$ DOVRDVVRFLDWHGZLWK 1RUWKHDVWHUQ8QLYHUVLW\
2EMHFWLYH 7KLVYROXPHZDVSUHSDUHGE\WKHLQVWUXFWRUIRUVWXGHQWVRI1RUWKHDVWHUQ8QLYHUVLW\ FRXUVH(&($SSOLHG3UREDELOLW\DQG6WRFKDVWLF3URFHVVHVWRKHOSLQGHDOLQJZLWK WKHFRXUVH7H[W$VWKHWLWOHLQGLFDWHVWKHUHDUHWKUHHSDUWV7H[WHUUDWDIROORZHGE\KLQWV IRUVROYLQJWKHSUREOHPVIROORZHGE\SUREOHPVROXWLRQV7KHFRXUVHGRHVQRWFRYHUWKH HQWLUH7H[WQRUGRWKHVHQRWHV&KDSWHUVWKURXJK&KDSWHUVWKURXJKDQGWKHILUVW 6HFWLRQRI&KDSWHUDUHFRYHUHGKHUH7KHFRXUVHGRHVQRWFRYHUDOOWKHWRSLFVLQ&KDS WHUVDQGEXWDOOWKHSUREOHPVLQWKRVHFKDSWHUVDUHLQFOXGHGKHUH 7KHPDLQSDUWRIWKLVZRUNLVWKHSUREOHPVROXWLRQV7KHJORU\RIWKH7H[WLVLWVSURE OHPV0DQ\RIWKHPFRQWDLQNH\SDUWVRILPSRUWDQWGHYHORSPHQWVLQWKHILHOGDQGDUH ZLGHO\XVDEOH'RLQJWKHSUREOHPVLVZKHUHUHDOOHDUQLQJKDSSHQV7KHUHDUHVRPDQ\ SUREOHPVDQGVRPHDUHVRGLIILFXOWDVWRGDXQWDOOEXWWKHPRVWLQWUHSLGVWXGHQW,FDQQRW UHDGDQGFRUUHFWKRPHZRUNDQG,DPRIWHQQRWDYDLODEOHZKHQKHOSLVQHHGHGHVSHFLDOO\ LQJHWWLQJVWDUWHGVRWKLVYROXPHLVDQDWWHPSWWRILOOWKHYRLG 5HDGLQJWKHVROXWLRQWRDSUREOHPZLWKRXWILUVWVHULRXVO\DWWHPSWLQJWRVROYHLW\RXU VHOILVDPLVWDNH
(55$7$ &200(176217+(7(;7 )RXUWK(GLWLRQ 7KH)RXUWK(GLWLRQRIWKH7H[WLVDOPRVW QHZDWWKLVZULWLQJ7KHHUUDWDKHUHDUHIRUWKH ILUVWSULQWLQJ(UURUVDUHVRPHWLPHVFRUUHFWHGZLWKQHZSULQWLQJV7KHSULQWLQJQXPEHU LVWKHILUVWLQWHJHUUHPDLQLQJLQWKHVHTXHQFHRQWKHUHYHUVHRIWKHWLWOHSDJH DERYHWKH,6%1OLQH6LQFHWKLV7H[WLVQHZO\UHYLVHG,KDYHQRWWKRURXJKO\H[DPLQHGLW DQGKDYHOLNHO\RYHUORRNHGVRPHHUURUV,ZRXOGDSSUHFLDWHQRWLILFDWLRQRIDQ\HUURUVQRW OLVWHGKHUHRUDQ\FRPPHQWVRQHUURUVOLVWHGKHUH WR*0DWFKHWW#QRUWKURSJUXP PDQFRP
&+$37(5
SILUVWSDUDJUDSKRI6HFWLRQOLQHVKRXOGUHDG³DQGFHUWDLQRILWVVXEVHWV HYHQWV´ SILUVWSDUDJUDSKRI6HFWLRQOLQHVKRXOGUHDG³ ζ i LVDQHOHPHQWDU\HYHQW LILQIDFW { ζ i } LVDQHYHQWDWDOO´ SIROORZLQJ(T VKRXOGUHDG³UHVXOWVLQYROYLQJSUREDELOLWLHVKROGDOVR´ SIROORZLQJ(T QRWHWKDW³7KLVUHVXOW´UHIHUVWR(T DQGQRWWR(T
&+$37(5
2 2 S)LJD VKRXOGUHDG -------------- e –( x – 4.5 ) ⁄ 4.5 3 2π 1 2 S)LJE VKRXOGUHDG ----------e – ( x – 3.0 ) ⁄ 4 4π S3UREOHPVKRXOGUHDG³QHWJDLQRUORVVH[FHHGV´ S3UREOHPVKRXOGUHDG³:HSLFNDWUDQGRP n ≤ N FRPSRQHQWV´
&+$37(5
S3URRIVKRXOGUHDG³6XSSRVHWKDW x ( ζ ) > 0 IRUHYHU\ ζ ´ S(T VKRXOGUHDG 0 < x < 1 S(T WKHXSSHUOLPLWRQWKHVHFRQGLQWHJUDOVKRXOGEH π ⁄ 2 S:DWFKRXW7KHUHDUHWZRGLIIHUHQWGHILQLWLRQVIRUERWKWKHQHJDWLYHELQRPLDO GLVWULEXWLRQDQGIRUWKHJHRPHWULFGLVWULEXWLRQ:KHQWKHVHGLVWULEXWLRQVDUHVSHFL ILHGDVLQWKHSUREOHPVLWLVQRWDOZD\VFOHDUZKLFKRIWKHWZRLVPHDQW SOLQHLQ([DPSOH VKRXOGUHDG 20 ≤ x < 40 SOLQHVDQGVKRXOGUHDG b < x ≤ a SOLQHVKRXOGUHDG b < x < a S([DPSOHWKHHTXDWLRQIRUWKHGHQVLW\LVLQFRUUHFW7KH G V\PEROVVKRXOG
Errata-1
EH J V\PEROVZKLFKZHUHGURSSHGIURPWKH)RXUWK(GLWLRQ 1RWHWKDW x 1 –x2 ⁄ 2 VRWKDW G ( x ) = ∫ J ( ξ ) dξ J ( x ) = ----------e 2π –∞ FRPSDUHZLWK(T DQGVHH1RWDWLRQDO3HFXODULWLHVRIWKH+LQWVVHFWLRQ S7DEOHQRWHWKDWWKH7H[WGHILQLWLRQRI erf ( x ) LVQRQVWDQGDUG7KHUHODWLRQ VKLSLV 1 x 1 x erf ( x ) = --- erf ------- = --- Φ ------- 2 2 2 2 ZKHUHWKHILUVWWHUPLVWKH7H[WGHILQLWLRQWKHVHFRQGWHUPLVWKHVWDQGDUGGHILQLWLRQ DQGWKHWKLUGWHUPLVWKH³*UDGVKWH\Q 5\]KLN´QRWDWLRQ SILUVWOLQHDIWHU(T WKHUHVWULFWLRQ x > 0 LVQRWQHHGHG
2
S3UREOHPVKRXOGUHDG³8VLQJ7DEOH´DQGLQSDUWE ³ x LV N ( η, σ ) ´ S3UREOHPVKRXOGUHDG³ x LV N ( 10, 1 ) ´ S3UREOHPVKRXOGUHDG³ x LV N ( 0, 4 ) ´ S3UREOHPVKRXOGUHDG³ x LV N ( 1000, 400 ) ´ S3UREOHPWKHUHIHUHQFHWR(T LVQRWFRUUHFW7KHDFWXDOHTXDWLRQ LQWHQGHGZDVUHPRYHGLQJRLQJWRWKH)RXUWK(GLWLRQ(T LVDFORVHHTXLYDOHQW WRZKDWZDVLQWHQGHG S3UREOHPVKRXOGUHDG³WKHQ F ( x ) = 1 IRU x ≥ b ´ S3UREOHPVKRXOGUHDG³$V\VWHPKDVFRPSRQHQWV´ S3UREOHPWKHODVW³!´VKRXOGEHD³³LQWKH+LQW S3UREOHPVKRXOGVD\LQDGGLWLRQ³$VVXPHDOVR k 1, k 2 « n, k 3 ´
&+$37(5
SHTXDWLRQDIWHU(T WKHODVWWHUPVKRXOGEH U ( x )
S([DPSOHQH[WWRODVWOLQHVKRXOGUHDG³WKDW E { ( x – η ) 2 } = σ 2 DQG´ SHTXDWLRQIROORZLQJ(T VKRXOGUHDG P{ x – η ≥ ε} =
η–ε
∫–∞
f ( x ) dx + … 2
S([DPSOHVKRXOGUHDG³IXQFWLRQRIDQ N ( η, σ ) UDQGRPYDULDEOH´ SWZROLQHVDIWHU(T WKHULJKWKDQGHTXDWLRQVKRXOGKDYHDGRXEOHSULPH RQWKHSKLRQWKHOHIWKDQGVLGH S3UREOHPVKRXOGUHDG N ( 5, 4 )
S3UREOHPVKRXOGUHDG y =
S3UREOHPD VKRXOGUHDG Φ x ( ω ) = ( 1 – jωβ )
Φ x ( ω ) = ( 1 – j2ω )
–n ⁄ 2
x –α
DQGE VKRXOGUHDG
S3UREOHPE WKHHTXDWLRQOLQHVKRXOGHQG k ≤ min ( M, n )
Errata-2
&+$37(5
S(T ORZHUOLPLWRQWKHILUVWLQWHJUDOVKRXOGUHDG y = – ∞ S(T VHH6SHFLDO1RWHLQWKH+LQWVVHFWLRQRIWKLVYROXPH S([DPSOHOLQHVKRXOGEHJLQ³ φ ( s 1, s 2 ) = e A ´
S3UREOHPVHFRQGFHQWHUHGHTXDWLRQOHIWVLGHVKRXOGUHDG f z ( z ) = S3UREOHPVHH6SHFLDO1RWHLQWKH+LQWVVHFWLRQRIWKLVYROXPH,WLVHDVL HVWLILWUHDGV³H[FHHGV 2 ⁄ λ ´DQG³RULJLQDOFRPSRQHQWE\ 1 ⁄ λ "´ S3UREOHPVKRXOGDVNWRVKRZWKDW w LVDQH[SRQHQWLDOUDQGRPYDULDEOH S3UREOHPKDV³H[FHVV´LQIRUPDWLRQ6HHWKHKLQWIRUWKLVSUREOHP S3UREOHPWKHILUVWGLVSOD\HTXDWLRQVKRXOGUHDG
E{z} =
∑ pn E { g ( xn, y ) xn } n
S3UREOHPVKRXOGUHDG³ β y ( t ) = f y ( t ( y > t ) ) DQG´
&+$37(5
S(T VKRXOGQRWKDYHFRPPDVLQWKHGHQRPLQDWRURIWKHIUDFWLRQ SOLQHVKRXOGUHDG³DVLQ([DPSOH´ SVHFRQGOLQHRIWKHVHFWLRQ³(UJRGLFLW\´VKRXOGUHIHUWR6HF S([DPSOHVKRXOGUHDG³LQWKHLQWHUYDO ( 0, T ) ´ S(T VKRXOGUHDG ∞
∫–∞ x α fi ( x ) dx < K < ∞ IRUDOO i
S(T VKRXOGUHDG E { xi 3 } ≤ cσ i2 DOO i S([DPSOHLQWZRSODFHVWKHUHIHUHQFHWR VKRXOGEHWR S3UREOHPVKRXOGEHJLQ³DUHQRUPDOXQFRUUHODWHGZLWK]HURPHDQ´
&+$37(5
S([DPSOHUHVXOWVDUHYDOLGIRUSRVLWLYHWLPHVRQO\7KHULJKWKDQGWHUPRI WKHHTXDWLRQIROORZLQJ(T LVQRWFRUUHFWLI t 1 = t 2 = t ZKHUHLWSURGXFHV 2λt &RUUHFWO\ C ( t, t ) = λt S HTXDWLRQVIROORZLQJ(T DUHRQO\WUXHLI t 2 ≤ t 1 ,QFDVH t 1 ≤ t 2 DOO WKH t 2 ¶VLQWKHVHHTXDWLRQVVKRXOGEHUHSODFHGE\ t 1 ¶V 2
b
∫a …
S(TVKRXOGUHDG E { s – η s } =
SILUVWOLQHRI³3URRI´QHDUSDJHERWWRPVKRXOGUHDG³>6HH @´ S([DPSOHVKRXOGDVVXPHD666SURFHVV SHTXDWLRQDIWHU(T VKRXOGKDYH g ( x ) = +c ZKHQ x > c DQG g ( x ) = – c
Errata-3
ZKHQ x < – c S(TV DQG DUHRQO\WUXHIRUDUHDOV\VWHP:KHQWKHV\VWHPLV FRPSOH[WKHFRQMXJDWHV L 2* DQG h * VKRXOGDSSHDU
SHTXDWLRQEHIRUH([DPSOHVKRXOGUHDG³ h ( α )h * ( β ) ´
S(T VKRXOGEHJLQ³ a n y ( n ) ( t ) + … ´
SQH[WWRODVWOLQHVKRXOGUHDG³FDVHVRI DQG ´1RWHWKDW H ( ω ) LV XVHGKHUHZLWKRXWDQ\LQWURGXFWLRQ,WLVWKHV\VWHPIXQFWLRQZKHUH ∞ 1 ∞ H ( ω ) = ∫ h ( t )e –jωt dt h ( t ) = ------ ∫ H ( ω )e jωt dω 2π –∞ –∞
S(T XVHV ρ ( τ ) ZLWKRXWFDOOLQJLWWKHGHWHUPLQLVWLFDXWRFRUUHODWLRQRI h ( t ) DQGWKHQH[WOLQHRQS VKRXOGUHDG³ZKLWHQRLVHZLWKLQWHQVLW\ q SWZROLQHVEHIRUH(T VKRXOGUHDG³,WLVWKXVDVLPSOHORZSDVVILOWHU´ S(T VKRXOGUHDG ( 2n ) ( τ ) S yy ( ω ) = jω 2n S xx ( ω ) R yy ( τ ) = ( – 1 ) n R xx
1 S([DPSOHOLQHVKRXOGUHDG³HTXDOV ----- ´ πt
S(T VKRXOGUHDG³ E { x ( t + τ 1 ) – x ( t ) 2 } = 0 ´
S(T WKHVXPVKRXOGEHJLQDW m = 1 S([DPSOHQRWHWKDW a LVSUHVXPHGUHDODQGOLQHVKRXOGUHDG q R yy [ m ] = -------------2- a m 1–a S3UREOHPVKRXOGUHDG
E{ w2( t) } =
t
∫0 ( t – τ ) 2 q ( τ ) dτ
S3UREOHPVKRXOGUHDG 1 S y ( ω ) = 2πRx2 ( 0 )δ ( ω ) + --- S x ( ω ) * S x ( ω ) π
S3UREOHPVKRXOGUHDG³ R [ 0 ]R [ 2 ] ≥ 2R 2 [ 1 ] – R 2 [ 0 ] ´
