Probability Random Variables Stochastic Process

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Probability Random Variables Stochastic Process as PDF for free.

More details

  • Words: 8,599
  • Pages: 42
Errata, Hints, and Problem Solutions WRDFFRPSDQ\WKHWH[W

3UREDELOLW\5DQGRP9DULDEOHV DQG6WRFKDVWLF3URFHVVHV)RXUWK(GLWLRQ E\$WKDQDVLRV3DSRXOLVDQG68QQLNULVKQD3LOODL 0F*UDZ+LOO

SUHSDUHGE\*DU\0DWFKHWW 1RUWKURS*UXPPDQ :DONHUV%URRN'ULYH 5HDGLQJ0$ DOVRDVVRFLDWHGZLWK 1RUWKHDVWHUQ8QLYHUVLW\

2EMHFWLYH 7KLVYROXPHZDVSUHSDUHGE\WKHLQVWUXFWRUIRUVWXGHQWVRI1RUWKHDVWHUQ8QLYHUVLW\ FRXUVH(&($SSOLHG3UREDELOLW\DQG6WRFKDVWLF3URFHVVHVWRKHOSLQGHDOLQJZLWK WKHFRXUVH7H[W$VWKHWLWOHLQGLFDWHVWKHUHDUHWKUHHSDUWV7H[WHUUDWDIROORZHGE\KLQWV IRUVROYLQJWKHSUREOHPVIROORZHGE\SUREOHPVROXWLRQV7KHFRXUVHGRHVQRWFRYHUWKH HQWLUH7H[WQRUGRWKHVHQRWHV&KDSWHUVWKURXJK&KDSWHUVWKURXJKDQGWKHILUVW 6HFWLRQRI&KDSWHUDUHFRYHUHGKHUH7KHFRXUVHGRHVQRWFRYHUDOOWKHWRSLFVLQ&KDS WHUVDQGEXWDOOWKHSUREOHPVLQWKRVHFKDSWHUVDUHLQFOXGHGKHUH 7KHPDLQSDUWRIWKLVZRUNLVWKHSUREOHPVROXWLRQV7KHJORU\RIWKH7H[WLVLWVSURE OHPV0DQ\RIWKHPFRQWDLQNH\SDUWVRILPSRUWDQWGHYHORSPHQWVLQWKHILHOGDQGDUH ZLGHO\XVDEOH'RLQJWKHSUREOHPVLVZKHUHUHDOOHDUQLQJKDSSHQV7KHUHDUHVRPDQ\ SUREOHPVDQGVRPHDUHVRGLIILFXOWDVWRGDXQWDOOEXWWKHPRVWLQWUHSLGVWXGHQW,FDQQRW UHDGDQGFRUUHFWKRPHZRUNDQG,DPRIWHQQRWDYDLODEOHZKHQKHOSLVQHHGHGHVSHFLDOO\ LQJHWWLQJVWDUWHGVRWKLVYROXPHLVDQDWWHPSWWRILOOWKHYRLG 5HDGLQJWKHVROXWLRQWRDSUREOHPZLWKRXWILUVWVHULRXVO\DWWHPSWLQJWRVROYHLW\RXU VHOILVDPLVWDNH
(55$7$ &200(176217+(7(;7 )RXUWK(GLWLRQ 7KH)RXUWK(GLWLRQRIWKH7H[WLV DOPRVW QHZDWWKLVZULWLQJ7KHHUUDWDKHUHDUHIRUWKH ILUVWSULQWLQJ(UURUVDUHVRPHWLPHVFRUUHFWHGZLWKQHZSULQWLQJV7KHSULQWLQJQXPEHU LVWKHILUVWLQWHJHUUHPDLQLQJLQWKHVHTXHQFHRQWKHUHYHUVHRIWKHWLWOHSDJH DERYHWKH,6%1OLQH6LQFHWKLV7H[WLVQHZO\UHYLVHG,KDYHQRWWKRURXJKO\H[DPLQHGLW DQGKDYHOLNHO\RYHUORRNHGVRPHHUURUV,ZRXOGDSSUHFLDWHQRWLILFDWLRQRIDQ\HUURUVQRW OLVWHGKHUH RUDQ\FRPPHQWVRQHUURUVOLVWHGKHUH WR*0DWFKHWW#QRUWKURSJUXP PDQFRP

&+$37(5 ‡ ‡ ‡ ‡

SILUVWSDUDJUDSKRI6HFWLRQOLQHVKRXOGUHDG³DQGFHUWDLQRILWVVXEVHWV HYHQWV´ SILUVWSDUDJUDSKRI6HFWLRQOLQHVKRXOGUHDG³ ζ i LVDQHOHPHQWDU\HYHQW LILQIDFW { ζ i } LVDQHYHQWDWDOO´ SIROORZLQJ(T  VKRXOGUHDG³UHVXOWVLQYROYLQJSUREDELOLWLHVKROGDOVR´ SIROORZLQJ(T  QRWHWKDW³7KLVUHVXOW´UHIHUVWR(T  DQGQRWWR(T  

&+$37(5 ‡ ‡ ‡ ‡

2 2 S)LJ D VKRXOGUHDG -------------- e –( x – 4.5 ) ⁄ 4.5  3 2π 1 2 S)LJ E VKRXOGUHDG ----------e – ( x – 3.0 ) ⁄ 4  4π S3UREOHPVKRXOGUHDG³QHWJDLQRUORVVH[FHHGV´ S3UREOHPVKRXOGUHDG³:HSLFNDWUDQGRP n ≤ N FRPSRQHQWV´

&+$37(5 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

S3URRIVKRXOGUHDG³6XSSRVHWKDW x ( ζ ) > 0 IRUHYHU\ ζ ´ S(T  VKRXOGUHDG 0 < x < 1  S(T  WKHXSSHUOLPLWRQWKHVHFRQGLQWHJUDOVKRXOGEH π ⁄ 2  S:DWFKRXW7KHUHDUHWZRGLIIHUHQWGHILQLWLRQVIRUERWKWKHQHJDWLYHELQRPLDO GLVWULEXWLRQDQGIRUWKHJHRPHWULFGLVWULEXWLRQ:KHQWKHVHGLVWULEXWLRQVDUHVSHFL ILHGDVLQWKHSUREOHPVLWLVQRWDOZD\VFOHDUZKLFKRIWKHWZRLVPHDQW SOLQH LQ([DPSOH VKRXOGUHDG 20 ≤ x < 40  SOLQHVDQGVKRXOGUHDG b < x ≤ a  SOLQHVKRXOGUHDG b < x < a  S([DPSOHWKHHTXDWLRQIRUWKHGHQVLW\LVLQFRUUHFW7KH G V\PEROVVKRXOG

Errata-1

EH J V\PEROV ZKLFKZHUHGURSSHGIURPWKH)RXUWK(GLWLRQ 1RWHWKDW x 1 –x2 ⁄ 2 VRWKDW G ( x ) = ∫ J ( ξ ) dξ J ( x ) = ----------e 2π –∞  FRPSDUHZLWK(T  DQGVHH1RWDWLRQDO3HFXODULWLHVRIWKH+LQWVVHFWLRQ  ‡ S7DEOHQRWHWKDWWKH7H[WGHILQLWLRQRI erf ( x ) LVQRQVWDQGDUG7KHUHODWLRQ VKLSLV 1 x 1 x erf ( x ) = --- erf  ------- = --- Φ  ------- 2 2 2 2 ZKHUHWKHILUVWWHUPLVWKH7H[WGHILQLWLRQWKHVHFRQGWHUPLVWKHVWDQGDUGGHILQLWLRQ DQGWKHWKLUGWHUPLVWKH³*UDGVKWH\Q 5\]KLN´QRWDWLRQ ‡ SILUVWOLQHDIWHU(T  WKHUHVWULFWLRQ x > 0 LVQRWQHHGHG

‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

2

S3UREOHPVKRXOGUHDG³8VLQJ7DEOH´DQGLQSDUW E ³ x LV N ( η, σ ) ´ S3UREOHPVKRXOGUHDG³ x LV N ( 10, 1 ) ´ S3UREOHPVKRXOGUHDG³ x LV N ( 0, 4 ) ´ S3UREOHPVKRXOGUHDG³ x LV N ( 1000, 400 ) ´ S3UREOHPWKHUHIHUHQFHWR(T  LVQRWFRUUHFW7KHDFWXDOHTXDWLRQ LQWHQGHGZDVUHPRYHGLQJRLQJWRWKH)RXUWK(GLWLRQ(T  LVDFORVHHTXLYDOHQW WRZKDWZDVLQWHQGHG S3UREOHPVKRXOGUHDG³WKHQ F ( x ) = 1 IRU x ≥ b ´ S3UREOHPVKRXOGUHDG³$V\VWHPKDVFRPSRQHQWV´ S3UREOHPWKHODVW³!´VKRXOGEHD³³LQWKH+LQW S3UREOHPVKRXOGVD\LQDGGLWLRQ³$VVXPHDOVR k 1, k 2 « n, k 3 ´

&+$37(5 ‡

SHTXDWLRQDIWHU(T  WKHODVWWHUPVKRXOGEH U ( x ) 