S3UREOHPVKRXOGUHDG³ x [ n ] = Ae FDQQRWPDNHEROGJUHHNV\PEROV
jnω
´ ω LVDUDQGRPYDULDEOHKHUH,
&+$37(5
SOLQHDIWHU(T VKRXOGUHDG³ k = 1.37 × 10 – 23 -RXOHVGHJUHH.´ SILUVWZRUGVKRXOGUHDG³LQHUWLDKDVWKH´ SIRXUOLQHVDIWHU(T VKRXOGUHDG³DQG E { n 2 ( t ) } = λ 2 t 2 + λt ´ S(T VHFRQGSDUW VKRXOGUHDG³ Rxxˆ ( – τ ) = – R xxˆ ( τ ) ´
SOLQHWKUHHVKRXOGUHDG³WKDW S zz ( ω ) LVVSHFLILHG´
Errata-4
SWZROLQHVEHIRUH(T VKRXOGUHDG³66&6SURFHVVZLWKSHULRG T DQG S(T VKRXOGUHDG 1 S x ( ω ) = --- 6 c ( e jωT ) H ( ω ) 2 ´ T ∞
S(T LVLPSURSHU7RIL[WKLVGHILQH w ( t ) =
∑ cn U ( t – nT ) IRU t ≥ 0 n=0
ZLWKDQDSSURSULDWHDOWHUQDWHGHILQLWLRQIRU t < 0 1RZ w ( 0 - ) = 0 SODVWHTXDWLRQVKRXOGKDYHWKHWHUP R c [ n – r ] QRW R c ( n – r ) S(T VKRXOGUHDG ∞
∑
… =
∞
Rc [ m ]
m = –∞
∑
δ [ t + τ – ( m + r )T ]δ ( t – rT )
r = –∞
SHTXDWLRQDIWHU(T VKRXOGUHDG ∞
T
∑ ∫0 δ [ t + τ – ( m + r )T ]δ ( t – rT ) dt
= δ ( τ – mT )
r = –∞
S(T VKRXOGUHDG 1 S z ( ω ) = --T
∞
∑
m = –∞
1 R c [ m ]e – jmωT = --- S c ( ωT ) T
S(T VKRXOGLQGLFDWHHTXDOLW\LQPHDQVTXDUH S(T SUHVXPHVWKHSURFHVVLVUHDO SILYHOLQHVEHIRUH(T VKRXOGUHDG³ T 0 ≤ π ⁄ σ ´
SOLQHEHIRUH(T$ VKRXOGUHDG³IRUDQ\ c > 0 ´ SOLQHLVLQFRUUHFW6HHWKHVROXWLRQWR3UREOHP
S3UREOHPHTXDWLRQVKRXOGUHDG³ S x ( ω ) = 2π -----2T
S3UREOHPQHHGVWKHDVVXPSWLRQWKDW x ( t ) LVLQGHSHQGHQWRIDOO t i DQG 1 VKRXOGUHDG³ X c ( ω ) = --λ
∑
T
∫0 … ´
x ( t i )e – jωti ´,WLVQRWQHHGHGWKDW E { x ( t ) } = 0
ti < c
S3UREOHPVKRXOGUHDG³ y ( t ) = B cos ( ω 0 t + ϕ ) + y n ( t ) ´
&+$37(5
SWZROLQHVDIWHU(T VKRXOGUHDG³V\VWHPRI)LJLV´ SOLQHDIWHU(T VKRXOGUHDG³ α i = γ i / ( 1 ⁄ z i ) ´,FDQQRWGXSOLFDWHWKH 7H[WIRQWVEXWWKHUHLVDSUREOHPRIFRQVLVWHQF\KHUH SOLQHEHIRUH(T VKRXOGUHIHUWR([DPSOH
Errata-5
SOLQHEHIRUH(T VKRXOGUHDG³ B ( – ω ) = – B ( ω ) ´ SOLQHDIWHU(TD VKRXOGUHIHUWR(T QRW S3UREOHPVKRXOGUHDG –1 ⁄ 2 λn –1 ⁄ 2 n’ a + λ β n = a + ----- β ’ = -----n 2 2
S3UREOHPVKRXOGUHDG³ E { x n x k∗ } = … ´
&+$37(5
T
S(T VKRXOGUHDG³ ∫ C ( τ ) dτ < ∞ ´ 0
Errata-6
Gary Matchett
Hints — 9/5/02
352%/(0+,176$1'&200(176 ,QWURGXFWLRQ 6HYHUDOV\PEROVDUHXVHGWRFRPPHQWRQWKHSUREOHPVRIWHQVXEMHFWLYHO\7KH\DUH
,DQLPSRUWDQWSUREOHPOLNHO\RQHZKRVHUHVXOWVZLOOEHQHHGHGODWHU
0DPRGHUDWHO\GLIILFXOWSUREOHP
'DGLIILFXOWSUREOHP
)DIODZHGSUREOHPJHQHUDOO\FRQWDLQLQJDW\SRJUDSKLFDOHUURUDPLVVLQJ DVVXPSWLRQRUDQLQGHPRQVWUDEOHUHVXOW
%DSUREOHPSUHVXPLQJEDFNJURXQGLQIRUPDWLRQQRWSUHVHQWHGLQWKH7H[WXSWR WKHSRLQWRIWKHSUREOHPRUQRWSUHVHQWHGDWDOO
1RWDWLRQDO3HFXOLDULWLHV :KHUHWKH7H[WXVHV { ∅ } IRUWKHQXOORUHPSW\VHWZHXVH ∅ 7KHV\PEROXVHGKHUHIRUWKH*DXVVLDQGLVWULEXWLRQIXQFWLRQGHILQHGLQ(TRI WKH7H[WLV G ( x ) 7KH)RXUWK(GLWLRQRIWKH7H[WGRHVQRWXVHWKHV\PERO J ( x ) H[FHSWLQ3UREOHP XVHGLQWKH7KLUG(GLWLRQDQGRFFDVLRQDOO\KHUHIRUWKH*DXVVLDQGHQVLW\IXQFWLRQ 7KH)RXUWK(GLWLRQWKLQNVWKDWQRV\PEROLVQHFHVVDU\IRUWKLVIXQFWLRQVLQFH 1 –x2 ⁄ 2 J ( x ) = ---------- e 2π 7KHQRWDWLRQ lnx PHDQVWKHQDWXUDOORJDULWKPRI x 7KH7H[WVRPHWLPHVXVHV log x
6SHFLDO1RWHV
7KH7H[WFKDQJHGQRWDWLRQLQJRLQJIURPWKH7KLUG(GLWLRQWRWKH)RXUWK(GLWLRQ ,QWKH7KLUGHGLWLRQDQRUPDOUDQGRPYDULDEOHZLWKPHDQ η DQGVWDQGDUGGHYLD WLRQ σ ZDVGHQRWHGDV N ( η ; σ ) ZKLFKZDVVORSSLO\ZULWWHQDV N ( η, σ ) IURPWLPH 2
WRWLPH,QWKH)RXUWK(GLWLRQWKHRIILFLDOQRWDWLRQLV N ( η, σ ) 8QIRUWXQDWHO\QRW DOOLQVWDQFHVRIWKHROGHUQRWDWLRQZHUHFKDQJHG7KLVLVSDUWLFXODUO\WURXEOLQJ ZKHQDFWXDOQXPEHUVDUHXVHGIRUWKHSDUDPHWHUVDVWKH\DUHLQVRPHSUREOHPV 'RHVWKHQRWDWLRQ N ( 100, 25 ) PHDQDQRUPDOUDQGRPYDULDEOHZLWKDVWDQGDUG
H-1
Gary Matchett
Hints — 9/5/02
GHYLDWLRQRIRURI"2QHFDQQRWEHVXUH7KHVHKLQWVZLOOSURYLGHP\JXHVV IURPFRPSDULVRQRIWKHWZRHGLWLRQVDQGIURPDUHDGLQJRIWKHRIILFLDO6ROXWLRQV 0DQXDO (TSGHILQHVWKHGLVWULEXWLRQRIDQH[SRQHQWLDOUDQGRPYDULDEOHZLWK SDUDPHWHU λ WRKDYHWKHSGI f x ( x ) = λe
– λx
U ( x ) 7KHSDUDPHWHUKDVXQLWVWKDW
DUHWKHLQYHUVHRIWKHXQLWVRIWKHUDQGRPYDULDEOHLWVHOIRIWHQ x KDVXQLWVRIWLPH DQG λ KDVXQLWVRIWLPH ,WPDNHVSHUKDSVPRUHVHQVHWRXVHWKHLQYHUVHRI λ DVWKHSDUDPHWHUVRWKDWWKHSDUDPHWHUDQGWKHYDULDEOHVKDUHWKHVDPHXQLWVDQG WKHSGILV f x ( x ) = ( 1 ⁄ λ )e
–x ⁄ λ
U ( x ) EXWWKDWZDVQRWGRQHH[FHSWLQVRPHRIWKH
SUREOHPV:KHQDSUREOHPVWDWHVWKDW x LVDQH[SRQHQWLDOUDQGRPYDULDEOHZLWK SDUDPHWHU λ RQHFDQQRWEHVXUHZKLFKRIWKHWZRSRVVLELOLWLHVLVPHDQWH[FHSWE\ LPSOLFDWLRQ)RUH[DPSOHLILWDVNV:KDWLVWKHSUREDELOLW\WKDW x H[FHHGV 2λ " VHH3UREOHP WKHQLWPXVWEHWKDW x DQG λ KDYHWKHVDPHXQLWVVRWKH LQYHUVHSDUDPHWHULVLQGLFDWHG (TVDQGGHILQHDQGHYDOXDWHWKHEHWDIXQFWLRQZKLFKLVGHQRWHGDV B ( α, β ) ,QVRPHSODFHVHJ(T WKLVIXQFWLRQLVGHQRWHGDV β ( m, n ) )RU IXUWKHUFRQIXVLRQWKHELQRPLDOGLVWULEXWLRQLVVRPHWLPHVGHQRWHGDV B ( n, p ) VHH 7KHRUHPRU([DPSOH
5HIHUHQFHV 7KHSUREOHPVDUHPRUHHDVLO\GRQHZLWKWKUHHWRROVDVFLHQWLILFFDOFXODWRUDVHWRI JRRGIXQFWLRQWDEOHVDQGDWDEOHRILQWHJUDOVDQGVXPV,XVHDQGUHFRPPHQG $6²0LOWRQ$EUDPRZLW]DQG,UHQH$6WHJXQ(GLWRUV+DQGERRNRI0DWKHPDWLFDO )XQFWLRQV1DWLRQDO%XUHDXRI6WDQGDUGV$SSOLHG0DWKHPDWLFV6HULHV-XQH QRZDYDLODEOHDVD'RYHUSDSHUEDFN *5²,6*UDGVKWH\QDQG,05\]KLN7DEOHVRI,QWHJUDOV6HULHVDQG3URGXFWV)RXUWK (GLWLRQ$FDGHPLF3UHVV6L[WK(GLWLRQQRZDYDLODEOH $H[FHOOHQWERRNIRUJHQHUDOUHIHUHQFHKHUHLV ),²:LOOLDP)HOOHU$Q,QWURGXFWLRQWR3UREDELOLW\7KHRU\DQG,WV$SSOLFDWLRQV9RO XPH,6HFRQG(GLWLRQ:LOH\ 6RQV7KLUG(GLWLRQLVFXUUHQW
H-2
Gary Matchett
Hints — 9/5/02
&KDSWHUWKHUHDUHQRSUREOHPVLQ&KDSWHU %HJLQZLWK'H0RUJDQ¶VODZV(T 1RKLQW 7U\WRILQGVRPHVHW C VXFKWKDW B = A + C DQG AC = ∅ 7KHQDSSO\(T D 8VH(TE 8VH(TVDQG 8VH(TUHSHDWHGO\ 0%8VHWKHIDFWWKDWDVHWLVFRXQWDEOHLILWLVHPSW\RULVWKHUDQJHRIVRPH VHTXHQFH6KRZWKDWDQ\VXEVHWRIDFRXQWDEOHVHWLVFRXQWDEOH7KHQXVHWKHFRXQW DEOHXQLRQSURSHUW\RI%RUHOILHOGVWRVKRZWKDWHYHU\VXEVHWRI S LVDQHYHQW /LVWDOOVXEVHWVRI S %HJLQQLQJZLWKWKHOLVW ∅ S { 1 } DQG { 2, 3 } IRUPFRPSOL PHQWVDQGXQLRQVDPRQJWKHOLVWLWHPVWRILQGQHZVXEVHWVWKDWPXVWEHLQWKH%RUHO ILHOGDQGDGGWKHPWRWKHOLVW7KLVSURFHVVVWRSVZKHQQRWKLQJQHZFDQEHIRXQG n
1RWHWKDWDQ\ILQLWH%RUHOILHOGPXVWKDYH 2 HOHPHQWVIRUVRPHLQWHJHU n 8VHWKHGHILQLWLRQRIFRQGLWLRQDOSUREDELOLW\(T 1RKLQW ,1RKLQW 06HHWKHVROXWLRQIRUKHOS 3UHVXPHFODVVLFDOSUREDELOLW\WKHRU\ZLWKWKHSUREDELOLW\RIDQLQWHUYDORISRLQWV EHLQJSURSRUWLRQDOWRLWVOHQJWK '%)RUDQHDVLHUSUREOHPDVVXPHWKDW P { t ≤ t 1 } = F ( t 1 ) LVDFRQWLQXRXVGLIIHU HQWLDEOHIXQFWLRQRI t 1 DQGDVVXPH F ( 0 ) = 0 ,1RKLQW ,0(QULFKWKLVSUREOHPE\OHWWLQJ Bi EHDQ\RIWKHVHWV A i A i S RU ∅ 0%3UREOHPVWKURXJKDQGDUHSUREOHPVLQFRPELQDWRULFVWKDWWKH 7H[WKDVQRW\HWFRQVLGHUHG,WZRXOGEHJRRGWRDWOHDVWVROYH3UREOHPILUVWWR EHJLQWKHWRSLF/HWDQRXWFRPHRIWKHH[SHULPHQWKHUHEHD k HOHPHQWVHTXHQFHRI GLVWLQFWQXPEHUVVHOHFWHGIURPWKHVHWWR n )LQGRXWKRZPDQ\RXWFRPHVWKHUH DUHD 1H[WILQGRXWKRZPDQ\RXWFRPHVWKHUHDUHWKDWFRQWDLQQRQXPEHUODUJHU WKDQ m &DOOWKLVUHVXOW M m 7KHQQRWLFHWKDWWKHQXPEHURIRXWFRPHVWKDWKDYH m DV
H-3
Gary Matchett
Hints — 9/5/02
WKHODUJHVWQXPEHULV N m = M m – M m – 1 E 7KHQXPEHURIRXWFRPHVZLWKDODUJHVW QXPEHUOHVVWKDQRUHTXDOWR m LVWKHQXPEHURIRXWFRPHVZLWKQRQXPEHUODUJHU WKDQ m %:RUN3UREOHPILUVW7KHGLIIHUHQFHKHUHLVWKDWWKHRXWFRPHVDUH k HOHPHQW VHTXHQFHVRIQXPEHUVWKDWDUHQRWQHFHVVDULO\GLVWLQFW %:RUN3UREOHPILUVW %1XPEHUWKHEODFNEDOOVIURPWR n DQGQXPEHUWKHZKLWHEDOOVIURP n + 1 WR n + m 1RZWKHSUREOHPLVZKDWLVWKHSUREDELOLW\WKDWLI k EDOOVDUHGUDZQWKH KLJKHVWQXPEHUHGZLOOEH n + 1 RUPRUHDQG3UREOHPZLOOEHXVHIXO &RQVLGHUWKHRXWFRPHRIWKHH[SHULPHQWWREHWKHSRLQWZKHUHWKHFHQWHURIWKH SHQQ\ODQGVDQGFRQVLGHUWKDWHYHQWVDUHVHWVRISRLQWVZLWKDUHDVDQGWKDWSURED ELOLW\LVSURSRUWLRQDOWRDUHD %D 7KLVFDQEHGRQHE\DSSHDOLQJWR3UREOHPDJDLQE %HVXUH\RXXQGHU VWDQG3UREOHP )LQGRXWKRZPDQ\VXEVHWVZLWKWZRRUPRUHHOHPHQWVWKHUHDUHRIDVHWRI n HOH PHQWV5HODWHHDFKRIWKHVHVXEVHWVWRDQHTXDWLRQQHHGHGIRULQGHSHQGHQFH 8VH%D\HV¶WKHRUHP(T 8VHWRWDOSUREDELOLW\(T 'UDZDGLDJUDPVRPHWKLQJOLNH)LJF1RWHWKDWWKHDUHDRIWKHGLDJRQDOVWULS HTXDOVWKHDUHDRIWKHVTXDUHOHVVWKHDUHDRIWKHFRUQHUWULDQJOHV ,0)LUVWFRXQWWKHGLIIHUHQWVHTXHQFHVRI k GLVWLQFWHOHPHQWVWDNHQIURPDVHWRI n HOHPHQWV7KHQFRQVLGHUKRZPDQ\GLIIHUHQWVXEVHWVRI k GLVWLQFWHOHPHQWVWDNHQ IURPDVHWRI n HOHPHQWVWKHUHDUH 8VH%D\HV¶WKHRUHP(T
&KDSWHU A RFFXUVWZRRUPRUHWLPHVLILWGRHVQRWRFFXU]HURRURQHWLPH $VLPSOHDSSOLFDWLRQRI3UREOHPE )LQGWKHSUREDELOLW\WKDWVHYHQZLOOQRWVKRZDWDOO n
n
:ULWHGRZQWKHELQRPLDOWKHRUHPH[SDQVLRQVRI ( q + p ) DQG ( q – p ) WKHQDGG
H-4
Gary Matchett
Hints — 9/5/02
WKHPWRJHWKHU 'HGXFHWKDWWKHQXPEHURIZD\VWRWDNH n LWHPVIURP N LWHPVVRWKDWDVXEVHWRI k RIWKH n LWHPVFRPHIURPDVXEVHWRI K RIWKH N LWHPVLVWKHSURGXFWRIWKHQXPEHU RIZD\VWRWDNH k LWHPVIURP K LWHPVZLWKWKHQXPEHURIZD\VWRWDNH n – k LWHPV IURP N – K LWHPV $SSO\3UREOHP )LUVWILQGRXWKRZPDQ\ZKDWUDQJHRI ZLQVDUHQHHGHGWRERXQGWKHDPRXQWZRQ RUORVWWRWKHDPRXQWVVSHFLILHGWKHQFRPSXWHWKHSUREDELOLW\RIKDYLQJWKDWPDQ\ ZLQV7KHXQQXPEHUHGHTXDWLRQRQSMXVWDIWHUWKH³3URRI´KHDGLQJZLOOEH XVHIXOLQVSHHGLQJXSWKHFRPSXWDWLRQVLI\RXDUHGRLQJWKHPRQDKDQGFDOFXODWRU 'HGXFHWKDWKDYLQJ r VXFFHVVHVLQDOO n WULDOVLQFOXGLQJDVXFFHVVRQWKH i WKWULDOLV WKHVDPHWKLQJDVKDYLQJ r – 1 VXFFHVVHVLQWKH n – 1 WULDOVWKDWH[FOXGHWKH i WKWULDO DORQJZLWKDVXFFHVVRQWKH i WKWULDO )7KHSUREOHPLVQRWZHOOVWDWHG'RHVLWDVNIRUWKHSUREDELOLW\WKDWDQ\RQHRU PRUH RIWKHIRXUSOD\HUVZLOOKDYHDOOFDUGVRIDQ\RQHVXLW"5HVWDWHWKHSUREOHP VRWKDWLWDVNVZKDWLVWKHSUREDELOLW\WKDWDVSHFLILHGRQHRIWKHSOD\HUVZLOOKDYHD SHUIHFWKDQG '%:KDWGRHVWKH³DYHUDJHGXUDWLRQ´RIVXFKDJDPHPHDQ"$V\HWLWKDVQR PHDQLQJ:KDWLVPHDQWLVWKHH[SHFWHGYDOXHRIWKHWRWDOQXPEHURIJDPHV7KH H[SHFWHGYDOXHLVDFRQFHSWLQWURGXFHGLQ6HFWLRQ
H-5
Gary Matchett
Hints — 9/5/02
EHWVDQDPRXQW α ZKLOH B EHWVDQDPRXQW β VRWKDW A ZLQV β RUKHORVHV α :KDW UHPDLQVXQFOHDULVWKHFRQFHSWRIUXLQLQWKLVJDPH,V A UXLQHGZKHQKHKDVQR PRQH\OHIW"2ULV A UXLQHGZKHQKHKDVOHVVWKDQKLVVWDNH α OHIWVRWKDWKHPD\QR ORQJHUSOD\"7KHODWWHULVDPRUHUHDVRQDEOHGHILQLWLRQ(YHQZLWKWKLVFODULILFDWLRQ WKHSUREOHPLVWRRGLIILFXOWWRZRUNLQJHQHUDO7U\DVSHFLILFH[DPSOHOHW α = 2 β = 3 DQG a + b = 8 7KHQFKDQJHWR a + b = 9 DQGVHHKRZWKHSUREOHPFKDQJHV FKDUDFWHU %$JDLQWKHSUHPDWXUHXVHRIWKHWHUP³H[SHFWHG´DWHUPQRWSURSHUO\XVHGXQWLO 6HFWLRQ+HUHWKHH[SHFWHGORVVLVWKHVXPRIWKHYDULRXVSRVVLEOHORVVHVHDFK PXOWLSOLHGE\LWVSUREDELOLW\
&KDSWHU ,)7KLVSUREOHPFDQQRWEHGRQHXQOHVVLWLVDVVXPHGWKDW F ( x ) LVLQYHUWLEOH6HH WKHVROXWLRQIRUDOHQJWK\GLVFXVVLRQ )&RPPHQWVKHUHDUHVLPLODUWRWKRVHIRU3UREOHP )D $W\SRWKHUHIHUHQFHVKRXOGEHWR7DEOH7KLVSUREOHPSRLQWVXSWKHQHHG IRUEHWWHUWDEOHVWKDQ7DEOHRIWKH7H[W7KHUHIHUHQFH$67DEOHVDQG LVDJRRGVRXUFH8VH(TE $QRWKHUW\SR6HH6SHFLDO1RWH 7KHVDPHUHPDUNVDSSO\KHUHDVIRU3UREOHP 1RKLQW 8VH(T 6HHSIRUWKH(UODQJUDQGRPYDULDEOH )ROORZ([DPSOH d 1RWHWKDW ------ U ( x – c ) = δ ( x – c ) dx )6HH6SHFLDO1RWH7KHSUREOHPVKRXOGUHDG x ∼ N ( 0, 4 ) E 8VH(T ,6KRZ { t x ( t ) ≤ x } = { t t ≤ G ( x ) } IRU G LQFUHDVLQJ )6HH6SHFLDO1RWH7KHSUREOHPVKRXOGUHDG x ∼ N ( 1000, 400 ) D 8VH(T E 8VH(T (TXDWLRQVZKLFKZHUHLQWKH7KLUG(GLWLRQRIWKH7H[WEXWKDYHEHHQUHPRYHGDUH IRUWKHGHQVLW\DQGGLVWULEXWLRQIXQFWLRQRIWKHELQRPLDOUDQGRPYDULDEOH7KH\DUH
H-6
Gary Matchett
Hints — 9/5/02
n
f(x) =
n
∑ k p q
k n–k
δ(x – k )
k=0 m
F(x) =
∑ k=0
n p k q n – k ZKHUH m ≤ x < m + 1 GHILQHV m JLYHQ x k
)7KHUHLVDW\SRKHUH7KHUHIHUHQFHLVWRROG(TZKLFKQRORQJHUH[LVWV,W x – np VDLGIRUDELQRPLDOUDQGRPYDULDEOHWKDW F ( x ) ≈ G --------------- 7KLVPD\EHGHGXFHG npq IURPQHZ (T8VHWKHHTXDWLRQIRU f ( x ) LQWKHKLQWIRUDERYHIRUWKHH[DFW UHVXOW 1RKLQW ,8VHVHWWKHRU\UHDVRQLQJ %7KLVSUREOHPLVVHULRXVO\RXWRISODFH
'R3UREOHPILUVW8VH(T/HDYH\RXUDQVZHULQLQWHJUDOIRUP)RUD QXPHULFDOHYDOXDWLRQVHHWKHVROXWLRQ 8VH(T 8VH(T 1 8VH(T)RUODUJH x DSSUR[LPDWH G ( x ) ≈ 1 – --- J ( x ) IURP3UREOHP x )0)LUVWIL[WKHW\SR7KHV\VWHPVKRXOGKDYHFRPSRQHQWVQRW1H[W QRWHWKDW(TGRHVQRWDSSO\8VH(TDQG6WLUOLQJ¶VIRUPXOD(TIRU QXPHULFDOUHVXOWV
H-7
Gary Matchett
Hints — 9/5/02
'HGXFHWKDWDKHDGPXVWKDYHFRPHXSDWWKH n WKIOLSVRWKDW k – 1 KHDGVPXVW KDYHFRPHXSLQWKHILUVW n – 1 IOLSV )1RWHWKHW\SRWKHVHFRQGLQHTXDOLW\RIWKHKLQWVKRXOGFRQWDLQD³OHVVWKDQ´VLJQ UDWKHUWKDQD³JUHDWHUWKDQ´VLJQ1RKLQW )LQGWKHSUREDELOLW\WKDW A GRHVQRWKDSSHQLQ n WULDOV 8VH(T7RDGGLQVLJKWFRQVLGHUDVOLJKWO\GLIIHUHQWSUREOHPDVZHOO&RQ VLGHUWKDWDFFLGHQWVDUHD3RLVVRQSRLQWSURFHVVZLWKDQDYHUDJHUDWHRIDFFL GHQWVSHUPRQWKDQGDVNWKHQZKDWLVWKHH[DFWSUREDELOLW\WKDWDGULYHUZLOOKDYH DFFLGHQWVLQPRQWKV 8VH(T 1RKLQW ,'HGXFHWKDWLIHOHYHQGRHVQRWVKRZRQWKHILUVWUROOWKHQWKHSUREDELOLW\WKDW Y ZLOOZLQLVWKHVDPHDVWKHRULJLQDOEHIRUHWKHILUVWUROO SUREDELOLW\WKDW X ZLOOZLQ ,E 0WKHVROXWLRQ )0,WLVQHFHVVDU\WRDVVXPH k 1 « k 3 DQG k 2 « k 3 8VH(TDQG
&KDSWHU )6HH6SHFLDO1RWH&RQVLGHUWKLVDW\SR7KHSUREOHPVKRXOGVD\WKDW x ∼ N ( 5, 4 ) 8VH(T 8VH(T([DPSOHVDQGE 6HH([DPSOH 8VH(TVDQG )ROORZ([DPSOHWRILQG F y ( y ) 'LIIHUHQWLDWHWRILQG f y ( y ) EHLQJFDUHIXOWRFRQ VLGHUGLVFRQWLQXLWLHVLQWKHGLVWULEXWLRQIXQFWLRQ 8VHWKH³IXQGDPHQWDOWKHRUHP´(T %HJLQZLWK(TWKHQXVH(TVDQG 8VH(TVDQG
H-8
Gary Matchett
Hints — 9/5/02
8VH(TEXWUHPHPEHUWKDW F x ( x ) PD\QRWEHFRQWLQXRXV,QSDUWD WKHUH FRXOGEHDGLVFRQWLQXLW\DW x = 0 ,QSDUWE WKHYDOXH y = 0 FRUUHVSRQGVWRDQ HQWLUHUDQJHRI x YDOXHV D 7KHYDOXH y = 0 FRUUHVSRQGVWRDQHQWLUHUDQJHRI x YDOXHV )$VVXPHWKDWWKHV\PPHWU\SRLQWRIWKH&DXFK\GHQVLW\²WKHYDOXH µ LQ(T ²LV]HUR7KHV\PERO µ LVRIWHQXVHGIRUWKHPHDQYDOXHRIDUDQGRPYDULDEOHEXW D&DXFK\UDQGRPYDULDEOHKDVQRPHDQYDOXH 1RKLQW 3UHVXPHDIXQFWLRQ y = y ( x ) ZKHUH y = y ( x ) KDVRQHURRWLQWKHUDQJH x ∈ ( – 1, 1 ) IRUDOO y ≥ 0 )LQGDGLIIHUHQWLDOHTXDWLRQIRU y ( x ) DQGVROYHLW 1RKLQW D 6HHWKHKLQWIRU3UREOHPE 6RPHLQGLYLGXDO YDOXHVRI y FRUUHVSRQGWR PRUHWKDQRQHYDOXHRI x 7KHEHWDGLVWULEXWLRQLVGHILQHGRQS1RWHWKHW\SRLQ(TWKHV\PERO b VKRXOGEH )LUVWFRUUHFWWKHW\SR,WVKRXOGEHWKDW y =
x 8VH(TVDQG
8VH(TVDQG 8VH(TVDQG '7U\DQHDVLHUSUREOHP$VVXPH f x ( t ) LVFRQWLQXRXVDW t = 0 8VH,OOXVWUDWLRQ RQSDJH 8VHWKHGHYHORSPHQWRQSRIWKH7H[W 1RKLQW 8VH(T 8VH(T ,8VH(TIRUWKHELQRPLDOUDQGRPYDULDEOHD 8VH(TIRUDGLUHFW DSSURDFKZKLFKLVVRPHZKDWWULFN\0DNHXVHRIWKHELQRPLDOWKHRUHP
H-9
Gary Matchett
n
(p + q) =
Hints — 9/5/02
n
n
∑ k p q
k n–k