‡ ‡

S([DPSOHQH[WWRODVWOLQHVKRXOGUHDG³WKDW E { ( x – η ) 2 } = σ 2 DQG´ SHTXDWLRQIROORZLQJ(T  VKRXOGUHDG P{ x – η ≥ ε} =

η–ε

∫–∞

f ( x ) dx + … 2

‡

S([DPSOHVKRXOGUHDG³IXQFWLRQRIDQ N ( η, σ ) UDQGRPYDULDEOH´ SWZROLQHVDIWHU(T  WKHULJKWKDQGHTXDWLRQVKRXOGKDYHDGRXEOHSULPH RQWKHSKLRQWKHOHIWKDQGVLGH S3UREOHPVKRXOGUHDG N ( 5, 4 ) 

‡

S3UREOHPVKRXOGUHDG y =

‡

S3UREOHP D VKRXOGUHDG Φ x ( ω ) = ( 1 – jωβ )

‡ ‡

Φ x ( ω ) = ( 1 – j2ω ) ‡

–n ⁄ 2

x –α

DQG E VKRXOGUHDG



S3UREOHP E WKHHTXDWLRQOLQHVKRXOGHQG k ≤ min ( M, n ) 

Errata-2

&+$37(5 ‡ ‡ ‡

S(T  ORZHUOLPLWRQWKHILUVWLQWHJUDOVKRXOGUHDG y = – ∞  S(T  VHH6SHFLDO1RWHLQWKH+LQWVVHFWLRQRIWKLVYROXPH S([DPSOHOLQHVKRXOGEHJLQ³ φ ( s 1, s 2 ) = e A ´

‡ ‡

S3UREOHPVHFRQGFHQWHUHGHTXDWLRQOHIWVLGHVKRXOGUHDG f z ( z ) =  S3UREOHPVHH6SHFLDO1RWHLQWKH+LQWVVHFWLRQRIWKLVYROXPH,WLVHDVL HVWLILWUHDGV³H[FHHGV 2 ⁄ λ ´DQG³RULJLQDOFRPSRQHQWE\ 1 ⁄ λ "´ S3UREOHPVKRXOGDVNWRVKRZWKDW w LVDQH[SRQHQWLDOUDQGRPYDULDEOH S3UREOHPKDV³H[FHVV´LQIRUPDWLRQ6HHWKHKLQWIRUWKLVSUREOHP S3UREOHPWKHILUVWGLVSOD\HTXDWLRQVKRXOGUHDG

‡ ‡ ‡

 E{z} =

∑ pn E { g ( xn, y ) xn } n

‡

S3UREOHPVKRXOGUHDG³ β y ( t ) = f y ( t ( y > t ) ) DQG´

&+$37(5 ‡ ‡ ‡ ‡ ‡

‡ ‡ ‡

S(T  VKRXOGQRWKDYHFRPPDVLQWKHGHQRPLQDWRURIWKHIUDFWLRQ SOLQHVKRXOGUHDG³DVLQ([DPSOH´ SVHFRQGOLQHRIWKHVHFWLRQ³(UJRGLFLW\´VKRXOGUHIHUWR6HF S([DPSOHVKRXOGUHDG³LQWKHLQWHUYDO ( 0, T ) ´ S(T  VKRXOGUHDG ∞

∫–∞ x α fi ( x ) dx < K < ∞ IRUDOO i

S(T  VKRXOGUHDG E { xi 3 } ≤ cσ i2 DOO i S([DPSOHLQWZRSODFHVWKHUHIHUHQFHWR  VKRXOGEHWR   S3UREOHPVKRXOGEHJLQ³DUHQRUPDOXQFRUUHODWHGZLWK]HURPHDQ´

&+$37(5 ‡

‡

S([DPSOHUHVXOWVDUHYDOLGIRUSRVLWLYHWLPHVRQO\7KHULJKWKDQGWHUPRI WKHHTXDWLRQIROORZLQJ(T  LVQRWFRUUHFWLI t 1 = t 2 = t ZKHUHLWSURGXFHV 2λt  &RUUHFWO\ C ( t, t ) = λt  S HTXDWLRQVIROORZLQJ(T  DUHRQO\WUXHLI t 2 ≤ t 1 ,QFDVH t 1 ≤ t 2 DOO WKH t 2 ¶VLQWKHVHHTXDWLRQVVKRXOGEHUHSODFHGE\ t 1 ¶V 2

b

∫a …

‡

S(TVKRXOGUHDG E { s – η s } =

‡ ‡ ‡

SILUVWOLQHRI³3URRI´QHDUSDJHERWWRPVKRXOGUHDG³>6HH  @´ S([DPSOHVKRXOGDVVXPHD666SURFHVV SHTXDWLRQDIWHU(T  VKRXOGKDYH g ( x ) = +c ZKHQ x > c DQG g ( x ) = – c 

Errata-3

‡

ZKHQ x < – c  S(TV  DQG  DUHRQO\WUXHIRUDUHDOV\VWHP:KHQWKHV\VWHPLV FRPSOH[WKHFRQMXJDWHV L 2* DQG h * VKRXOGDSSHDU

‡

SHTXDWLRQEHIRUH([DPSOHVKRXOGUHDG³ h ( α )h * ( β ) ´

‡

S(T  VKRXOGEHJLQ³ a n y ( n ) ( t ) + … ´

‡

SQH[WWRODVWOLQHVKRXOGUHDG³FDVHVRI  DQG  ´1RWHWKDW H ( ω ) LV XVHGKHUHZLWKRXWDQ\LQWURGXFWLRQ,WLVWKHV\VWHPIXQFWLRQZKHUH ∞ 1 ∞ H ( ω ) = ∫ h ( t )e –jωt dt h ( t ) = ------ ∫ H ( ω )e jωt dω 2π –∞ –∞

‡

S(T  XVHV ρ ( τ ) ZLWKRXWFDOOLQJLWWKHGHWHUPLQLVWLFDXWRFRUUHODWLRQRI h ( t ) DQGWKHQH[WOLQH RQS VKRXOGUHDG³ZKLWHQRLVHZLWKLQWHQVLW\ q  SWZROLQHVEHIRUH(T  VKRXOGUHDG³,WLVWKXVDVLPSOHORZSDVVILOWHU´ S(T  VKRXOGUHDG ( 2n ) ( τ ) S yy ( ω ) = jω 2n S xx ( ω ) R yy ( τ ) = ( – 1 ) n R xx

‡ ‡

‡

1 S([DPSOHOLQHVKRXOGUHDG³HTXDOV ----- ´ πt

‡

S(T  VKRXOGUHDG³ E { x ( t + τ 1 ) – x ( t ) 2 } = 0 ´

‡ ‡

S(T  WKHVXPVKRXOGEHJLQDW m = 1  S([DPSOHQRWHWKDW a LVSUHVXPHGUHDODQGOLQHVKRXOGUHDG q R yy [ m ] = -------------2- a m 1–a S3UREOHPVKRXOGUHDG

‡

E{ w2( t) } = ‡

t

∫0 ( t – τ ) 2 q ( τ ) dτ

S3UREOHPVKRXOGUHDG 1 S y ( ω ) = 2πRx2 ( 0 )δ ( ω ) + --- S x ( ω ) * S x ( ω ) π

‡

S3UREOHPVKRXOGUHDG³ R [ 0 ]R [ 2 ] ≥ 2R 2 [ 1 ] – R 2 [ 0 ] ´

‡

S3UREOHPVKRXOGUHDG³ x [ n ] = Ae FDQQRWPDNHEROGJUHHNV\PEROV

jnω

´ ω LVDUDQGRPYDULDEOHKHUH,

&+$37(5 ‡ ‡ ‡ ‡

SOLQHDIWHU(T  VKRXOGUHDG³ k = 1.37 × 10 – 23 -RXOHVGHJUHH.´ SILUVWZRUGVKRXOGUHDG³LQHUWLDKDVWKH´ SIRXUOLQHVDIWHU(T  VKRXOGUHDG³DQG E { n 2 ( t ) } = λ 2 t 2 + λt ´ S(T   VHFRQGSDUW VKRXOGUHDG³ Rxxˆ ( – τ ) = – R xxˆ ( τ ) ´

‡

SOLQHWKUHHVKRXOGUHDG³WKDW S zz ( ω ) LVVSHFLILHG´

Errata-4

‡ ‡

SWZROLQHVEHIRUH(T  VKRXOGUHDG³66&6SURFHVVZLWKSHULRG T DQG S(T  VKRXOGUHDG 1 S x ( ω ) = --- 6 c ( e jωT ) H ( ω ) 2 ´ T ∞

‡

S(T  LVLPSURSHU7RIL[WKLVGHILQH w ( t ) =

∑ cn U ( t – nT ) IRU t ≥ 0  n=0

‡ ‡

ZLWKDQDSSURSULDWHDOWHUQDWHGHILQLWLRQIRU t < 0 1RZ w ( 0 - ) = 0  SODVWHTXDWLRQVKRXOGKDYHWKHWHUP R c [ n – r ] QRW R c ( n – r )  S(T  VKRXOGUHDG ∞