JRRGIRUDOOLQWHJHU n DQGDOO p DQG q 'LIIHUHQWLDWHWKH
k=0
WKHRUHPHTXDWLRQZLWKUHVSHFWWRWKHYDULDEOH p $QHDVLHUDSSURDFKLVWRWDNHDGYDQ WDJHRI([DPSOH(TDQGWKHPRPHQWWKHRUHP(T D 8VHWKH&KHE\VKHYLQHTXDOLW\(TE 8VHWKHPRPHQWWKHRUHP(T ,8VH(TVDQG 8VHWKH0DUNRYLQHTXDOLW\(T 1RKLQW 1RKLQW 1RKLQW (a – x) + (m – a) 0D 8VH x – m = (x – a) – (m – a)
x≤m x≥m
m
E 'HGXFHWKDW ∫ ( x – a )f ( x ) dx ≥ 0 IRUDQ\ a a
2 2 1 ∞ – ( x – η )2 ⁄ ( 2σ2 ) 0 – ( x – η ) ⁄ ( 2σ ) 0:ULWH E { x } = -------------- ∫ xe – ∫ xe 7KHQVXEVWLWXWH σ 2π 0 –∞
z = ( x – η ) ⁄ σ LQERWKLQWHJUDOV([SOLFLWO\LQWHJUDWHZKDW\RXFDQDQGUHODWHWKHUHVW WR G ( η ⁄ σ ) 08VHWKHEDVLFLQHTXDOLW\ ln z ≤ z – 1 1RKLQW 6HHWKH/\DSXQRYLQHTXDOLW\S 0D (LWKHUDVVXPHWKDW µ = 0 LQ(TGHILQLQJWKH&DXFK\GHQVLW\RUEHW WHUGHGXFHDVOLJKWO\GLIIHUHQWUHVXOWWKDQWKHSUREOHPDVNV8VH&DXFK\¶VUHVLGXH WKHRUHPIRUFRQWRXULQWHJUDWLRQWRILQGWKHYDOXHRIWKHLQWHJUDO2UMXVWXVHDJRRG WDEOHRILQWHJUDOVVXFKDVUHIHUHQFH*5 7KLVLVDZRUNKRUVHSUREOHPD )1RWHWKHW\SR7KHFKDUDFWHULVWLFIXQFWLRQ VKRXOGUHDG Φ ( ω ) = ( 1 – jβω )
–α
6HH7DEOH F 6HH3UREOHPG )7KH
H-10
Gary Matchett
Hints — 9/5/02
VHFWLRQRQWKHQHJDWLYHELQRPLDOUDQGRPYDULDEOHLVFRQIXVLQJ7ZRGLIIHUHQWGLVWUL EXWLRQVVKDUHWKLVQDPH2QHLVGHVFULEHGE\(TRUDQGWKHRWKHULV GHVFULEHGE\(T7KLVGXDOLW\LVUHLQIRUFHGE\7DEOH&RPSDULQJWKH7DEOH ZLWKWKHDQVZHUZDQWHGLQWKLVSUREOHPOHDGVWRWKHFRQFOXVLRQWKDW(TVKRXOG EHFKRVHQKHUH:KLOHWKHSUREOHPGRHVQRWUHTXHVWLWLWLVLOOXVWUDWLYHWRILQG E { x } WRVHHKRZVXPVPD\EHPDQLSXODWHGLQWKHVDPHZD\VDVLQWHJUDOV 8VH(TVDQG 1RWHWKDW ( 1 – y )
–n
∞
∑
=
k=0
– n ( – y ) k = k
∞
∑ k=0
n + k – 1 k y 6HHWKHVROXWLRQIRUPRUH k
RQELQRPLDOFRHIILFLHQWV 0,WLVFOHDUIURPWKHSUREOHPWKDWZHDUHGLVFXVVLQJWKHQHJDWLYHELQRPLDOUDQ GRPYDULDEOHRI(T7HFKQLTXHVGHYHORSHGIRU3UREOHPZLOOEHXVHIXOKHUH 1RWHWKDW e
s( x – η)
∞
=
∑ k=0
k
k
s----------------------( x – η)- k!
6SOLWWKHLQWHJUDOLQWKHKLQWLQWKH7H[WLQWRUHDODQGLPDJLQDU\SDUWV ([WHQGWKHGHYHORSPHQWIROORZLQJ(TWRKLJKHUGHULYDWLYHV 1RKLQW 1RKLQW ,0&RQVLGHUIRUVPDOO ε E { g ( x – η – ε ) } E\H[SDQGLQJWKHIXQFWLRQ f ( η + x + ε ) LQD7D\ORUVHULHVLQ ε DERXWWKHSRLQW η + x 8VHWKHREYLRXVV\PPHWU\DQGPD[L PXPDQGOLPLWLQJSURSHUWLHVRI g ( x ) DQG f ( η + x ) WKDWDUHGHGXFHGIURPWKHJUDSKV D '5HJDUGWKHGHQVLW\RI x DVDIXQFWLRQRIERWK x DQG v 6KRZWKDW 2
∂ f ( x, v ) ∂f ( x, v ) --------------------- = 2 ------------------ ,QWHJUDWLRQE\SDUWVZLOOWKHQSURYHWKHWKHRUHPE 8VHSDUW 2 ∂v ∂x n
D ZLWK g ( x ) = x ,8VHWKHIXQGDPHQWDOWKHRUHPRI)RXULHUVHULHV )7KHGHVFULSWLRQRIWKHH[SHULPHQWLVFRQIXVLQJ:KDWLVWKHOHQJWKRIWKHUXQ" 7KHSUREOHPDVVXPHVWKDWWKHILUVWWRVVLQJLVQRWLQFOXGHGLQWKHUXQVRWKDWWKHUXQ PD\HQGRQWKHWRVVLQJIROORZLQJWKHILUVWWRVVLQJLQZKLFKFDVH x = 1 QRW1RWH DOVRWKDWWKHSPIUHIHUVWRWKHPRPHQWIXQFWLRQ"
H-11
Gary Matchett
Hints — 9/5/02
+RZLVLWSRVVLEOHWKDWWZRLWHPVDUHLGHQWLFDO\HWRQHLVGHIHFWLYHDQGRQHLVQRW" $Q\GLIIHUHQFHPDNHVWKHPQRWLGHQWLFDO3HUKDSVWKH\DUHPHUHO\VLPLODU)RUJHW WKLVFDYLOE )'7KHUHLVDW\SRWKHHTXDWLRQOLQHVKRXOGHQGZLWK min ( M, n ) DQG QRWZLWK min ( M, N ) 6HH7DEOHIRUWKHDQVZHUVKHUH7RFRPSXWHWKHH[SHFWHG YDOXHRI x \RXZLOOQHHG9DQGHUPRQGH¶VLGHQWLW\ZKLFKLV n + m = k
k
n
m
∑ j k – j
j=0
7KHFRPSXWDWLRQRI Var ( x ) LVHYHQPRUHGLIILFXOWDUHIHUHQFHLVSURYLGHG M! ( N – k )! M k k F 1RWLFHWKDWDV M, N → ∞ ZKLOH M ⁄ N = p LVIL[HG -------------------- ------------------- → ----- = p ( M – k )! N! N D 7RJHWWKH r ¶WKZKLWHEDOORQWKH k ¶WKGUDZLPSOLHVWKDW r – 1 ZKLWHEDOOVDUH GUDZQLQWKHILUVW k – 1 GUDZVDQGDZKLWHEDOOLVGUDZQRQWKH k ¶WKGUDZ E '&RQVLGHUWKHQXPEHURIZD\VRIRUGHULQJDOOWKHEDOOV)LQGRXWKRZPDQ\RI WKHVHZD\VDUHIDYRUDEOHWRWKHGHVLUHGRXWFRPH F )LQGWKHOLPLWRIWKHUHVXOWLQSDUWE LQDPDQQHUVLPLODUWRWKDWXVHGLQ3UREOHP F
&KDSWHU $ZRUNKRUVHSUREOHPEXWSDUWVKDYHDOUHDG\EHHQGRQHLQH[DPSOHVD 8VH(T E 8VH(TF '7KH7H[WRPLWVWKHSULPHH[DPSOHZKHUH z = xy
H-12
Gary Matchett
Hints — 9/5/02
:K\LVWKLVDSUREOHPDWDOO"3DUWD LV([DPSOHSDUWE LVH[DPSOHDQG SDUWF LVREYLRXVIURPWKHGLVFXVVLRQRIMRLQWQRUPDOLW\RQS 6HH3UREOHPSDUWF RUJRGLUHFWO\WR(T 8VH(T D 8VHDJUDSKLFDODSSURDFKE 8VH(TF 8VH(TG %DFNWRD JUDSKLFDODSSURDFK 8VHDJUDSKLFDODSSURDFK D (TFRXOGEHXVHGEXWLWLVHDVLHUWRXVHDJUDSKLFDODSSURDFKE 8VH(T 7KHJUDSKLFDODSSURDFKLVEHVW%HVXUHWRJHWWKHFRUUHFWWULDQJOHLQWKH xy SODQH ,WKDVXQLWDUHD 7KLVZRXOGEHDFKDOOHQJLQJSUREOHPH[FHSWWKDWLWLVPRVWO\ GRQHLQ([DPSOH 7KHUHWKHFODLPLVPDGHDERXWWKHPDUJLQDOGHQVLWLHVRI x + y DQG x ⁄ y WKDWLVQRW TXLWHGHPRQVWUDWHG7KHEHVWZD\WRDWWDFNSDUWD LVWRXVHWKH&RQYROXWLRQ7KHR UHPRQSDORQJZLWKWKHFKDUDFWHULVWLFIXQFWLRQIRUDJDPPDUDQGRPYDULDEOH IURP7DEOHE PD\WKHQEHDWWDFNHGZLWK([DPSOHF )URP3UREOHP 1–u E ZHOHDUQHGWKDWLI u = x ⁄ ( x + y ) DQG w = y ⁄ x WKHQ F u ( u ) = 1 – F w ------------ u 8VH(TSOXVDJUDSKLFDODSSURDFKWRILQGZKHUHWKHGHQVLW\LVQRQ]HURLQWKH zw SODQH 8VH(TVDQG 8VH(T 8VH(T –1
'RQRWDWWHPSWWRXVHWKHIXQFWLRQ g ( . ) LWPD\QRWH[LVW D ,08VH(TWRZRUNWKHJHQHUDOSUREOHPRIWKHVXPRILQGHSHQGHQWQRU PDOUDQGRPYDULDEOHVZLWK]HURPHDQVE 8VH(T ,06WDUWZLWK(TDQGUHYHUVHWKHUROHVRI x DQG y 8VH(T7KHGHYHORSPHQWRIWKHWKLUGDEVROXWHPRPHQWRID]HURPHDQQRU PDOUDQGRPYDULDEOHRQSZLOOEHXVHIXOLQHYDOXDWLQJWKHLQWHJUDO D 8VH(TVDQGE 8VH(TF 8VH(TG 8VHWKHHTXD
H-13
Gary Matchett
Hints — 9/5/02
WLRQIROORZLQJ(TH 8VHSDUWRI ([DPSOH 0)LUVWVROYHWKHJHQHUDOSUREOHPRIILQGLQJWKHGHQVLW\RI z = x – y D ,0&RPSDUHZLWK3UREOHPE ,08VH(T7KHLQWHJUDOKHUHLV HYDOXDWHGZLWK&DXFK\¶VUHVLGXHWKHRUHP 8VH(TVDQG 7KLVLVVLPSO\([DPSOHLQYHU\WKLQGLVJXLVH )6HH6SHFLDO1RWH7KHUHLVFRQIXVLRQKHUHHTXLYDOHQWWRDW\SRJUDSKLFDOHUURU 7KHHDVLHVWZD\WRUHFWLI\WKLVLVWRFKDQJHWKHSUREOHPWRILQGWKHSUREDELOLW\WKDWWKH FRPELQHGOLIHWLPHH[FHHGV 2 ⁄ λ LQVWHDGRI 2λ DQGWKHSUREDELOLW\WKDWWKHH[FHVV OLIHWLPHRIWKHVHFRQGEXOERYHUWKDWRIWKHILUVWH[FHHGV 1 ⁄ λ LQVWHDGRI λ D 1RWHWKDW r = x – y DQG3UREOHPFDSSOLHVE 1RWHWKDW s = x + y D 1RWHWKDW z = y ⁄ x LI y < x RU z = 1 LI y ≥ x DQGEHVXUHWRH[SOLFLWO\FRQVLGHU WKHGLVFRQWLQXLW\DW z = 1 E 8VHDQDSSURDFKVLPLODUWRWKDWIRUSDUWD 6HHWKHKLQWIRU3UREOHPF3UREOHPGPD\DOVREHXVHIXO 8VH([DPSOHWRILQG f z ( z ) 1RWHWKDW w = x – y DQGVWDUWLQJZLWK3UREOHP FILQG f w ( w ) 7KHQXVH(TWRILQG f zw ( z, w ) )LQDOO\WHVW(T D 'HILQH u = x + y 8VH(T&RQVLGHUWZRFDVHV 0 < u < β DQG β < u < 2β ,QWKHILUVWFDVHXVHWKHGHILQLWLRQRIWKHEHWDIXQFWLRQ(TWRVLPSOLI\WKH UHVXOW,QWKHVHFRQGFDVHVLPSOLILFDWLRQLVQRWSUDFWLFDOVROHDYHWKHUHVXOWLQLQWH JUDOIRUPE 6WDUWIURP([DPSOHF )LQGWKHMRLQWGHQVLW\RI v DQG w IURP (T7KHQIURPWKHMRLQWGHQVLW\ILQGWKHPDUJLQDOGHQVLWLHVDQGVKRZWKDW WKHMRLQWGHQVLW\LVWKHSURGXFWRIWKHPDUJLQDOGHQVLWLHV $ZRUNKRUVHSUREOHPD 0DNHXVHRI([DPSOHVDQG3UREOHP FRPHVFORVHE 8VH(TWRILQGWKHMRLQWGHQVLW\DQGVKRZWKDWLWLVWKHSURGXFW RIWKHPDUJLQDOGHQVLWLHVIURPSDUWD F 8VH7KHRUHP D /HW z = x ⁄ y 8VHDJUDSKLFDODSSURDFKWRGHYHORSDQLWHUDWHGLQWHJUDOH[SUHV VLRQIRU F z ( z ) DVLQ([DPSOH'LIIHUHQWLDWHWKHGRXEOHLQWHJUDOH[SUHVVLRQZLWK UHVSHFWWR z WRJHWDVLQJOHLQWHJUDOH[SUHVVLRQIRU f z ( z ) DOVRDVLQWKHFLWHGH[DPSOH WKHQVROYHWKHLQWHJUDO5HSHDWWKLVSURFHVVIRU w = x ⁄ y E 8VH(TWRVKRZ WKDW u ∼ N ( 0, 2 ) )URP([DPSOHVHHWKDW v LVH[SRQHQWLDOZLWKSDUDPHWHU 1 ⁄ 2 7KHQXVH(TWRILQGWKHMRLQWGHQVLW\DQGVHHLILWLVWKHSURGXFWRIWKHPDU JLQDOGHQVLWLHV
H-14
Gary Matchett
Hints — 9/5/02
8VH(T 2
2
–1
D E 07UDQVIRUPILUVWWR r = x + y DQG θ = tan ( y ⁄ x ) XVLQJ([DPSOH 7KHQWUDQVIRUPIURP r DQG θ WR u DQG v WRILQGWKHMRLQWSGIF ([SUHVVWKLV UDQGRPYDULDEOHLQWHUPVRI u DQG v (TGHILQHVWKH)GLVWULEXWLRQVHH6SHFLDO1RWH 8VH([DPSOHE 8VH(TWRILQGWKHSGIRI w = mz ⁄ ( mz + n ) DQGFRPSDUHWKHUHVXOWWR(T )8VH(TWRILQGWKHMRLQWGHQVLW\RI z DQG w WKHQXVH(TWRILQGWKH PDUJLQDOGHQVLW\RI z ZKLFKZLOOUHYHDOWKDW z LVQRWLQIDFWH[SRQHQWLDO*RRQWR ILQGWKHPDUJLQDOGHQVLW\RI w ZKLFKLVH[SRQHQWLDO 8VH(TWRILQGWKHMRLQWGHQVLW\RI z DQG w WKHQILQGWKHPDUJLQDOGHQVLWLHV IURPWKHMRLQWGHQVLW\ 8VH(TVDQG )LUVWOHW v = a cos y WKHQ8VH(TVDQG 1RKLQW 8VH(TVDQG D 8VHWKHUHVXOWLQ3UREOHPE /HW w = x – y DQGGHYHORS P { w = n } 7UHDWWKHFDVHV n < 0 DQG n ≥ 0 VHSDUDWHO\ 7KLVSUREOHPLVVRPHZKDWFRQIXVHG7KHJLYHQLQIRUPDWLRQLVWKDWWZRFRQGLWLRQDO SUREDELOLWLHVDUHHTXDOWR 1 ⁄ ( k + 1 ) ,WLVRQO\QHFHVVDU\WRDVVXPHWKDWWKHWZRFRQ GLWLRQDOSUREDELOLWLHVDUHHTXDOLWLVWKHQSRVVLEOHWRVKRZWKDWWKH\PXVWHTXDO 1 ⁄ (k + 1) :D\3URFHHGGLUHFWO\XVLQJ3UREOHPDQGWKHLGHQWLW\ k
n
m
∑ j k – j
j=0
n + m = RU:D\8VHWKHPRPHQWJHQHUDWLQJIXQFWLRQVRI(T k
D 'HILQH z = min ( x, y ) DQG u = x – y )LQGWKHMRLQWSPIRI z DQG u WKHQILQG WKHWZRPDUJLQDOSPIVIURPWKHMRLQWSPIDQGVKRZWKDWWKHMRLQWSPILVWKH SURGXFWRIWKHPDUJLQDOSPIVE 5HSHDWWKHSURFHGXUHRISDUWD IRU z DQG w
H-15
Gary Matchett
Hints — 9/5/02
$GLUHFWDSSURDFKLVZRUNDEOHKHUH8VH(TVDQGDORQJZLWKWKHUHVXOWV RI3UREOHP ,8VH([DPSOHWRUHODWH µ 12 DQG µ 21 WR σ 1 σ 2 DQG r :KLOHLWLVSRVVLEOHWRILQG f z ( z ) ZKHUH z = xy DQGZRUNWKHSUREOHPLQWKLVZD\ WKDWLVXQQHFHVVDULO\GLIILFXOW,QVWHDGMXVWIRFXVRQWKHWZRTXDGUDQWVRIWKH xy SODQHZKHUH z LVQHJDWLYHDQGXVHWKHLQGHSHQGHQFHRI x DQG y WRFRPSXWHWKHLU SUREDELOLWLHV /HW w = x – y WKHQXVH(T 8VH(T ,0$IXQGDPHQWDOSUREOHPD 7KLVLVWKH6FKZDU]LQHTXDOLW\IRUDQLQQHUSURG XFWVSDFH7KRVHIDPLOLDUZLWKOLQHDUDOJHEUDNQRZWKHVWDQGDUGWULFNWRGHPRQVWUDWH 2
2
2
LW6KRZILUVWWKDW E { xy * } ≤ E { x }E { y } 6WDUWZLWK E { ax – y } ≥ 0 DQGSLFN WKHDUELWUDU\FRQVWDQW a DUWIXOO\E 7KLVLVWKHWULDQJOHLQHTXDOLW\1RWHWKDW E { xy * } + E { x * y } = 2ℜ ( E { xy * } ) ZKHUH ℜ GHQRWHVWKHUHDOSDUWDQG ℜ ( E { xy * } ) ≤ E { xy * } WKHQXVHSDUWD )0
–λ
∞
∑
k
λ ----- δ ( n – k ) )RUWKHOHVVGLUHFWPHWKRG k!
k=0
EHJLQE\XVLQJWKHUHVXOWVRI3UREOHPWRILQG Φ x ( ω ) DQGWKHQILQG Φ z ( ω ) E\ XVLQJ(T 1RWHWKDW y LVDIXQFWLRQRI x VRWKDW z PD\EHZULWWHQDVDIXQFWLRQRI x DORQH 8VH(TVDQG &KDUDFWHULVWLFIXQFWLRQVSURYLGHWKHHDVLHUDSSURDFKKHUH:LWKHIIRUWDQGFDUHWKH GLUHFWDSSURDFKLVDOVRZRUNDEOH $OOEDVLFVWXII
H-16
Gary Matchett
Hints — 9/5/02
8VH(TVDQG 8VH(TGLUHFWO\ D 7KLVLV3UREOHP$QRWKHUPHWKRGLVDYDLODEOHQRZ8VH(TE 8VH (TF 8VH(T ,WKHOSVWRNQRZKHUHWKDW Γ ( 1 ⁄ 2 ) = DQG
π 8VHWKHVWULQJRIHTXDWLRQV
,D 8VH(TVDQGE '$FRQWLQXDWLRQRUH[WHQVLRQRI3UREOHP 6HHWKHVROXWLRQ 8VH([DPSOH 05HGHULYHWKHUHVXOWLQQRWHRQSRIWKH7H[W)L[WKHW\SRWKHUHZKHUHWKH 2
2
VHFRQGHTXDWLRQVKRXOGUHDG Var { E { x y } } = E { ( E { x y } ) } – ( E { E { x y } } ) 8VH (TDVDSDUWRIWKLVGHULYDWLRQ 8VH(T )7KHFRUUHFWUHVXOWLV E { z } = Σ n E { g ( x n, y ) x n }p n 'HILQH f ( y x n ) = f n ( y ) DQG VHHWKDW f ( x, y ) = Σ n p n f n ( y )δ ( x – x n ) WREHJLQWKHVROXWLRQ D 8VH(TVDQGE 8VH(TVDQG 0/HW I ( µ ) = E { xy } DQGXVH3ULFH¶VWKHRUHP(TVDQG WRVKRZ ∂I ( µ ) WKDW ------------- = E { sgnx sgny } WKHQXVH(TWRILQGWKLVH[SOLFLWO\$OVRILQG I ( 0 ) ∂µ µ ∂I ( µ ) H[SOLFLWO\7KHQXVH I ( µ ) = I ( 0 ) + ∫ ------------- dµ 0 ∂µ
6HH([DPSOH 8VHWKHXQQXPEHUHGHTXDWLRQMXVWDERYH([DPSOH &RQVLGHU z = x + y DQG w = x DVDYDULDEOHWUDQVIRUPDWLRQ 7RVLPSOLI\WKHFRPSXWDWLRQRIWKH-DFRELDQRIWKHWUDQVIRUPDWLRQIURP x, y WR ∂w ∂z z, w QRWHWKDW ----- = 0 VRWKDW ------- LVXQLPSRUWDQW ∂y ∂x 8VH%D\HV¶WKHRUHP(T
H-17
Gary Matchett
Hints — 9/5/02
06WDUWZLWK(TDQGXVH(T7KHQPDNHVRPHLQVSLUHGVXEVWLWXWLRQV LQWKHLQWHJUDOWRJHWWRWKHGHILQLWLRQRIWKHEHWDIXQFWLRQ(T8VH(TWR UHODWHWRWKHJDPPDIXQFWLRQWKHQ(TWRHYDOXDWHWKHJDPPDIXQFWLRQV1RWH WKDWWKHUHVXOWLVRQO\YDOLGRIFRXUVHIRU n > 2 1RWHWKHW\SRWKHH[SUHVVLRQ β y ( t y > t ) VKRXOGUHDG β y ( t ) = f y ( t y > t ) 8VHWKH XQQXPEHUHGHTXDWLRQSULRUWR(T 8VHWKH0DUNRYLQHTXDOLW\(T 8VH(T 8VH(T([DPSOHDQG(TVDQG
&KDSWHU 5HZULWHWKHSUREDELOLW\ P { x 1 < x < x 2, y 1 < y < y 2, z 1 < z < z 2 } LQWHUPVRI F ( x, y, z ) 7KHXVHIXOWHUP³]HURRQHUDQGRPYDULDEOH´ZDVUHPRYHGIURPWKH)RXUWK(GLWLRQ H[FHSWIRUWKLVSUREOHPEXWVHH([DPSOH8VH3UREOHPWRVKRZWKDWWKH ]HURRQHUDQGRPYDULDEOHVDUHLQGHSHQGHQWLIDQGRQO\LIWKHHYHQWVWKH\DUHDVVRFL DWHGZLWKDUHLQGHSHQGHQW ,([WHQGWKHDUJXPHQWLQWKH7H[WWKDWUHVXOWVLQ(TVDQGWRWKHFDVHZLWK QRQ]HURPHDQVWRILQG f ( x, y, z ) ([SDQGWKHSRO\QRPLDODQGFRQVLGHUHDFKWHUP D ([WHQGWKHDUJXPHQWOHDGLQJWR(TWRWKUHHGLPHQVLRQVE 6HHWKHERWWRP RISDJHXOWLPDWHO\XVH(T ,0&RQVWUXFWWKHFRYDULDQFHPDWUL[LWPXVWKDYHDQRQQHJDWLYHGHWHUPLQHQW '.HHSLQJWUDFNRIWKHUDQGRPYDULDEOHVKHUHLVKDUG'HILQHWKHWKUHHIXQFWLRQV g ( x 3 ) = E { x 1 x 2 x 3 } h ( x 2, x 3 ) = E { x1 x 2 x 2, x 3 } p ( x 3 ) = E { h ( x2, x 3 ) x 3 } 6KRZ WKDW g ( x 3 ) = p ( x 3 ) DQGLQWHUSUHW 06ROYHIRU a 1 DQG a 2 LQWHUPVRIWKHH[SHFWDWLRQVRI x 1 x 2 DQG y /HW Eˆ { y x } = bx DQGVROYHIRU b LQWHUPVRIWKHH[SHFWDWLRQVRI x DQG y /HW 1
1
1
Eˆ { a 1 x 1 + a 2 x 2 x 1 } = cx 1 DQGVROYHIRU c LQWHUPVRI a 1 DQG a 2 DQGH[SHFWDWLRQV LQYROYLQJ x 1 DQG x 2 7KHQVKRZ b = c 2
2
2
8VH E { s } = E { E { s n } } 8VH3UREOHPDWROLPLW ( E { x i xj } ) 7KHIDFWWKDW
H-18
Gary Matchett
Hints — 9/5/02
x i ≥ 0 LVQRWQHHGHG 0/HWHYHQW An EHWKDWKHDGVILUVWDSSHDUVRQWKH n ¶WKWRVVLQJ1RWHWKDW [ A 1, A 2, … ] LVDSDUWLWLRQ8VHWRWDOSUREDELOLW\WRILQG E { x1 } 1H[WHVWDEOLVK E { x m x m – 1 } E\DVLPLODUDUJXPHQWZKHUHHYHQW B n LVWKDWWKHILUVWDSSHDUDQFHRI KHDGVDIWHUWRVV x m – 1 LVRQWRVV ( x m – 1 + n ) )LQDOO\XVH E { x m } = E { E { x m x m – 1 } } jωm
jωm
8VH Φ ( ω ) = E { e } = E{E{e n } } WRILQGWKHFKDUDFWHULVWLFIXQFWLRQRI m XVLQJWKHKLQWLQWKH7H[W &RPSDUHWKHUHVXOWZLWKWKHFKDUDFWHULVWLFIXQFWLRQRID 3RLVVRQSURFHVVREWDLQHGIURP(T 8VHWKHVHPLGLVFUHWHYHUVLRQRI(TLH f ( s ) = Σ n f ( s n )p n SOXV([DPSOH DQG(TJHQHUDOL]HG WRILQG f ( s n ) 1RKLQW 8VH([DPSOH 1RWHWKDWWKHHYHQW { z < z ≤ z + dz, w < w ≤ w + dw } KDSSHQVLIWKHHYHQWV { x ≤ w } DQG { x > z + dz } GRQRWKDSSHQDQGWKHHYHQWV { w < x ≤ w + dw } DQG { z < x ≤ z + dz } KDSSHQRQFHDQGWKHHYHQW { w + dw < x ≤ z } KDSSHQV ( n – 2 ) WLPHV 7KLVIROORZVGLUHFWO\IURP(TZLWKLQGHSHQGHQFH 06KRZWKDW ( x, x 1 – x, …, x n – x ) DUHMRLQWO\QRUPDODQGWKDW x LVXQFRUUHODWHG ZLWKHDFK x i – x +HQFH x LVLQGHSHQGHQWRIWKHJURXS ( x 1 – x, …, x n – x ) DQG x LV 2
LQGHSHQGHQWRI s 8VH(TWRGHWHUPLQH α0 α 1 DQG α 2 8VH(TWRGHWHUPLQHWKH α 1 DQG α LQ Eˆ { s – η x – η , x – η } DIWHU\RXILJXUHRXWMXVWZKDWWKLVLV6HH(T 2
s
1
1
2
2