… =



Rc [ m ]

m = –∞

‡



δ [ t + τ – ( m + r )T ]δ ( t – rT )

r = –∞

SHTXDWLRQDIWHU(T  VKRXOGUHDG ∞

T

∑ ∫0 δ [ t + τ – ( m + r )T ]δ ( t – rT ) dt

= δ ( τ – mT )

r = –∞

‡

S(T  VKRXOGUHDG 1 S z ( ω ) = --T





m = –∞

1 R c [ m ]e – jmωT = --- S c ( ωT ) T

‡ ‡ ‡

S(T  VKRXOGLQGLFDWHHTXDOLW\LQPHDQVTXDUH S(T  SUHVXPHVWKHSURFHVVLVUHDO SILYHOLQHVEHIRUH(T  VKRXOGUHDG³ T 0 ≤ π ⁄ σ ´

‡ ‡

SOLQHEHIRUH(T $ VKRXOGUHDG³IRUDQ\ c > 0 ´ SOLQHLVLQFRUUHFW6HHWKHVROXWLRQWR3UREOHP

‡

S3UREOHPHTXDWLRQVKRXOGUHDG³ S x ( ω ) = 2π -----2T

‡

S3UREOHPQHHGVWKHDVVXPSWLRQWKDW x ( t ) LVLQGHSHQGHQWRIDOO t i DQG 1 VKRXOGUHDG³ X c ( ω ) = --λ

‡



T

∫0 … ´

x ( t i )e – jωti ´,WLVQRWQHHGHGWKDW E { x ( t ) } = 0 

ti < c

S3UREOHPVKRXOGUHDG³ y ( t ) = B cos ( ω 0 t + ϕ ) + y n ( t ) ´

&+$37(5 ‡ ‡ ‡

SWZROLQHVDIWHU(T  VKRXOGUHDG³V\VWHPRI)LJLV´ SOLQHDIWHU(T  VKRXOGUHDG³ α i = γ i / ( 1 ⁄ z i ) ´ ,FDQQRWGXSOLFDWHWKH 7H[WIRQWVEXWWKHUHLVDSUREOHPRIFRQVLVWHQF\KHUH SOLQHEHIRUH(T  VKRXOGUHIHUWR([DPSOH

Errata-5

‡ ‡ ‡

SOLQHEHIRUH(T  VKRXOGUHDG³ B ( – ω ) = – B ( ω ) ´ SOLQHDIWHU(T D VKRXOGUHIHUWR(T  QRW   S3UREOHPVKRXOGUHDG –1 ⁄ 2 λn –1 ⁄ 2 n’ a + λ β n =  a + ----- β ’ = -----n   2 2

‡

S3UREOHPVKRXOGUHDG³ E { x n x k∗ } = … ´

&+$37(5 ‡

T

S(T  VKRXOGUHDG³ ∫ C ( τ ) dτ < ∞ ´ 0

Errata-6

Gary Matchett

Hints — 9/5/02

352%/(0+,176$1'&200(176  ,QWURGXFWLRQ 6HYHUDOV\PEROVDUHXVHGWRFRPPHQWRQWKHSUREOHPVRIWHQVXEMHFWLYHO\7KH\DUH ‡

,DQLPSRUWDQWSUREOHPOLNHO\RQHZKRVHUHVXOWVZLOOEHQHHGHGODWHU

‡

0DPRGHUDWHO\GLIILFXOWSUREOHP

‡

'DGLIILFXOWSUREOHP

‡

)DIODZHGSUREOHPJHQHUDOO\FRQWDLQLQJDW\SRJUDSKLFDOHUURUDPLVVLQJ DVVXPSWLRQRUDQLQGHPRQVWUDEOHUHVXOW

‡

%DSUREOHPSUHVXPLQJEDFNJURXQGLQIRUPDWLRQQRWSUHVHQWHGLQWKH7H[WXSWR WKHSRLQWRIWKHSUREOHPRUQRWSUHVHQWHGDWDOO

1RWDWLRQDO3HFXOLDULWLHV :KHUHWKH7H[WXVHV { ∅ } IRUWKHQXOORUHPSW\VHWZHXVH ∅  7KHV\PEROXVHGKHUHIRUWKH*DXVVLDQGLVWULEXWLRQIXQFWLRQGHILQHGLQ(TRI WKH7H[WLV G ( x )  7KH)RXUWK(GLWLRQRIWKH7H[WGRHVQRWXVHWKHV\PERO J ( x )  H[FHSWLQ3UREOHP  XVHGLQWKH7KLUG(GLWLRQDQGRFFDVLRQDOO\KHUHIRUWKH*DXVVLDQGHQVLW\IXQFWLRQ 7KH)RXUWK(GLWLRQWKLQNVWKDWQRV\PEROLVQHFHVVDU\IRUWKLVIXQFWLRQVLQFH 1 –x2 ⁄ 2  J ( x ) = ---------- e 2π 7KHQRWDWLRQ lnx PHDQVWKHQDWXUDOORJDULWKPRI x 7KH7H[WVRPHWLPHVXVHV log x 

6SHFLDO1RWHV 

7KH7H[WFKDQJHGQRWDWLRQLQJRLQJIURPWKH7KLUG(GLWLRQWRWKH)RXUWK(GLWLRQ ,QWKH7KLUGHGLWLRQDQRUPDOUDQGRPYDULDEOHZLWKPHDQ η DQGVWDQGDUGGHYLD WLRQ σ ZDVGHQRWHGDV N ( η ; σ ) ZKLFKZDVVORSSLO\ZULWWHQDV N ( η, σ ) IURPWLPH 2

WRWLPH,QWKH)RXUWK(GLWLRQWKHRIILFLDOQRWDWLRQLV N ( η, σ ) 8QIRUWXQDWHO\QRW DOOLQVWDQFHVRIWKHROGHUQRWDWLRQZHUHFKDQJHG7KLVLVSDUWLFXODUO\WURXEOLQJ ZKHQDFWXDOQXPEHUVDUHXVHGIRUWKHSDUDPHWHUVDVWKH\DUHLQVRPHSUREOHPV 'RHVWKHQRWDWLRQ N ( 100, 25 ) PHDQDQRUPDOUDQGRPYDULDEOHZLWKDVWDQGDUG

H-1

Gary Matchett

Hints — 9/5/02

GHYLDWLRQRIRURI"2QHFDQQRWEHVXUH7KHVHKLQWVZLOOSURYLGHP\JXHVV IURPFRPSDULVRQRIWKHWZRHGLWLRQVDQGIURPDUHDGLQJRIWKHRIILFLDO6ROXWLRQV 0DQXDO  (TSGHILQHVWKHGLVWULEXWLRQRIDQH[SRQHQWLDOUDQGRPYDULDEOHZLWK SDUDPHWHU λ WRKDYHWKHSGI f x ( x ) = λe

– λx

U ( x ) 7KHSDUDPHWHUKDVXQLWVWKDW

DUHWKHLQYHUVHRIWKHXQLWVRIWKHUDQGRPYDULDEOHLWVHOI RIWHQ x KDVXQLWVRIWLPH DQG λ KDVXQLWVRI WLPH ,WPDNHVSHUKDSVPRUHVHQVHWRXVHWKHLQYHUVHRI λ  DVWKHSDUDPHWHUVRWKDWWKHSDUDPHWHUDQGWKHYDULDEOHVKDUHWKHVDPHXQLWVDQG WKHSGILV f x ( x ) = ( 1 ⁄ λ )e

–x ⁄ λ

U ( x ) EXWWKDWZDVQRWGRQHH[FHSWLQVRPHRIWKH

SUREOHPV:KHQDSUREOHPVWDWHVWKDW x LVDQH[SRQHQWLDOUDQGRPYDULDEOHZLWK SDUDPHWHU λ RQHFDQQRWEHVXUHZKLFKRIWKHWZRSRVVLELOLWLHVLVPHDQWH[FHSWE\ LPSOLFDWLRQ)RUH[DPSOHLILWDVNV:KDWLVWKHSUREDELOLW\WKDW x H[FHHGV 2λ " VHH3UREOHP WKHQLWPXVWEHWKDW x DQG λ KDYHWKHVDPHXQLWVVRWKH LQYHUVHSDUDPHWHULVLQGLFDWHG  (TVDQGGHILQHDQGHYDOXDWHWKHEHWDIXQFWLRQZKLFKLVGHQRWHGDV B ( α, β ) ,QVRPHSODFHV HJ(T WKLVIXQFWLRQLVGHQRWHGDV β ( m, n ) )RU IXUWKHUFRQIXVLRQWKHELQRPLDOGLVWULEXWLRQLVVRPHWLPHVGHQRWHGDV B ( n, p )  VHH 7KHRUHPRU([DPSOH 

5HIHUHQFHV 7KHSUREOHPVDUHPRUHHDVLO\GRQHZLWKWKUHHWRROVDVFLHQWLILFFDOFXODWRUDVHWRI JRRGIXQFWLRQWDEOHVDQGDWDEOHRILQWHJUDOVDQGVXPV,XVHDQGUHFRPPHQG $6²0LOWRQ$EUDPRZLW]DQG,UHQH$6WHJXQ(GLWRUV+DQGERRNRI0DWKHPDWLFDO )XQFWLRQV1DWLRQDO%XUHDXRI6WDQGDUGV$SSOLHG0DWKHPDWLFV6HULHV-XQH  QRZDYDLODEOHDVD'RYHUSDSHUEDFN  *5²,6*UDGVKWH\QDQG,05\]KLN7DEOHVRI,QWHJUDOV6HULHVDQG3URGXFWV)RXUWK (GLWLRQ$FDGHPLF3UHVV 6L[WK(GLWLRQQRZDYDLODEOH  $H[FHOOHQWERRNIRUJHQHUDOUHIHUHQFHKHUHLV ),²:LOOLDP)HOOHU$Q,QWURGXFWLRQWR3UREDELOLW\7KHRU\DQG,WV$SSOLFDWLRQV9RO XPH,6HFRQG(GLWLRQ:LOH\ 6RQV 7KLUG(GLWLRQLVFXUUHQW 

H-2

Gary Matchett

Hints — 9/5/02

 &KDSWHU WKHUHDUHQRSUREOHPVLQ&KDSWHU %HJLQZLWK'H0RUJDQ¶VODZV(T 1RKLQW 7U\WRILQGVRPHVHW C VXFKWKDW B = A + C DQG AC = ∅ 7KHQDSSO\(T  D 8VH(T E 8VH(TVDQG 8VH(TUHSHDWHGO\ 0%8VHWKHIDFWWKDWDVHWLVFRXQWDEOHLILWLVHPSW\RULVWKHUDQJHRIVRPH VHTXHQFH6KRZWKDWDQ\VXEVHWRIDFRXQWDEOHVHWLVFRXQWDEOH7KHQXVHWKHFRXQW DEOHXQLRQSURSHUW\RI%RUHOILHOGVWRVKRZWKDWHYHU\VXEVHWRI S LVDQHYHQW /LVWDOOVXEVHWVRI S %HJLQQLQJZLWKWKHOLVW ∅  S  { 1 } DQG { 2, 3 } IRUPFRPSOL PHQWVDQGXQLRQVDPRQJWKHOLVWLWHPVWRILQGQHZVXEVHWVWKDWPXVWEHLQWKH%RUHO ILHOGDQGDGGWKHPWRWKHOLVW7KLVSURFHVVVWRSVZKHQQRWKLQJQHZFDQEHIRXQG n

1RWHWKDWDQ\ILQLWH%RUHOILHOGPXVWKDYH 2 HOHPHQWVIRUVRPHLQWHJHU n  8VHWKHGHILQLWLRQRIFRQGLWLRQDOSUREDELOLW\(T 1RKLQW ,1RKLQW 06HHWKHVROXWLRQIRUKHOS 3UHVXPHFODVVLFDOSUREDELOLW\WKHRU\ZLWKWKHSUREDELOLW\RIDQLQWHUYDORISRLQWV EHLQJSURSRUWLRQDOWRLWVOHQJWK '%)RUDQHDVLHUSUREOHPDVVXPHWKDW P { t ≤ t 1 } = F ( t 1 ) LVDFRQWLQXRXVGLIIHU HQWLDEOHIXQFWLRQRI t 1 DQGDVVXPH F ( 0 ) = 0  ,1RKLQW ,0(QULFKWKLVSUREOHPE\OHWWLQJ Bi EHDQ\RIWKHVHWV A i  A i  S RU ∅  0%3UREOHPVWKURXJKDQGDUHSUREOHPVLQFRPELQDWRULFVWKDWWKH 7H[WKDVQRW\HWFRQVLGHUHG,WZRXOGEHJRRGWRDWOHDVWVROYH3UREOHPILUVWWR EHJLQWKHWRSLF/HWDQRXWFRPHRIWKHH[SHULPHQWKHUHEHD k HOHPHQWVHTXHQFHRI GLVWLQFWQXPEHUVVHOHFWHGIURPWKHVHWWR n )LQGRXWKRZPDQ\RXWFRPHVWKHUH DUH D 1H[WILQGRXWKRZPDQ\RXWFRPHVWKHUHDUHWKDWFRQWDLQQRQXPEHUODUJHU WKDQ m &DOOWKLVUHVXOW M m 7KHQQRWLFHWKDWWKHQXPEHURIRXWFRPHVWKDWKDYH m DV

H-3

Gary Matchett

Hints — 9/5/02

WKHODUJHVWQXPEHULV N m = M m – M m – 1  E 7KHQXPEHURIRXWFRPHVZLWKDODUJHVW QXPEHUOHVVWKDQRUHTXDOWR m LVWKHQXPEHURIRXWFRPHVZLWKQRQXPEHUODUJHU WKDQ m  %:RUN3UREOHPILUVW7KHGLIIHUHQFHKHUHLVWKDWWKHRXWFRPHVDUH k HOHPHQW VHTXHQFHVRIQXPEHUVWKDWDUHQRWQHFHVVDULO\GLVWLQFW %:RUN3UREOHPILUVW %1XPEHUWKHEODFNEDOOVIURPWR n DQGQXPEHUWKHZKLWHEDOOVIURP n + 1 WR n + m 1RZWKHSUREOHPLVZKDWLVWKHSUREDELOLW\WKDWLI k EDOOVDUHGUDZQWKH KLJKHVWQXPEHUHGZLOOEH n + 1 RUPRUHDQG3UREOHPZLOOEHXVHIXO &RQVLGHUWKHRXWFRPHRIWKHH[SHULPHQWWREHWKHSRLQWZKHUHWKHFHQWHURIWKH SHQQ\ODQGVDQGFRQVLGHUWKDWHYHQWVDUHVHWVRISRLQWVZLWKDUHDVDQGWKDWSURED ELOLW\LVSURSRUWLRQDOWRDUHD % D 7KLVFDQEHGRQHE\DSSHDOLQJWR3UREOHPDJDLQ E %HVXUH\RXXQGHU VWDQG3UREOHP )LQGRXWKRZPDQ\VXEVHWVZLWKWZRRUPRUHHOHPHQWVWKHUHDUHRIDVHWRI n HOH PHQWV5HODWHHDFKRIWKHVHVXEVHWVWRDQHTXDWLRQQHHGHGIRULQGHSHQGHQFH 8VH%D\HV¶WKHRUHP(T 8VHWRWDOSUREDELOLW\(T 'UDZDGLDJUDPVRPHWKLQJOLNH)LJF1RWHWKDWWKHDUHDRIWKHGLDJRQDOVWULS HTXDOVWKHDUHDRIWKHVTXDUHOHVVWKHDUHDRIWKHFRUQHUWULDQJOHV ,0)LUVWFRXQWWKHGLIIHUHQWVHTXHQFHVRI k GLVWLQFWHOHPHQWVWDNHQIURPDVHWRI n HOHPHQWV7KHQFRQVLGHUKRZPDQ\GLIIHUHQWVXEVHWVRI k GLVWLQFWHOHPHQWVWDNHQ IURPDVHWRI n HOHPHQWVWKHUHDUH 8VH%D\HV¶WKHRUHP(T

 &KDSWHU  A RFFXUVWZRRUPRUHWLPHVLILWGRHVQRWRFFXU]HURRURQHWLPH $VLPSOHDSSOLFDWLRQRI3UREOHPE )LQGWKHSUREDELOLW\WKDWVHYHQZLOOQRWVKRZDWDOO n

n

:ULWHGRZQWKHELQRPLDOWKHRUHPH[SDQVLRQVRI ( q + p ) DQG ( q – p ) WKHQDGG

H-4

Gary Matchett

Hints — 9/5/02

WKHPWRJHWKHU 'HGXFHWKDWWKHQXPEHURIZD\VWRWDNH n LWHPVIURP N LWHPVVRWKDWDVXEVHWRI k  RIWKH n LWHPVFRPHIURPDVXEVHWRI K RIWKH N LWHPVLVWKHSURGXFWRIWKHQXPEHU RIZD\VWRWDNH k LWHPVIURP K LWHPVZLWKWKHQXPEHURIZD\VWRWDNH n – k LWHPV IURP N – K LWHPV $SSO\3UREOHP )LUVWILQGRXWKRZPDQ\ ZKDWUDQJHRI ZLQVDUHQHHGHGWRERXQGWKHDPRXQWZRQ RUORVWWRWKHDPRXQWVVSHFLILHGWKHQFRPSXWHWKHSUREDELOLW\RIKDYLQJWKDWPDQ\ ZLQV7KHXQQXPEHUHGHTXDWLRQRQSMXVWDIWHUWKH³3URRI´KHDGLQJZLOOEH XVHIXOLQVSHHGLQJXSWKHFRPSXWDWLRQVLI\RXDUHGRLQJWKHPRQDKDQGFDOFXODWRU 'HGXFHWKDWKDYLQJ r VXFFHVVHVLQDOO n WULDOVLQFOXGLQJDVXFFHVVRQWKH i WKWULDOLV WKHVDPHWKLQJDVKDYLQJ r – 1 VXFFHVVHVLQWKH n – 1 WULDOVWKDWH[FOXGHWKH i WKWULDO DORQJZLWKDVXFFHVVRQWKH i WKWULDO )7KHSUREOHPLVQRWZHOOVWDWHG'RHVLWDVNIRUWKHSUREDELOLW\WKDWDQ\RQH RU PRUH RIWKHIRXUSOD\HUVZLOOKDYHDOOFDUGVRIDQ\RQHVXLW"5HVWDWHWKHSUREOHP VRWKDWLWDVNVZKDWLVWKHSUREDELOLW\WKDWDVSHFLILHGRQHRIWKHSOD\HUVZLOOKDYHD SHUIHFWKDQG '%:KDWGRHVWKH³DYHUDJHGXUDWLRQ´RIVXFKDJDPHPHDQ"$V\HWLWKDVQR PHDQLQJ:KDWLVPHDQWLVWKHH[SHFWHGYDOXHRIWKHWRWDOQXPEHURIJDPHV7KH H[SHFWHGYDOXHLVDFRQFHSWLQWURGXFHGLQ6HFWLRQ
H-5