'HQRWH yˆ = Eˆ { y x 1, x 2 } = a 1 x 1 + a 2 x 2 1RZ Eˆ { Eˆ { y x 1, x 2 } x 1 } = Eˆ { yˆ x 1 } = ax 1 $OVR Eˆ { y x 1 } = bx 1 7KHSUREOHPKHUHLVWRVKRZWKDW a = b ZKLFKIROORZVIURP WKHRUWKRJRQDOLW\SULQFLSOH 08VH([DPSOHIRU F x ( x ) 8VH3UREOHPIRU Fy ( y ) 8VH([DPSOHWR REWDLQ F xy ( x, y ) ,'1RFRQFHSWXDOGLIILFXOWLHVKHUHEXWWKLVLVDWHGLRXVSUREOHP)LUVWGHGXFHWKDW
H-19
Gary Matchett
Hints — 9/5/02
2
σ v LVXQFKDQJHGLIWKHPHDQVRIWKH x i VDUHYDULHGDQGWKXVDVVXPHWKDWWKH x i VKDYH ]HURPHDQV8VHEUXWHIRUFHWRILQGLQRUGHU 2 2
2
2
2
2
E { x i } E { xi x j } E { x i xj } E { xx i } E { x } E { x k x i xj } E { xx i x j } E { x x i x j } 3
4
E { x x i } E { x } 2
2
2
4
([SDQG E { v } LQWHUPVRIWKHDERYHDQGVROYH1RWHWKDW σ v = E { v } – σ 8VH3UREOHP '1RWHWKDWIRUQRWQHFHVVDULO\VTXDUH PDWULFHV A DQG B ZKHUHWKHSURGXFW AB LVVTXDUHWKDW tr ( AB ) = tr ( BA ) ZKHUH tr( ) LVWKHPDWUL[WUDFHIXQFWLRQ)RUDVFDODU t
t
–1
SURGXFW x tr ( x ) = x $QRWKHUDSSURDFKLVWRQRWHWKDW R = ADA ZKHUH A = A DQG D LVDGLDJRQDOPDWUL[ZLWKSRVLWLYHGLDJRQDOHQWULHV'HILQH Y = XAD t
–1
t
–1 ⁄ 2 t
A
t
DQGVKRZWKDW E { YY } = E { XR X } = tr ( E { Y Y } ) )7KLVSUREOHPFDQQRWEHVROYHGDVVHWPRUHLQIRUPDWLRQDERXWWKH x i VLVQHHGHG $VVXPHWKHVHTXHQFH { x i } LVVXFKWKDWWKHFHQWUDOOLPLWWKHRUHPKROGV$PRQJRWKHU 2
2
WKLQJVWKLVDVVXUHVWKDW σ 1 + … + σ n → ∞ DV n → ∞ 8VHWKHGLVFXVVLRQSULRUWR(T 0,I\RXDUHDPDWKHPDWLFLDQWKHUHLVQRWURXEOHKHUH,IQRWWKLVSUREOHPLVGLIL FXOWEHFDXVH\RXOLNHO\KDYHOLWWOHH[SHULHQFHZLWK³ ε, N ´OLPLWSURRIV
WKDWJLYHQDQ\ ε > 0 WKHUHH[LVWVDQ N VXFKWKDW E { x n – a } < ε IRUDOO n ≥ N 6LQFH a n → a ZHNQRZWKDWJLYHQDQ\ ε 1 WKHUHH[LVWVDQ N 1 VXFKWKDW a n – a < ε 1 IRUDOO 2
n ≥ N 1 6LQFH E { x n – a n } → 0 ZHNQRZWKDWJLYHQDQ\ ε 2 WKHUHH[LVWVDQ N 2 VXFK 2
WKDW E { x n – an } < ε 2 IRUDOO n ≥ N 2 8VHWKHWULDQJOHLQHTXDOLW\3UREOHPEWR UHODWHZKDWLVNQRZQWRZKDWLVQHHGHG )03URYHRQO\WKDWLIWKHOLPLWRI E { x n x m } H[LVWVWKHQ xn FRQYHUJHVLQWKHPHDQ VTXDUH7KHFRQYHUVHFDQQRWEHVKRZQ n
8VHWKH&DXFK\FULWHULRQ(T'HILQH α n =
∑ σk 6KRZWKDW { αn } FRQ 2
k=1
YHUJHVDQGXVHWKLVIDFWWRVKRZWKDW { y n } FRQYHUJHVLQWKHPHDQVTXDUHVHQVH
H-20
Gary Matchett
Hints — 9/5/02
/HW f n ( y ) EHWKHGHQVLW\RI y n = y n – 1 + x n 8VH(TWRUHODWH f n ( ) WR f n – 1 ( ) DQGWR f x ( ) 6ROYHIRUWKHILUVWIHZGHQVLWLHVFRPSDUHZLWKWKH(UODQJGHQVLW\(T DQGJXHVVWKHJHQHUDOUHVXOW7KHQFRQILUPWKHJHQHUDOUHVXOWE\LQGXFWLRQ 8VH3UREOHPDQGWKHFHQWUDOOLPLWWKHRUHP 1RKLQW 8VH3UREOHPEWRVKRZWKDWWKHVXPRI&DXFK\UDQGRPYDULDEOHVLV&DXFK\ DQGQHYHUEHFRPHVJDXVVLDQ 1RWHWKDW x DQG y DUHSUHVXPHGWREHQRUPDO8VH*RRGPDQ¶VWKHRUHP(T HYHQWKRXJK x DQG y DUHVFDODUV
&KDSWHU &KDSWHULVRPLWWHGKHUH
&KDSWHU D )URP(TVDQGGHGXFHWKDWLI [ A 1, …, An ] LVDSDUWLWLRQWKHQ E { x } = E { x A 1 }P ( A 1 ) + … + E { x A n }P ( A n ) E 6LQFH x ( t ) KDVRQO\WZRYDOXHVIRU DQ\IL[HG t WKHQ P { x ( t ) ≤ x } FDQKDYHRQO\WKUHHGLIIHUHQWYDOXHVLQFOXGLQJ]HUR DQGRQH )LQG F ( x, t ) DQGGLIIHUHQWLDWHWRJHW f ( x, t ) 6HH([DPSOH,QSDUWF QRWLFHWKDWDQHYHQWOLNH { x ( 2 ) = 2, x ( 4 ) = 4 } LVWKH VDPHDVWKHHYHQW { x ( 4 ) – x ( 2 ) = 2, x ( 2 ) = 2 } DQGWKDWWKHWZRVXEHYHQWVWKDWPDNH XSWKLVODWWHUIRUPDUHLQGHSHQGHQWDVWKH\FRXQW3RLVVRQSRLQWVLQQRQRYHUODSSLQJ LQWHUYDOV7KHFRPSXWDWLRQLVWHGLRXV E 06HH3DSRXOLV$7KH)RXULHU,QWHJUDODQG,WV$SSOLFDWLRQV0F*UDZ+LOO $SSHQGL[,(T, 8VH(T ,0)
t
∫0 ( t – s )v ( s ) ds IRU t ≥ 0 6HHWKHVROXWLRQIRU 2
KRZWKLVLVGRQH1RWHWKHW\SR7KHFRUUHFWUHVXOWLV E { w ( t ) } =
t
∫0 ( t – s )
2
q ( s ) ds
D 8VHLQHTXDOLW\E /HW x 1 = x ( t + τ ) x 2 = x ( t ) )LQGWKHUHJLRQ D x RIWKH
H-21
Gary Matchett
Hints — 9/5/02
x 1 x 2 SODQHZKHUH x 1 – x 2 ≥ a DQGLQWHJUDWHWKHVHFRQGRUGHUGHQVLW\RYHU D x 1RKLQW 'RQRWIRUJHWWKHFRPSOH[FRQMXJDWHLQ(T 8VH(T %,07KH7H[WGRHVQRWIDLUO\SUHSDUH\RXWRVROYHWKLVSUREOHP,QWKHGLVFXV VLRQRIOLQHDUFRQVWDQWFRHIILFLHQWGLIIHUHQWLDOHTXDWLRQVEHJLQQLQJRQSDJH WKH7H[WQRWHVWKDWVXFKHTXDWLRQVDUHQRWXQLTXHO\VROYDEOHZLWKRXWLQLWLDOFRQGL WLRQV7RDVVXUHDXQLTXHVROXWLRQDQGWRDVVXUHWKHOLQHDULW\FRQGLWLRQ(T LV VDWLVILHGWKH7H[WVD\VWKDWLWZLOOSUHVXPHDVROXWLRQZLWK³]HUR´LQLWLDOFRQGLWLRQVDW t = 0 7KHWURXEOHZLWKWKLVDSSURDFKLVWKDWWKHGLIIHUHQWLDOHTXDWLRQWKHQRQO\ KROGVIRU t ≥ 0 DQGWKHUHLVQRZD\WKDW y ( t ) FDQEH:66%\FOHDULPSOLFDWLRQRIWKLV SUREOHPWKHHTXDWLRQLVWRKROGIRUDOOWLPHDQG y ( t ) ZLOOEH:66 7KHZD\WRDFFRPSOLVKWKHVHJRDOVWRJHWKHULVWULFN\6XSSRVHZHVHWVRPHDUELWUDU\ LQLWLDOFRQGLWLRQVDW t = t 0 DQGSUHVXPHWKDWWKHGLIIHUHQWLDOHTXDWLRQKROGVIRU t ≥ t 0 1RZZHOHW t 0 → – ∞ 7KLVDSSURDFKDFFRPSOLVKHVDOOWKHREMHFWLYHVSURYLGHG WKDWWKHGLIIHUHQWLDOHTXDWLRQKDVDXQLTXH VROXWLRQXQGHUVXFKDVVXPSWLRQVDQG WKHHIIHFWRIWKHLQLWLDOFRQGLWLRQVDW t 0 RQWKHVROXWLRQDWVRPHIL[HG t GHFOLQHVWR]HUR DV t 0 → – ∞ 7KLVLVWUXHIRUVWDEOHGLIIHUHQWLDOHTXDWLRQV7KHGLIIHUHQWLDOHTXDWLRQ an y
(n)
( t ) + an – 1 y
( n – 1)
( t ) + … + a 1 y’( t ) + a 0 y ( t ) = x ( t )
LVVWDEOHLIDQGRQO\LIWKHDVVRFLDWHGSRO\QRPLDOHTXDWLRQLQ s n
an s + an – 1 s
n–1
+ … + a 1 s + a0 = 0
KDVRQO\URRWVZLWKQHJDWLYHUHDOSDUWVURRWVLQWKHOHIWKDOIRIWKH s SODQH :KHQ WKLVLVWUXHZHGHILQHWKH/DSODFHYHUVLRQRIWKHV\VWHPIXQFWLRQDV 1 + ( s ) = ------------------------------------------------------------------------------n n–1 an s + an – 1 s + … + a1 s + a0 7KH)RXULHUYHUVLRQRIWKHV\VWHPIXQFWLRQLVJLYHQE\ H ( ω ) = + ( jω ) DQGWKH LPSXOVHUHVSRQVHIXQFWLRQRIWKLVOLQHDUV\VWHPLVWKHLQYHUVH)RXULHUWUDQVIRUPRI WKHV\VWHPIXQFWLRQRU
H-22
Gary Matchett
Hints — 9/5/02
1 ∞ jωt h ( t ) ↔ H ( ω ) h ( t ) = ------ ∫ H ( ω )e dω 2π –∞ $OVRLQWKLVSUREOHPDVVXPH E { v ( t ) } = 0 7RPDNHWKLQJVPRUHPDQDJHDEOHGHILQH WKH]HURPHDQSURFHVV z ( t ) = y ( t ) – 2 DQGEHJLQZRUNZLWKLW -XVWQRWHWKDW f ( t 1 )g ( t 2 )δ ( t 1 – t 2 ) = f ( t 1 )g ( t 1 )δ ( t 1 – t 2 ) = f ( t 2 )g ( t 2 )δ ( t 1 – t 2 ) 0,I ϕ ( τ ) LVWKHSKDVHDQJOHRI R xy ( τ ) FRQVLGHU E { x ( t + τ ) ± e
jϕ ( τ )
2
y( t) }
6KRZWKDW x ( t ) = y ( t ) LQWKHPHDQVTXDUHVHQVH7KHQXVHWKH6FKZDU]LQHTXDOLW\ (TWZLFHWRVKRZ R xx ( τ ) = Rxy ( τ ) DQG R yy ( τ ) = Rxy ( τ ) 1RKLQW 3UHVXPH ϕ WREHUHDO8VH Φ ( 1 ) = 0 WRHVWDEOLVK E { cos ϕ } = E { sin ϕ } = 0 DQG XVH Φ ( 2 ) = 0 WRHVWDEOLVK E { cos 2ϕ } = E { sin 2ϕ } = 0 7KHQVKRZ η ( t ) = 0 DQG 1 R ( t 1, t 2 ) = --- cos [ ω ( t 1 – t 2 ) ] 2 D %7KHUHLVDPLVVLQJGHILQLWLRQKHUH7KHVWRFKDVWLFSURFHVV x ( t ) KDVRUWKRJR QDOLQFUHPHQWVLIIRU t a ≤ t b ≤ t c ≤ t d E { [ x ( t d ) – x ( t c ) ] [ x ( t b ) – x ( t a ) ] } = 0 8VLQJWKLV GHILQLWLRQVXEVWLWXWH t d = t 2 t c = t b = t 1 DQG t a = 0 E )
∞
∫–∞ fy ε ( y1, …, y n ; t1, …, tn ε )fε ( ε ) dε DQGWKDW
f y ε ( y 1, …, y n ; t 1, …, t n ε ) = f x ( y 1, …, y n ; t 1 – ε, …, t n – ε ) 8VH(TVDQG E 1RWHWKDW f x ( x, t ) = f x ( x ) 1RWHWKDW z DQG w DUHMRLQWO\QRUPDO8VH(TWR ILQGWKHLUFRUUHODWLRQFRHIILFLHQW )
H-23
Gary Matchett
Hints — 9/5/02
VWDQWPHDQ 7KHGLVFXVVLRQIROORZLQJ(TDVVXUHVWKDW x’( t ) LVQRUPDO(T 2
ZLOOKHOSWRILQG σ x’ 06HHWKHKLQWLQWKHSUREOHPZKLFKLV8VH(TDQGHVWDEOLVKWKH)RXULHU ∞