Gary Matchett

Hints — 9/5/02

EHWVDQDPRXQW α ZKLOH B EHWVDQDPRXQW β VRWKDW A ZLQV β RUKHORVHV α :KDW UHPDLQVXQFOHDULVWKHFRQFHSWRIUXLQLQWKLVJDPH,V A UXLQHGZKHQKHKDVQR PRQH\OHIW"2ULV A UXLQHGZKHQKHKDVOHVVWKDQKLVVWDNH α OHIWVRWKDWKHPD\QR ORQJHUSOD\"7KHODWWHULVDPRUHUHDVRQDEOHGHILQLWLRQ(YHQZLWKWKLVFODULILFDWLRQ WKHSUREOHPLVWRRGLIILFXOWWRZRUNLQJHQHUDO7U\DVSHFLILFH[DPSOHOHW α = 2  β = 3 DQG a + b = 8 7KHQFKDQJHWR a + b = 9 DQGVHHKRZWKHSUREOHPFKDQJHV FKDUDFWHU %$JDLQWKHSUHPDWXUHXVHRIWKHWHUP³H[SHFWHG´DWHUPQRWSURSHUO\XVHGXQWLO 6HFWLRQ+HUHWKHH[SHFWHGORVVLVWKHVXPRIWKHYDULRXVSRVVLEOHORVVHVHDFK PXOWLSOLHGE\LWVSUREDELOLW\

 &KDSWHU ,)7KLVSUREOHPFDQQRWEHGRQHXQOHVVLWLVDVVXPHGWKDW F ( x ) LVLQYHUWLEOH6HH WKHVROXWLRQIRUDOHQJWK\GLVFXVVLRQ )&RPPHQWVKHUHDUHVLPLODUWRWKRVHIRU3UREOHP ) D $W\SRWKHUHIHUHQFHVKRXOGEHWR7DEOH7KLVSUREOHPSRLQWVXSWKHQHHG IRUEHWWHUWDEOHVWKDQ7DEOHRIWKH7H[W7KHUHIHUHQFH$6 7DEOHVDQG  LVDJRRGVRXUFH8VH(T E $QRWKHUW\SR6HH6SHFLDO1RWH 7KHVDPHUHPDUNVDSSO\KHUHDVIRU3UREOHP 1RKLQW 8VH(T 6HHSIRUWKH(UODQJUDQGRPYDULDEOH )ROORZ([DPSOH d 1RWHWKDW ------ U ( x – c ) = δ ( x – c )  dx )6HH6SHFLDO1RWH7KHSUREOHPVKRXOGUHDG x ∼ N ( 0, 4 )  E 8VH(T ,6KRZ { t x ( t ) ≤ x } = { t t ≤ G ( x ) } IRU G LQFUHDVLQJ )6HH6SHFLDO1RWH7KHSUREOHPVKRXOGUHDG x ∼ N ( 1000, 400 )  D 8VH(T E 8VH(T (TXDWLRQVZKLFKZHUHLQWKH7KLUG(GLWLRQRIWKH7H[WEXWKDYHEHHQUHPRYHGDUH IRUWKHGHQVLW\DQGGLVWULEXWLRQIXQFWLRQRIWKHELQRPLDOUDQGRPYDULDEOH7KH\DUH

H-6

Gary Matchett

Hints — 9/5/02

n

f(x) =

n

∑  k p q

k n–k

δ(x – k )

k=0 m

F(x) =

∑ k=0

 n p k q n – k ZKHUH m ≤ x < m + 1 GHILQHV m JLYHQ x   k

)7KHUHLVDW\SRKHUH7KHUHIHUHQFHLVWRROG(TZKLFKQRORQJHUH[LVWV,W x – np VDLGIRUDELQRPLDOUDQGRPYDULDEOHWKDW F ( x ) ≈ G  --------------- 7KLVPD\EHGHGXFHG  npq  IURP QHZ (T8VHWKHHTXDWLRQIRU f ( x ) LQWKHKLQWIRUDERYHIRUWKHH[DFW UHVXOW 1RKLQW ,8VHVHWWKHRU\UHDVRQLQJ %7KLVSUREOHPLVVHULRXVO\RXWRISODFH
'R3UREOHPILUVW8VH(T/HDYH\RXUDQVZHULQLQWHJUDOIRUP)RUD QXPHULFDOHYDOXDWLRQVHHWKHVROXWLRQ 8VH(T 8VH(T 1 8VH(T)RUODUJH x DSSUR[LPDWH G ( x ) ≈ 1 – --- J ( x ) IURP3UREOHP x )0)LUVWIL[WKHW\SR7KHV\VWHPVKRXOGKDYHFRPSRQHQWVQRW1H[W QRWHWKDW(TGRHVQRWDSSO\8VH(TDQG6WLUOLQJ¶VIRUPXOD(TIRU QXPHULFDOUHVXOWV

H-7

Gary Matchett

Hints — 9/5/02

'HGXFHWKDWDKHDGPXVWKDYHFRPHXSDWWKH n WKIOLSVRWKDW k – 1 KHDGVPXVW KDYHFRPHXSLQWKHILUVW n – 1 IOLSV )1RWHWKHW\SRWKHVHFRQGLQHTXDOLW\RIWKHKLQWVKRXOGFRQWDLQD³OHVVWKDQ´VLJQ UDWKHUWKDQD³JUHDWHUWKDQ´VLJQ1RKLQW )LQGWKHSUREDELOLW\WKDW A GRHVQRWKDSSHQLQ n WULDOV 8VH(T7RDGGLQVLJKWFRQVLGHUDVOLJKWO\GLIIHUHQWSUREOHPDVZHOO&RQ VLGHUWKDWDFFLGHQWVDUHD3RLVVRQSRLQWSURFHVVZLWKDQDYHUDJHUDWHRIDFFL GHQWVSHUPRQWKDQGDVNWKHQZKDWLVWKHH[DFWSUREDELOLW\WKDWDGULYHUZLOOKDYH DFFLGHQWVLQPRQWKV 8VH(T 1RKLQW ,'HGXFHWKDWLIHOHYHQGRHVQRWVKRZRQWKHILUVWUROOWKHQWKHSUREDELOLW\WKDW Y  ZLOOZLQLVWKHVDPHDVWKHRULJLQDO EHIRUHWKHILUVWUROO SUREDELOLW\WKDW X ZLOOZLQ , E 0WKHVROXWLRQ )0,WLVQHFHVVDU\WRDVVXPH k 1 « k 3 DQG k 2 « k 3  8VH(TDQG

 &KDSWHU )6HH6SHFLDO1RWH&RQVLGHUWKLVDW\SR7KHSUREOHPVKRXOGVD\WKDW x ∼ N ( 5, 4 )  8VH(T 8VH(T([DPSOHVDQGE 6HH([DPSOH 8VH(TVDQG )ROORZ([DPSOHWRILQG F y ( y ) 'LIIHUHQWLDWHWRILQG f y ( y ) EHLQJFDUHIXOWRFRQ VLGHUGLVFRQWLQXLWLHVLQWKHGLVWULEXWLRQIXQFWLRQ 8VHWKH³IXQGDPHQWDOWKHRUHP´(T %HJLQZLWK(TWKHQXVH(TVDQG 8VH(TVDQG

H-8

Gary Matchett

Hints — 9/5/02

8VH(TEXWUHPHPEHUWKDW F x ( x ) PD\QRWEHFRQWLQXRXV,QSDUW D WKHUH FRXOGEHDGLVFRQWLQXLW\DW x = 0 ,QSDUW E WKHYDOXH y = 0 FRUUHVSRQGVWRDQ HQWLUHUDQJHRI x YDOXHV  D 7KHYDOXH y = 0 FRUUHVSRQGVWRDQHQWLUHUDQJHRI x YDOXHV )$VVXPHWKDWWKHV\PPHWU\SRLQWRIWKH&DXFK\GHQVLW\²WKHYDOXH µ LQ(T ²LV]HUR7KHV\PERO µ LVRIWHQXVHGIRUWKHPHDQYDOXHRIDUDQGRPYDULDEOHEXW D&DXFK\UDQGRPYDULDEOHKDVQRPHDQYDOXH 1RKLQW 3UHVXPHDIXQFWLRQ y = y ( x ) ZKHUH y = y ( x ) KDVRQHURRWLQWKHUDQJH x ∈ ( – 1, 1 )  IRUDOO y ≥ 0 )LQGDGLIIHUHQWLDOHTXDWLRQIRU y ( x ) DQGVROYHLW 1RKLQW  D 6HHWKHKLQWIRU3UREOHP E 6RPH LQGLYLGXDO YDOXHVRI y FRUUHVSRQGWR PRUHWKDQRQHYDOXHRI x  7KHEHWDGLVWULEXWLRQLVGHILQHGRQS1RWHWKHW\SRLQ(TWKHV\PERO b  VKRXOGEH )LUVWFRUUHFWWKHW\SR,WVKRXOGEHWKDW y =

x 8VH(TVDQG

8VH(TVDQG 8VH(TVDQG '7U\DQHDVLHUSUREOHP$VVXPH f x ( t ) LVFRQWLQXRXVDW t = 0 8VH,OOXVWUDWLRQ RQSDJH 8VHWKHGHYHORSPHQWRQSRIWKH7H[W 1RKLQW 8VH(T 8VH(T ,8VH(TIRUWKHELQRPLDOUDQGRPYDULDEOH D 8VH(TIRUDGLUHFW DSSURDFKZKLFKLVVRPHZKDWWULFN\0DNHXVHRIWKHELQRPLDOWKHRUHP

H-9

Gary Matchett

n

(p + q) =

Hints — 9/5/02

n

n

∑  k p q

k n–k

JRRGIRUDOOLQWHJHU n DQGDOO p DQG q 'LIIHUHQWLDWHWKH

k=0

WKHRUHPHTXDWLRQZLWKUHVSHFWWRWKHYDULDEOH p $QHDVLHUDSSURDFKLVWRWDNHDGYDQ WDJHRI([DPSOH(TDQGWKHPRPHQWWKHRUHP(T  D 8VHWKH&KHE\VKHYLQHTXDOLW\(T E 8VHWKHPRPHQWWKHRUHP(T  ,8VH(TVDQG 8VHWKH0DUNRYLQHTXDOLW\(T 1RKLQW 1RKLQW 1RKLQW (a – x) + (m – a) 0 D 8VH x – m =   (x – a) – (m – a)

x≤m  x≥m

m

E 'HGXFHWKDW ∫ ( x – a )f ( x ) dx ≥ 0 IRUDQ\ a  a

2 2 1  ∞ – ( x – η )2 ⁄ ( 2σ2 ) 0 – ( x – η ) ⁄ ( 2σ )  0:ULWH E { x } = --------------  ∫ xe – ∫ xe  7KHQVXEVWLWXWH σ 2π  0 –∞ 

z = ( x – η ) ⁄ σ LQERWKLQWHJUDOV([SOLFLWO\LQWHJUDWHZKDW\RXFDQDQGUHODWHWKHUHVW WR G ( η ⁄ σ )  08VHWKHEDVLFLQHTXDOLW\ ln z ≤ z – 1  1RKLQW 6HHWKH/\DSXQRYLQHTXDOLW\S 0 D (LWKHUDVVXPHWKDW µ = 0 LQ(TGHILQLQJWKH&DXFK\GHQVLW\RUEHW WHUGHGXFHDVOLJKWO\GLIIHUHQWUHVXOWWKDQWKHSUREOHPDVNV8VH&DXFK\¶VUHVLGXH WKHRUHPIRUFRQWRXULQWHJUDWLRQWRILQGWKHYDOXHRIWKHLQWHJUDO2UMXVWXVHDJRRG WDEOHRILQWHJUDOVVXFKDVUHIHUHQFH*5 7KLVLVDZRUNKRUVHSUREOHP D )1RWHWKHW\SR7KHFKDUDFWHULVWLFIXQFWLRQ VKRXOGUHDG Φ ( ω ) = ( 1 – jβω )

–α

 6HH7DEOH  F 6HH3UREOHP G )7KH

H-10

Gary Matchett

Hints — 9/5/02

VHFWLRQRQWKHQHJDWLYHELQRPLDOUDQGRPYDULDEOHLVFRQIXVLQJ7ZRGLIIHUHQWGLVWUL EXWLRQVVKDUHWKLVQDPH2QHLVGHVFULEHGE\(TRUDQGWKHRWKHULV GHVFULEHGE\(T7KLVGXDOLW\LVUHLQIRUFHGE\7DEOH&RPSDULQJWKH7DEOH ZLWKWKHDQVZHUZDQWHGLQWKLVSUREOHPOHDGVWRWKHFRQFOXVLRQWKDW(TVKRXOG EHFKRVHQKHUH:KLOHWKHSUREOHPGRHVQRWUHTXHVWLWLWLVLOOXVWUDWLYHWRILQG E { x }  WRVHHKRZVXPVPD\EHPDQLSXODWHGLQWKHVDPHZD\VDVLQWHJUDOV 8VH(TVDQG 1RWHWKDW ( 1 – y )

–n





=

k=0

 – n ( – y ) k =  k



∑  k=0

n + k – 1 k y 6HHWKHVROXWLRQIRUPRUH k 

RQELQRPLDOFRHIILFLHQWV 0,WLVFOHDUIURPWKHSUREOHPWKDWZHDUHGLVFXVVLQJWKHQHJDWLYHELQRPLDOUDQ GRPYDULDEOHRI(T7HFKQLTXHVGHYHORSHGIRU3UREOHPZLOOEHXVHIXOKHUH 1RWHWKDW e

s( x – η)



=

∑ k=0

k

k

s----------------------( x – η)-  k!

6SOLWWKHLQWHJUDOLQWKHKLQWLQWKH7H[WLQWRUHDODQGLPDJLQDU\SDUWV ([WHQGWKHGHYHORSPHQWIROORZLQJ(TWRKLJKHUGHULYDWLYHV 1RKLQW 1RKLQW ,0&RQVLGHUIRUVPDOO ε  E { g ( x – η – ε ) } E\H[SDQGLQJWKHIXQFWLRQ f ( η + x + ε )  LQD7D\ORUVHULHVLQ ε DERXWWKHSRLQW η + x 8VHWKHREYLRXVV\PPHWU\DQGPD[L PXPDQGOLPLWLQJSURSHUWLHVRI g ( x ) DQG f ( η + x ) WKDWDUHGHGXFHGIURPWKHJUDSKV  D '5HJDUGWKHGHQVLW\RI x DVDIXQFWLRQRIERWK x DQG v 6KRZWKDW 2

∂ f ( x, v ) ∂f ( x, v ) --------------------- = 2 ------------------ ,QWHJUDWLRQE\SDUWVZLOOWKHQSURYHWKHWKHRUHP E 8VHSDUW 2 ∂v ∂x n

D ZLWK g ( x ) = x  ,8VHWKHIXQGDPHQWDOWKHRUHPRI)RXULHUVHULHV )7KHGHVFULSWLRQRIWKHH[SHULPHQWLVFRQIXVLQJ:KDWLVWKHOHQJWKRIWKHUXQ" 7KHSUREOHPDVVXPHVWKDWWKHILUVWWRVVLQJLVQRWLQFOXGHGLQWKHUXQVRWKDWWKHUXQ PD\HQGRQWKHWRVVLQJIROORZLQJWKHILUVWWRVVLQJLQZKLFKFDVH x = 1 QRW1RWH DOVRWKDWWKHSPIUHIHUVWRWKHPRPHQWIXQFWLRQ"

H-11

Gary Matchett

Hints — 9/5/02

+RZLVLWSRVVLEOHWKDWWZRLWHPVDUHLGHQWLFDO\HWRQHLVGHIHFWLYHDQGRQHLVQRW" $Q\GLIIHUHQFHPDNHVWKHPQRWLGHQWLFDO3HUKDSVWKH\DUHPHUHO\VLPLODU)RUJHW WKLVFDYLO E )'7KHUHLVDW\SRWKHHTXDWLRQOLQHVKRXOGHQGZLWK min ( M, n ) DQG QRWZLWK min ( M, N ) 6HH7DEOHIRUWKHDQVZHUVKHUH7RFRPSXWHWKHH[SHFWHG YDOXHRI x \RXZLOOQHHG9DQGHUPRQGH¶VLGHQWLW\ZKLFKLV  n + m =  k 

k

n

m

∑  j   k – j

j=0

7KHFRPSXWDWLRQRI Var ( x ) LVHYHQPRUHGLIILFXOWDUHIHUHQFHLVSURYLGHG M! ( N – k )! M k k F 1RWLFHWKDWDV M, N → ∞ ZKLOH M ⁄ N = p LVIL[HG -------------------- ------------------- →  ----- = p   ( M – k )! N! N  D 7RJHWWKH r ¶WKZKLWHEDOORQWKH k ¶WKGUDZLPSOLHVWKDW r – 1 ZKLWHEDOOVDUH GUDZQLQWKHILUVW k – 1 GUDZVDQGDZKLWHEDOOLVGUDZQRQWKH k ¶WKGUDZ E '&RQVLGHUWKHQXPEHURIZD\VRIRUGHULQJDOOWKHEDOOV)LQGRXWKRZPDQ\RI WKHVHZD\VDUHIDYRUDEOHWRWKHGHVLUHGRXWFRPH F )LQGWKHOLPLWRIWKHUHVXOWLQSDUW E LQDPDQQHUVLPLODUWRWKDWXVHGLQ3UREOHP F