VHULHV sin
–1
z =
1
∑ --n- [ J0 ( nπ ) – ( –1 )
n
]sin nπz
n=1
3UHVXPHDVLVLPSOLHGE\WKHSUREOHPWKDW x ( t ) LV:667KHUHDUHWZRZD\VWR SURFHHG2QHZD\LVGLUHFWEXWDOJHEUDLFDOO\GHPDQGLQJ7KHRWKHUZD\LVOHVVGLUHFW EXWHDVLHU7KHGLUHFWPHWKRGVLPSO\UHOLHVRQWKHUHODWLRQVKLSV E{ g( x( t ) ) } = E { g ( x ( t 1 ), x ( t 2 ) ) } =
∞
∫–∞ g ( x )f ( x, t ) dx ∞
∞
∫–∞ ∫–∞ g ( x1, x2 )f ( x1, x2 ; t1, t2 ) dx1 dx2
ZKLFKDUHREYLRXVH[WHQVLRQVRI(TVDQG7KHILUVWDQGVHFRQGRUGHUGHQ VLW\IXQFWLRQDUHREWDLQHGIURPWKHIDFWWKDW x ( t ) LVQRUPDO7KHLQWHJUDWLRQLVGLIIL FXOWEXWGRDEOH7KHOHVVGLUHFWPHWKRGUHOLHVRQWKHFORVHFRQQHFWLRQEHWZHHQWKH GHVLUHGH[SHFWHGYDOXHVDQGWKHILUVWDQGVHFRQGRUGHUFKDUDFWHULVWLFIXQFWLRQVRI x ( t ) ZKLFKDUHIXOO\GHYHORSHGIRUDQRUPDOSURFHVVLQ(TVDQG,Q 2
HLWKHUFDVHRQHPXVWQRWHWKDW σ ( t ) = R x ( 0 ) DQG r ( t + τ, t ) = r ( τ ) = R x ( τ ) ⁄ R x ( 0 ) E )$VVXPH τR x ( τ ) → 0 DV τ → 0 QRWMXVW R x ( τ ) → 0 DVLQWKHSUREOHPVWDWH PHQW :ULWH y ( t 1 )y ( t 2 ) DVDGRXEOHLQWHJUDODQGWDNHH[SHFWHGYDOXHV 2
D :ULWH y ( t ) DVDGRXEOHLQWHJUDODQGWDNHH[SHFWHGYDOXHVE ,0)LQGWKH JHQHUDOIRUPDOVROXWLRQWRWKLVGLIIHUHQWLDOHTXDWLRQDQHTXDWLRQZKLFKLVQRWWLPH LQYDULDQW 7KHQSURFHHGDVLQSDUWD D :ULWHDIRUPDOVROXWLRQIRU y ( t ) WRILQGWKHLPSXOVHUHVSRQVHIXQFWLRQ h ( t ) 7KHQXVH(T 1RKLQW )$VVXPHWKDW x ( t ) LV:668VHDPHWKRGDQDORJRXVWRWKDWXVHGWRGHYHORS(T D 8VHWKHVROXWLRQWR3UREOHPRURWKHUZLVHILQGWKHLPSXOVHUHVSRQVHIXQF H-24
Gary Matchett
Hints — 9/5/02
WLRQ8VH(TVDQGE 8VH([DPSOH D 06HH([DPSOH E 8VH cos ω 0 τ cos ωτ = [ cos ( ω 0 – ω )τ + cos ( ω 0 + ω )τ ] ⁄ 2 ZLWKSDUWD $VVXPH x ( t ) LVUHDO 8VHWKHLGHQWLWLHV e
j2aω
+e
– j 2aω
2
= 2 cos 2aω DQG 1 – cos 2aω = 2sin 2aω
1RKLQW 06KRZ η y = I 8VH(TIURP([DPSOHWRILQG R y WKHQXVH7DEOHWR ILQG Sy jωτ 2 1 ∞ 6LQFH S ( ω ) ≥ 0 FOHDUO\ A = ------ ∫ S ( ω ) Σ i a i e i dω ≥ 0 2π –∞
D 08VH&DXFK\¶VUHVLGXHWKHRUHPWRILQG R ( τ ) YLDFRQWRXULQWHJUDWLRQDVLQWKH VROXWLRQWR3UREOHPE 08VHWKHVDPHDSSURDFK7KHSROHKHUHLVRIRUGHU d 2 WZRDQGWKHUHVLGXHLVJLYHQE\ r = ------- [ ( ω – ωp ) h ( ω ) ] ZKHUH ω p LVWKHSROH dω ω = ωp DQG h ( ω ) LVWKHLQWHJUDQG ' H ( ω ) LVDFRPSOH[IXQFWLRQRIWKHUHDOYDULDEOH ω + ( s ) LVDFRPSOH[IXQFWLRQ RIWKHFRPSOH[YDULDEOH s 7RWDNHWKHFRPSOH[FRQMXJDWHRI + ( s ) \RXPXVWFRQMXJDWH ERWKWKHIXQFWLRQ +( ) DQGWKHYDULDEOH s 7RDVVLVWLQWKHQRWDWLRQGHILQHLQWKH ILUVWDQGVHFRQGSDUWVRIWKHSUREOHP : ( s ) = +* ( –s* ) =
∞
∫–∞ h* ( t )e
st
dt : ( z ) = + * ( 1 ⁄ z * ) = Σ n h * [ n ]z
n
%7RVROYHWKLVSUREOHPLWLVEHVWWRXVHWKHJHQHUDOFRQYROXWLRQWKHRUHP7KHUH DUHWZRYHUVLRQVDQGERWKDVVXPHWKUHHSDLUVRI)RXULHUWUDQVIRUPV f ( τ ) ↔ F ( ω ) g ( τ ) ↔ G ( ω ) DQG h ( τ ) ↔ H ( ω ) , ,I H ( ω ) = F ( ω )G ( ω ) WKHQ h ( τ ) = f ( τ ) * g ( τ ) 1 ,, ,I h ( τ ) = f ( τ )g ( τ ) WKHQ H ( ω ) = ------ F ( ω ) * G ( ω ) 2π 1RWLFHWKHIDFWRURIWZRSLLQWKHVHFRQGYHUVLRQRIWKHWKHRUHP$SSDUHQWO\WKLVIDF
H-25
Gary Matchett
Hints — 9/5/02
WRUZDVQHJOHFWHGLQWKHVHWWLQJRIWKHSUREOHPOHDGLQJWRWKHW\SR7KHFRUUHFWUHVXOW 1 2 LV S y ( ω ) = 2πR x ( 0 )δ ( ω ) + --- Sx ( ω ) * S x ( ω ) π $OVR\RXQHHGWRNQRZZKDWLGHDO/3ORZSDVV DQG%3EDQGSDVV VSHFWUDDUH 7KH\DUHVLPSO\XQLWLQWHQVLW\ZKLWHQRLVHSURFHVVHVSXWWKURXJKDQLGHDOL]HGILOWHU 7KH\DUHLOOXVWUDWHGEHORZ Sx ( ω )
Sx ( ω ) 1
1
ω
ω –ω 2
ωc
–ωc
– ω1
/RZ3DVV
ω1
ω2
%DQG3DVV
8VH(TWRILQG Rxx’( τ ) DQG R x’x’( τ ) 1RWHWKDW R xx’( τ ) LVGLVFRQWLQXRXVDWWKH RULJLQOHDGLQJWRD δ ( τ ) WHUPLQ R x’x’( τ ) 8VH7DEOHWRFRQYHUWIURP R yy ( τ ) WR S yy ( ω ) D 8VH([DPSOHDE 8VH(T 1RWHWKDW R ( 0 ) PXVWEHUHDODQGQRQQHJDWLYHVRWKDWLWPXVWEHWKDW jϕ
R ( τ 1 ) = R ( 0 )e IRUVRPHSKDVHDQJOH ϕ 'HILQH ω = ϕ ⁄ τ 1 D 07KHSUHVXPSWLRQLVWKDW x ( t ) LVUHDO([SUHVV E { x ( t )xˆ ( t ) } LQWHUPVRI S xx ( ω ) XVLQI(T$WWHPSWLQJWRXVH R xx ( τ ) ZLOOIDLO E '([SUHVV x˜ ( t ) P\V\PEROIRUGRXEOHXSVLGHGRZQKDWVZKLFK,ODFN LQWHUPV 2
RI x ( t ) DQG h ( t ) YLDDQLWHUDWHGFRQYROXWLRQ6LQFH H ( ω ) = – 1 LWIROORZVWKDW ρ ( t ) = – δ ( t ) $QLQQRYDWLYHDOWHUQDWHDSSURDFKLQYROYHVWKH)RXULHUWUDQVIRUPRI x ( t ) LWVHOIEXWWKLVPHWKRGODFNVJHQHUDOLW\ )LQGVRPH G ( ω ) VXFKWKDW S yy ( ω ) = S xx ( ω )G ( ω ) 7KHQILQGWKDW ω = ± ω 0 PD[L PL]HV G ( ω ) DQGSXWDOOWKHDYDLODEOHHQHUJ\RI S xx ( ω ) DWWKHVHIUHTXHQFLHV 8VHLQHTXDOLW\WRVKRZWKDW S xy ( ω ) = 0 IRU ω ≠ ω 0 'HGXFHWKDW
H-26
Gary Matchett
Hints — 9/5/02
S xy ( ω ) = 2πBδ ( ω – ω 0 ) D 8VHFRQYROXWLRQLQWHJUDOVGLUHFWO\1RWH R yx LQVWHDGRI R xy 3UHVXPHWKDWRYHUVXIILFLHQWO\VPDOOLQWHUYDOVRIWKHIUHTXHQF\D[LVWKDWWKHIXQF WLRQV S xy ( ω ) S xx ( ω ) DQG S yy ( ω ) DUHHVVHQWLDOO\FRQVWDQW8VH(T 3UHVXPHWKDW x ( t ) LVUHDO8VHWKHFRVLQHLQHTXDOLW\(T 3URFHHGDVLQ3UREOHP1RWHWKHW\SRWKHJUHDWHUWKDQVLJQVKRXOGEHD JUHDWHUWKDQRUHTXDOVLJQ ([SUHVV R [ m ] LQWHUPVRI f ( ω ) &RPSDUHZLWK(T D ,0)LQGWKHVROXWLRQVWRWKHKRPRJHQHRXVGLIIHUHQWLDOHTXDWLRQ8VHWKH YDULDWLRQRISDUDPHWHUVPHWKRGWRILQGWKHVROXWLRQWRWKHQRQKRPRJHQHRXVGLIIHU 2
HQWLDOHTXDWLRQ:ULWH y ( t ) DVDGRXEOHLQWHJUDODQGWDNHH[SHFWHGYDOXHV E ,'8VHWKHVDPHDSSURDFKDVDERYHIRUWKHGLIIHUHQFHHTXDWLRQ D ,)LQGWKHJHQHUDOVROXWLRQWRWKHGLIIHUHQFHHTXDWLRQ E ,0RGLI\WKHGHYHORSPHQWRISDUWD
&KDSWHU D 8VH(TE 8VH(TDQG([DPSOH 8VH(TIRU f x ( x, t ) DQG f y ( y, t ) 7KHQXVH(TIRU f z ( z, t ) ,)LQGWKHGLIIHUHQWLDOHTXDWLRQUHODWLQJ v ( t ) DQG n e ( t ) 8VH/DSODFHWUDQVIRUPVWR 2
ILQG + ( s ) DQGWKHQVROYHIRU H ( ω ) 8VH(TWRILQG S v ( ω ) $VLPLODUSURFHVV ZRUNVIRUWKHFXUUHQWFDVH 1RWHWKDW e
– 2αt
1 U ( t ) ↔ ------------------------ DQGLI h ( t ) ↔ H ( ω ) WKHQ h’( t ) ↔ jωH ( ω ) ( jω + 2α )
8VH([DPSOHDQG(T 3UHVXPHWKDWWKH:LHQHUSURFHVV w ( t ) LVDQRUPDOVWRFKDVWLFSURFHVVZLWK]HUR PHDQ8VH(TWRILQG R y DQG3UREOHPWRILQG R z 8VH&DPSEHOO¶VWKHRUHP(T1RWHWKDW s ( 7 ) FDQEH]HURRQO\LIQR3RLVVRQ
H-27
Gary Matchett
Hints — 9/5/02
SRLQWVDUULYHLQWKHLQWHUYDOSULRUWR t 0 = 7 ZKHQ h ( 7 – t ) LVQRW]HUR 6KRZWKDW S xy ( ω ) LVSXUHO\LPDJLQDU\7KHQXVH(TVDQGWRFRQILQH H( ω) '$EUXWHIRUFHDSSURDFKZRUNVKHUHEXWLWLVERWKOHQJWK\DQGGHPDQGLQJ )$VWKH7H[WSRLQWVRXWRQWKHERWWRPRISDJHJLYHQMXVW x ( t ) WKHUHLVQR XQDPELJXRXVFRPSOH[HQYHORSH
T
∫0 f ( t )e
2 – jωt
dt
∞
∑
m = –∞
2πm δ ω – ----------- T
%HJLQE\VKRZLQJWKDWWKHVWRFKDVWLFSURFHVV y ( t ) = f ( t ) LV66&67KHQVKRZ x ( t ) LV 666DQGXVH(TIRU R xx ( τ ) )LQG S xx ( ω ) GLUHFWO\IURP(TWKHQVSOLWXS WKHLQILQLWHWLPHLQWHJUDOLQWRDVXPRYHUFRQVHFXWLYHVSDQVRIOHQJWK T )LQDOO\XVH (T$WRJHWWKHGHVLUHGUHVXOW 00LPLF(TDQGGHILQH N
yN ( t ) = x ( t + τ ) –
∑ n = –N
sin σ ( τ – nT ) x ( t + nT ) -------------------------------- T = π ⁄ σ σ ( τ – nT )
1RWHWKDW ε N ( t ) = y N ( 0 ) $VVXPH x ( t ) LVUHDODQGXVHWKHSURRIDWWKHERWWRPRISDJH 8VH(T(TZLWK ω = 0 DQG7DEOH 6HHKLQWDERYH
H-28
Gary Matchett
Hints — 9/5/02
π 1RWHWKDWLQWKHUDQJH τ < ------ DQG ω ≤ σ WKHQ cos ωτ ≥ cos στ $OVRDVVXPHWKDW 2σ x ( t ) LVUHDODVXVXDOLQ%/SUREOHPV 07KLVLVDVWUDLJKWIRUZDUGDSSOLFDWLRQRIWKH³3DSRXOLV6DPSOLQJ([SDQVLRQ´RQ 7H[WSDJHEXWGLIILFXOWEHFDXVHLWLQYROYHVFRQVLGHUDEOHPDQLSXODWLRQ)RUVRPH ω jστ 1 jστ KHOSQRWHWKDW P 1 ( ω, τ ) = 1 – ---- ( e – 1 ) P2 ( ω, τ ) = ----- ( e – 1 ) DQG σ jσ 0 jωτ jωτ 1 0 ω jστ 1 jστ p 1 ( τ ) = --- ∫ 1 – ---- ( e – 1 ) e dω p 2 ( τ ) = -------2- ( e – 1 ) ∫ e dω 8VH(T σ –σ σ –σ jσ
ZLWK t 0 = 0 QRWLQJWKDW y 1 ( nT ) = y 1 ( n∆ ) = x ( n∆ ) y 2 ( nT ) = y 2 ( n∆ ) = x’( n∆ ) 8VHWKHPHWKRGRI(TZLWK f ( t ) = cos ω 0 t cos ωt DQGZLWKWKHLQWHJUDO OLPLWVIURP – a WR a *HWHTXLYDOHQWIRUPXODVWRWKRVHIROORZLQJ(T 1 ))LUVWFRUUHFWWKHW\SR7KHVXPVKRXOGEH X c ( ω ) = --λ
∑
x ( t i )e
– jωt i
1H[W\RX
i ti < a
PXVWDVVXPHWKDW x ( t ) LVLQGHSHQGHQWRIWKHSURFHVV z ( t ) =
∑ δ ( t – ti ) 7KHLQWHJUDO i
WUDQVIRUPRI(TYDOLGIRUDQ\IXQFWLRQ C ( τ ) LVDOVRXVHIXO 1RKLQW n
&RQVLGHU I =
n
∑ ∑
2
a i b *j – a j b *i ≥ 0
i=1 j=1
D '7KHWUHDWPHQWRIGLVFUHWHSURFHVVHVLQWKH7H[WLVWRREULHIWRHYHQJLYHD XVHIXOKLQWKHUHH[FHSWWRPLPLFWKHPDWFKHGILOWHUGLVFXVVLRQIRUDFRQWLQXRXVSUR FHVV$VVXPHUHDOSURFHVVHV 2
yf [ 0 ] E '1RWHWKDW v [ n ] LVQRWSUHVXPHGWREHZKLWHKHUH7RPD[LPL]H r = ---------------------- 2 E { yv [ n ] } \RXVKRXOGPLQLPL]HWKHGHQRPLQDWRUZKLOHKROGLQJWKHQXPHUDWRUFRQVWDQW8VH WKHPHWKRGRI/DJUDQJHPXOWLSOLHUV 0)LQGWKHLPSXOVHUHVSRQVHIXQFWLRQ h ( t ) VHH([DPSOH )URPWKHGHWHU PLQLVWLFLQSXW f ( t ) = A cos ω 0 t ILQGWKHGHWHUPLQLVWLFRXWSXWLQWKHIRUP y f ( t ) = B cos ( ω 0 t + ϕ ) WRUHODWH B WR A α DQG ω 0 )LQGWKHVSHFWUXPRIWKHQRLVH
H-29
Gary Matchett
Hints — 9/5/02
RXWSXWDQGIURPWKDWILQGWKHDXWRFRUUHODWLRQRIWKHQRLVHRXWSXWXVLQJ7DEOH 8VH(TWRILQGWKHDYHUDJHSRZHURIWKHQRLVHRXWSXW T
0D ,WKHOSVWRGHILQHWKHYHFWRUVDQGPDWULFHV a = ( a 0, a 1, …, a m ) R 00 R 01 … R 0m R 10 R 11 … R 1m
T
f = ( f 0, f 1, …, f m ) = ( f ( t 0 ), f ( t 0 – T ), …, f ( t 0 – mT ) ) DQG R =
… … … R m0 R m1 … R mm
ZKHUH R ij = R v ( iT – jT ) = E { v ( t 0 – iT )v ( t 0 – jT ) } 7KHQVKRZ m
yf = yf ( t0 ) =
∑ aifi
T
T
2
= a f DQG E = E { y v ( t 0 ) } = a Ra 0D[LPL]H r E\PLQLPL]LQJ
i=0
E VXEMHFWWRWKHFRQVWUDLQWRIDJLYHQYDOXHRI y f > 0 E\WKHPHWKRGRI/DJUDQJHPXO WLSOLHUV T –1
E 7KHPD[LPXPYDOXHRI r LV f R f =
yf ⁄ k
7KLVIROORZVGLUHFWO\IURP(TXVLQJUHSHDWHGO\ WKHLGHQWLW\ ∞
∫–∞ e
– jωτ
dτ = 2πδ ( ω )
06HYHUDOIDFWVDUHXVHIXOKHUH,I t 1 < t 2 < t 3 WKHQ x˜ ( t 3 ) = x˜ ( t 1 ) + [ x˜ ( t 2 ) – x˜ ( t 1 ) ] + [ x˜ ( t 3 ) – x˜ ( t 2 ) ] DQGWKHWKUHHUDQGRPYDULDEOHV x˜ ( t 1 ) x˜ ( t 2 ) – x˜ ( t 1 ) DQG x˜ ( t 3 ) – x˜ ( t 2 ) DUHPHDQ]HURDQGLQGHSHQGHQWEHFDXVHWKH\FRXQW 3RLVVRQSRLQWVLQQRQRYHUODSSLQJLQWHUYDOV)URPWKHGLVFXVVLRQRI3RLVVRQUDQGRP 3
YDULDEOHVRQSDJHRIWKH7H[WLWIROORZVWKDW E { x˜ ( t 1 ) } = λt 1 )LQDOO\LJQRUHWKH KLQWLQWKHSUREOHPDQGXVHLQVWHDGWKHWKUHHLGHQWLWLHV ∂min ( t a, t b ) min ( t 1, t 2, t 3 ) = min ( t 1, min ( t 2, t 3 ) ) ----------------------------- = U ( t b – t a ) ∂t a U ( min ( t 2, t 3 ) – t 1 ) = U ( t 2 – t 1 )U ( t 3 – t 1 ) )ROORZWKHRXWOLQHLQWKHSUREOHP
&KDSWHU ')LQGLQJWKHZKLWHQLQJILOWHULVHDV\HVSHFLDOO\LI\RXQRWHWKDW
H-30
Gary Matchett
Hints — 9/5/02
2
–2
cos 2ω = ( z + z ) ⁄ 2 )LQGLQJWKHDXWRFRUUHODWLRQVHTXHQFH R xx [ m ] LVKDUG²VR KDUGWKDWQRKLQWLVJLYHQKHUHVHHWKHVROXWLRQ N ( s )N ( – s ) N( s) )DFWRU 6 ( s ) = --------------------------- WKHQVHW / ( s ) = ----------- D ( s )D ( – s ) D(s) ∞
8VHWKHFRQYROXWLRQVXP s [ n ] =
∑ ls [ k ]i [ n – k ] k=0
D ,1RWHWKDW R yx’( τ ) = E { y’( t + τ )x * ( t ) } HWF E ,08VHWKHGLVFXVVLRQIROORZLQJ(T1RWHWKDW +
-
+
6 yx ( s ) = 6 yx ( s ) = q ⁄ D ( s ) WRILQG R yx ( τ ) IRU τ > 0 1RWHWKDW 6 yy ( s ) = 6 yy ( – s ) DQG + q 6 yy ( s ) = --------------------------- WRILQG 6 yy ( s ) DQGKHQFH R yy ( τ ) IRU τ > 0 D ( s )D ( – s )
6KRZ R xx [ m ] = R ss [ m ] + R vv [ m ] DQG R vv [ m ] = qδ [ m ] 'HGXFHWKDW 1 6 ss ( z ) = ------------------------------- ZKHUH D ( z ) KDVDOOLWVURRWV z i ZLWK z i < 1 &RQFOXGHWKDW D ( z )D ( 1 ⁄ z ) 6 xx ( z ) LVDOVRUDWLRQDOZLWKWKHVDPHSROHVDV 6 ss ( z ) DQGWKDW 6 xx ( z ) = 6 xx ( 1 ⁄ z ) n
1 'HILQH s ( t ) = --n
∑ x ( t + kT ) DQGUHJDUG s ( t ) DVWKHRXWSXWRIDOLQHDUV\VWHPZLWK k=1
LQSXW x ( t ) )LQGWKHLPSXOVHUHVSRQVHIXQFWLRQWKHV\VWHPIXQFWLRQDQGXVH(T ')3UHVXPH x ( t ) LV:66VRWKHRULJLQRIWKHWLPHVFDOHPD\EHVKLIWHGVRWKDWWKH LQWHUYDO ( 0, T ) LQWKHROGWLPHVFDOHFRUUHVSRQGVWRWKHLQWHUYDO ( – a, a ) LQWKHQHZ WLPHVFDOH3DUWLFXODUL]HWKHLQWHJUDOHTXDWLRQ'LIIHUHQWLDWHWKHLQWHJUDOHTXD WLRQWZLFHWRREWDLQDGLIIHUHQWLDOHTXDWLRQ)LQGWKHJHQHUDOVROXWLRQVWRWKHGLIIHUHQ WLDOHTXDWLRQDQGSXWWKHPEDFNLQWRWKHLQWHJUDOHTXDWLRQWROHDUQPRUHDERXWWKHP 8VHWKHQRUPDOL]DWLRQHTXDWLRQ(TWRVFDOHWKH ϕ ( t ) IXQFWLRQV1RWHWKDWWKH λ n – 1 ⁄ 2 λ n’ –1 ⁄ 2 ---UHVXOWVVKRXOGUHDG β n = a + DQG β n’ = a + ------ QRWWKHUHVXOWVJLYHQ 2 2 LQWKH7H[W 2
:ULWH E { X ( ω ) } DVDGRXEOHLQWHJUDO7UDQVIRUPWRDVLQJOHLQWHJUDODVLQ(T 'LIIHUHQWLDWHZLWKUHVSHFWWR T
H-31
Gary Matchett
Hints — 9/5/02
1RKLQW 1RKLQW 08VH(TD 6KRZ E { x ( t )x* ( t ) } = E { x ( t )xˆ * ( t ) } = E { xˆ ( t )x * ( t ) } = E { xˆ ( t )xˆ * ( t ) } = R ( 0 ) ,QRUGHUWRGRSDUWD LWLVXVHIXOWRGRSDUWE F 6XEVWLWXWH s = t – α LQWKH β n ( α ) H[SUHVVLRQ $VLVXVXDOLQWKHVHFDVHVVKRZWKDW E { x ( t ) } = 0 DQGWKDW E { x ( t )x* ( s ) } LVDIXQF WLRQRI t – s 'HGXFHWKDWLI A DQG B VDWLVI\(TVWKHQLWPXVWEHWKDW E { A ( u )A ( v ) } = E { B ( u )B ( v ) } = Q ( u )δ ( u – v ) DQG E { A ( u )B ( v ) } = 0 T
01RWHWKDW ∫ f ( t )e
– jωt
∞
dt =
–T
∫–∞ f ( t )pT ( t )e
– jωt
dt ZKHUH –T < t < T
1 pT ( t ) = U ( t – T ) – U ( T – t ) = 0 8VHWKHIUHTXHQF\FRQYROXWLRQWKHRUHPLI F1 ( ω ) = F2 ( ω ) =
∞
∫–∞ f2 ( t )e
– jωt
otherwise ∞
∫–∞ f1 ( t )e
– jωt
dt DQG
dt WKHQ
F 12 ( ω ) =
∞
∫–∞
f 1 ( t )f 2 ( t )e
– jωt
1 ∞ dt = ------ ∫ F 1 ( y )F 2 ( ω – y ) dy 2π –∞
∞ sin 2 αT
- dα = Tπ ------ 8VH(T1RWHWKDW ∫ ---------------2 2 0 α
&KDSWHU 1RKLQW 2
,'1RWHWKDW x ( t ) LV:668VH(TWRGHGXFHWKDW f ( x, x ; τ ) → f ( x ) DV τ → ∞ )LQGERWKVLGHVRIWKLVOLPLWH[SOLFLWO\DQGVKRZWKDWWKHOLPLWUHTXLUHV
H-32
Gary Matchett
Hints — 9/5/02
r ( τ ) → 0 8VH(T 8VH(T 6KRZWKDW C zz ( τ ) GRHVQRWGHSHQGRQ τ VRWKDW(TFDQQRWEHVDWLVILHG 2
,5HFDOOWKDW lim R T = R xy ( λ ) LIDQGRQO\LIERWK E { R T } = R xy ( λ ) DQG σ RT → 0 T→∞
)',7KHFRQGLWLRQLQWKLVSUREOHPVKRXOGUHDG R ( t + τ, t ) → η ( t + τ )η ( t ) DV 2
τ → ∞ XQLIRUPO\LQ t $OVR\RXPXVWDVVXPH C ( t, t ) < σ IRUVRPH σ DQGDOO t 1 T ,JQRUHWKHKLQWLQWKH7H[W'HILQHWKHDYHUDJHPHDQDV η = --- ∫ η ( t ) dt 6KRZWKDW T 0 2 1 c lim ------ ∫ η ( t ) dt = η 8VHWKLVUHVXOWWRVKRZWKDW lim E { ( η c – η ) } = 0 LVHTXLYD c → ∞ 2c – c c→∞ OHQWWRWKHUHYLVHGFRQGLWLRQDERYH'R3UREOHPILUVWWRXQGHUVWDQGWKLVODWWHU UHVXOW 2
,'$VVXPHWKDW C ( t, t ) < σ IRUVRPH σ DQGDOO t 8VH(TWRJHW 1 T T 2 σ T = --------2- ∫ ∫ C ( t 1, t 2 ) dt 1 dt 2 &KDQJHYDULDEOHVWR t = t 2 τ = t 1 – t 2 %UHDNXSWKH 4T –T –T LQWHJUDOLQWKH tτ SODQHLQWRSRUWLRQVZKHUH τ ≥ T 2 DQG τ < T 2 DQGILQGZD\VWR OLPLWERWKSDUWV
H-33
Gary Matchett
Hints — 9/5/02
H-34