 &KDSWHU $ZRUNKRUVHSUREOHPEXWSDUWVKDYHDOUHDG\EHHQGRQHLQH[DPSOHV D 8VH(T  E 8VH(T F '7KH7H[WRPLWVWKHSULPHH[DPSOHZKHUH z = xy 
H-12

Gary Matchett

Hints — 9/5/02

:K\LVWKLVDSUREOHPDWDOO"3DUW D LV([DPSOHSDUW E LVH[DPSOHDQG SDUW F LVREYLRXVIURPWKHGLVFXVVLRQRIMRLQWQRUPDOLW\RQS 6HH3UREOHPSDUW F RUJRGLUHFWO\WR(T 8VH(T  D 8VHDJUDSKLFDODSSURDFK E 8VH(T F 8VH(T G %DFNWRD JUDSKLFDODSSURDFK 8VHDJUDSKLFDODSSURDFK  D (TFRXOGEHXVHGEXWLWLVHDVLHUWRXVHDJUDSKLFDODSSURDFK E 8VH(T  7KHJUDSKLFDODSSURDFKLVEHVW%HVXUHWRJHWWKHFRUUHFWWULDQJOHLQWKH xy SODQH ,WKDVXQLWDUHD 7KLVZRXOGEHDFKDOOHQJLQJSUREOHPH[FHSWWKDWLWLV PRVWO\ GRQHLQ([DPSOH 7KHUHWKHFODLPLVPDGHDERXWWKHPDUJLQDOGHQVLWLHVRI x + y DQG x ⁄ y WKDWLVQRW TXLWHGHPRQVWUDWHG7KHEHVWZD\WRDWWDFNSDUW D LVWRXVHWKH&RQYROXWLRQ7KHR UHPRQSDORQJZLWKWKHFKDUDFWHULVWLFIXQFWLRQIRUDJDPPDUDQGRPYDULDEOH IURP7DEOH E PD\WKHQEHDWWDFNHGZLWK([DPSOH F )URP3UREOHP 1–u  E ZHOHDUQHGWKDWLI u = x ⁄ ( x + y ) DQG w = y ⁄ x WKHQ F u ( u ) = 1 – F w  ------------   u  8VH(TSOXVDJUDSKLFDODSSURDFKWRILQGZKHUHWKHGHQVLW\LVQRQ]HURLQWKH zw SODQH 8VH(TVDQG 8VH(T 8VH(T –1

'RQRWDWWHPSWWRXVHWKHIXQFWLRQ g ( . ) LWPD\QRWH[LVW  D ,08VH(TWRZRUNWKHJHQHUDOSUREOHPRIWKHVXPRILQGHSHQGHQWQRU PDOUDQGRPYDULDEOHVZLWK]HURPHDQV E 8VH(T ,06WDUWZLWK(TDQGUHYHUVHWKHUROHVRI x DQG y  8VH(T7KHGHYHORSPHQWRIWKHWKLUGDEVROXWHPRPHQWRID]HURPHDQQRU PDOUDQGRPYDULDEOHRQSZLOOEHXVHIXOLQHYDOXDWLQJWKHLQWHJUDO  D 8VH(TVDQG E 8VH(T F 8VH(T G 8VHWKHHTXD

H-13

Gary Matchett

Hints — 9/5/02

WLRQIROORZLQJ(T H 8VH SDUWRI ([DPSOH 0)LUVWVROYHWKHJHQHUDOSUREOHPRIILQGLQJWKHGHQVLW\RI z = x – y   D ,0&RPSDUHZLWK3UREOHP E ,08VH(T7KHLQWHJUDOKHUHLV HYDOXDWHGZLWK&DXFK\¶VUHVLGXHWKHRUHP 8VH(TVDQG 7KLVLVVLPSO\([DPSOHLQYHU\WKLQGLVJXLVH )6HH6SHFLDO1RWH7KHUHLVFRQIXVLRQKHUHHTXLYDOHQWWRDW\SRJUDSKLFDOHUURU 7KHHDVLHVWZD\WRUHFWLI\WKLVLVWRFKDQJHWKHSUREOHPWRILQGWKHSUREDELOLW\WKDWWKH FRPELQHGOLIHWLPHH[FHHGV 2 ⁄ λ  LQVWHDGRI 2λ DQGWKHSUREDELOLW\WKDWWKHH[FHVV OLIHWLPHRIWKHVHFRQGEXOERYHUWKDWRIWKHILUVWH[FHHGV 1 ⁄ λ  LQVWHDGRI λ   D 1RWHWKDW r = x – y DQG3UREOHPFDSSOLHV E 1RWHWKDW s = x + y   D 1RWHWKDW z = y ⁄ x LI y < x RU z = 1 LI y ≥ x DQGEHVXUHWRH[SOLFLWO\FRQVLGHU WKHGLVFRQWLQXLW\DW z = 1  E 8VHDQDSSURDFKVLPLODUWRWKDWIRUSDUW D  6HHWKHKLQWIRU3UREOHPF3UREOHPGPD\DOVREHXVHIXO 8VH([DPSOHWRILQG f z ( z ) 1RWHWKDW w = x – y DQGVWDUWLQJZLWK3UREOHP FILQG f w ( w ) 7KHQXVH(TWRILQG f zw ( z, w ) )LQDOO\WHVW(T  D 'HILQH u = x + y 8VH(T&RQVLGHUWZRFDVHV 0 < u < β DQG β < u < 2β  ,QWKHILUVWFDVHXVHWKHGHILQLWLRQRIWKHEHWDIXQFWLRQ(TWRVLPSOLI\WKH UHVXOW,QWKHVHFRQGFDVHVLPSOLILFDWLRQLVQRWSUDFWLFDOVROHDYHWKHUHVXOWLQLQWH JUDOIRUP E 6WDUWIURP([DPSOH F )LQGWKHMRLQWGHQVLW\RI v DQG w IURP (T7KHQIURPWKHMRLQWGHQVLW\ILQGWKHPDUJLQDOGHQVLWLHVDQGVKRZWKDW WKHMRLQWGHQVLW\LVWKHSURGXFWRIWKHPDUJLQDOGHQVLWLHV $ZRUNKRUVHSUREOHP D 0DNHXVHRI([DPSOHVDQG3UREOHP FRPHVFORVH E 8VH(TWRILQGWKHMRLQWGHQVLW\DQGVKRZWKDWLWLVWKHSURGXFW RIWKHPDUJLQDOGHQVLWLHVIURPSDUW D  F 8VH7KHRUHP  D /HW z = x ⁄ y 8VHDJUDSKLFDODSSURDFKWRGHYHORSDQLWHUDWHGLQWHJUDOH[SUHV VLRQIRU F z ( z ) DVLQ([DPSOH'LIIHUHQWLDWHWKHGRXEOHLQWHJUDOH[SUHVVLRQZLWK UHVSHFWWR z WRJHWDVLQJOHLQWHJUDOH[SUHVVLRQIRU f z ( z ) DOVRDVLQWKHFLWHGH[DPSOH WKHQVROYHWKHLQWHJUDO5HSHDWWKLVSURFHVVIRU w = x ⁄ y  E 8VH(TWRVKRZ WKDW u ∼ N ( 0, 2 ) )URP([DPSOHVHHWKDW v LVH[SRQHQWLDOZLWKSDUDPHWHU 1 ⁄ 2  7KHQXVH(TWRILQGWKHMRLQWGHQVLW\DQGVHHLILWLVWKHSURGXFWRIWKHPDU JLQDOGHQVLWLHV

H-14

Gary Matchett

Hints — 9/5/02

8VH(T 2

2

–1

 D   E 07UDQVIRUPILUVWWR r = x + y DQG θ = tan ( y ⁄ x ) XVLQJ([DPSOH 7KHQWUDQVIRUPIURP r DQG θ WR u DQG v WRILQGWKHMRLQWSGI F ([SUHVVWKLV UDQGRPYDULDEOHLQWHUPVRI u DQG v  (TGHILQHVWKH)GLVWULEXWLRQ VHH6SHFLDO1RWH 8VH([DPSOH E  8VH(TWRILQGWKHSGIRI w = mz ⁄ ( mz + n ) DQGFRPSDUHWKHUHVXOWWR(T  )8VH(TWRILQGWKHMRLQWGHQVLW\RI z DQG w WKHQXVH(TWRILQGWKH PDUJLQDOGHQVLW\RI z ZKLFKZLOOUHYHDOWKDW z LVQRWLQIDFWH[SRQHQWLDO*RRQWR ILQGWKHPDUJLQDOGHQVLW\RI w ZKLFKLVH[SRQHQWLDO 8VH(TWRILQGWKHMRLQWGHQVLW\RI z DQG w WKHQILQGWKHPDUJLQDOGHQVLWLHV IURPWKHMRLQWGHQVLW\ 8VH(TVDQG )LUVWOHW v = a cos y WKHQ8VH(TVDQG 1RKLQW 8VH(TVDQG  D 8VHWKHUHVXOWLQ3UREOHP E /HW w = x – y DQGGHYHORS P { w = n }  7UHDWWKHFDVHV n < 0 DQG n ≥ 0 VHSDUDWHO\ 7KLVSUREOHPLVVRPHZKDWFRQIXVHG7KHJLYHQLQIRUPDWLRQLVWKDWWZRFRQGLWLRQDO SUREDELOLWLHVDUHHTXDOWR 1 ⁄ ( k + 1 ) ,WLVRQO\QHFHVVDU\WRDVVXPHWKDWWKHWZRFRQ GLWLRQDOSUREDELOLWLHVDUHHTXDOLWLVWKHQSRVVLEOHWRVKRZWKDWWKH\PXVWHTXDO 1 ⁄ (k + 1)  :D\3URFHHGGLUHFWO\XVLQJ3UREOHPDQGWKHLGHQWLW\ k

n

m

∑  j   k – j

j=0

n + m =  RU:D\8VHWKHPRPHQWJHQHUDWLQJIXQFWLRQVRI(T  k 

  D 'HILQH z = min ( x, y ) DQG u = x – y )LQGWKHMRLQWSPIRI z DQG u WKHQILQG WKHWZRPDUJLQDOSPIVIURPWKHMRLQWSPIDQGVKRZWKDWWKHMRLQWSPILVWKH SURGXFWRIWKHPDUJLQDOSPIV E 5HSHDWWKHSURFHGXUHRISDUW D IRU z DQG w 

H-15

Gary Matchett

Hints — 9/5/02

$GLUHFWDSSURDFKLVZRUNDEOHKHUH8VH(TVDQGDORQJZLWKWKHUHVXOWV RI3UREOHP ,8VH([DPSOHWRUHODWH µ 12 DQG µ 21 WR σ 1  σ 2 DQG r  :KLOHLWLVSRVVLEOHWRILQG f z ( z ) ZKHUH z = xy DQGZRUNWKHSUREOHPLQWKLVZD\ WKDWLVXQQHFHVVDULO\GLIILFXOW,QVWHDGMXVWIRFXVRQWKHWZRTXDGUDQWVRIWKH xy  SODQHZKHUH z LVQHJDWLYHDQGXVHWKHLQGHSHQGHQFHRI x DQG y WRFRPSXWHWKHLU SUREDELOLWLHV /HW w = x – y WKHQXVH(T 8VH(T ,0$IXQGDPHQWDOSUREOHP D 7KLVLVWKH6FKZDU]LQHTXDOLW\IRUDQLQQHUSURG XFWVSDFH7KRVHIDPLOLDUZLWKOLQHDUDOJHEUDNQRZWKHVWDQGDUGWULFNWRGHPRQVWUDWH 2

2

2

LW6KRZILUVWWKDW E { xy * } ≤ E { x }E { y } 6WDUWZLWK E { ax – y } ≥ 0 DQGSLFN WKHDUELWUDU\FRQVWDQW a DUWIXOO\ E 7KLVLVWKHWULDQJOHLQHTXDOLW\1RWHWKDW E { xy * } + E { x * y } = 2ℜ ( E { xy * } ) ZKHUH ℜ GHQRWHVWKHUHDOSDUWDQG ℜ ( E { xy * } ) ≤ E { xy * } WKHQXVHSDUW D  )0
–λ





k

λ ----- δ ( n – k ) )RUWKHOHVVGLUHFWPHWKRG k!

k=0

EHJLQE\XVLQJWKHUHVXOWVRI3UREOHPWRILQG Φ x ( ω ) DQGWKHQILQG Φ z ( ω ) E\ XVLQJ(T 1RWHWKDW y LVDIXQFWLRQRI x VRWKDW z PD\EHZULWWHQDVDIXQFWLRQRI x DORQH 8VH(TVDQG &KDUDFWHULVWLFIXQFWLRQVSURYLGHWKHHDVLHUDSSURDFKKHUH:LWKHIIRUWDQGFDUHWKH GLUHFWDSSURDFKLVDOVRZRUNDEOH $OOEDVLFVWXII

H-16

Gary Matchett

Hints — 9/5/02

8VH(TVDQG 8VH(TGLUHFWO\  D 7KLVLV3UREOHP$QRWKHUPHWKRGLVDYDLODEOHQRZ8VH(T E 8VH (T F 8VH(T ,WKHOSVWRNQRZKHUHWKDW Γ ( 1 ⁄ 2 ) = DQG

π 8VHWKHVWULQJRIHTXDWLRQV

, D 8VH(TVDQG E '$FRQWLQXDWLRQRUH[WHQVLRQRI3UREOHP 6HHWKHVROXWLRQ 8VH([DPSOH 05HGHULYHWKHUHVXOWLQQRWHRQSRIWKH7H[W)L[WKHW\SRWKHUHZKHUHWKH 2

2

VHFRQGHTXDWLRQVKRXOGUHDG Var { E { x y } } = E { ( E { x y } ) } – ( E { E { x y } } ) 8VH (TDVDSDUWRIWKLVGHULYDWLRQ 8VH(T )7KHFRUUHFWUHVXOWLV E { z } = Σ n E { g ( x n, y ) x n }p n 'HILQH f ( y x n ) = f n ( y ) DQG VHHWKDW f ( x, y ) = Σ n p n f n ( y )δ ( x – x n ) WREHJLQWKHVROXWLRQ  D 8VH(TVDQG E 8VH(TVDQG 0/HW I ( µ ) = E { xy } DQGXVH3ULFH¶VWKHRUHP (TVDQG WRVKRZ ∂I ( µ ) WKDW ------------- = E { sgnx sgny } WKHQXVH(TWRILQGWKLVH[SOLFLWO\$OVRILQG I ( 0 )  ∂µ µ ∂I ( µ ) H[SOLFLWO\7KHQXVH I ( µ ) = I ( 0 ) + ∫ ------------- dµ  0 ∂µ

6HH([DPSOH 8VHWKHXQQXPEHUHGHTXDWLRQMXVWDERYH([DPSOH &RQVLGHU z = x + y DQG w = x DVDYDULDEOHWUDQVIRUPDWLRQ 7RVLPSOLI\WKHFRPSXWDWLRQRIWKH-DFRELDQRIWKHWUDQVIRUPDWLRQIURP x, y WR ∂w ∂z z, w QRWHWKDW ----- = 0 VRWKDW ------- LVXQLPSRUWDQW ∂y ∂x 8VH%D\HV¶WKHRUHP(T

H-17

Gary Matchett

Hints — 9/5/02

06WDUWZLWK(TDQGXVH(T7KHQPDNHVRPHLQVSLUHGVXEVWLWXWLRQV LQWKHLQWHJUDOWRJHWWRWKHGHILQLWLRQRIWKHEHWDIXQFWLRQ(T8VH(TWR UHODWHWRWKHJDPPDIXQFWLRQWKHQ(TWRHYDOXDWHWKHJDPPDIXQFWLRQV1RWH WKDWWKHUHVXOWLVRQO\YDOLGRIFRXUVHIRU n > 2  1RWHWKHW\SRWKHH[SUHVVLRQ β y ( t y > t ) VKRXOGUHDG β y ( t ) = f y ( t y > t ) 8VHWKH XQQXPEHUHGHTXDWLRQSULRUWR(T 8VHWKH0DUNRYLQHTXDOLW\(T 8VH(T 8VH(T([DPSOHDQG(TVDQG

 &KDSWHU 5HZULWHWKHSUREDELOLW\ P { x 1 < x < x 2, y 1 < y < y 2, z 1 < z < z 2 } LQWHUPVRI F ( x, y, z )  7KHXVHIXOWHUP³]HURRQHUDQGRPYDULDEOH´ZDVUHPRYHGIURPWKH)RXUWK(GLWLRQ H[FHSWIRUWKLVSUREOHPEXWVHH([DPSOH8VH3UREOHPWRVKRZWKDWWKH ]HURRQHUDQGRPYDULDEOHVDUHLQGHSHQGHQWLIDQGRQO\LIWKHHYHQWVWKH\DUHDVVRFL DWHGZLWKDUHLQGHSHQGHQW ,([WHQGWKHDUJXPHQWLQWKH7H[WWKDWUHVXOWVLQ(TVDQGWRWKHFDVHZLWK QRQ]HURPHDQVWRILQG f ( x, y, z )  ([SDQGWKHSRO\QRPLDODQGFRQVLGHUHDFKWHUP  D ([WHQGWKHDUJXPHQWOHDGLQJWR(TWRWKUHHGLPHQVLRQV E 6HHWKHERWWRP RISDJHXOWLPDWHO\XVH(T ,0&RQVWUXFWWKHFRYDULDQFHPDWUL[LWPXVWKDYHDQRQQHJDWLYHGHWHUPLQHQW '.HHSLQJWUDFNRIWKHUDQGRPYDULDEOHVKHUHLVKDUG'HILQHWKHWKUHHIXQFWLRQV g ( x 3 ) = E { x 1 x 2 x 3 }  h ( x 2, x 3 ) = E { x1 x 2 x 2, x 3 }  p ( x 3 ) = E { h ( x2, x 3 ) x 3 } 6KRZ WKDW g ( x 3 ) = p ( x 3 ) DQGLQWHUSUHW 06ROYHIRU a 1 DQG a 2 LQWHUPVRIWKHH[SHFWDWLRQVRI x 1  x 2 DQG y /HW Eˆ { y x } = bx DQGVROYHIRU b LQWHUPVRIWKHH[SHFWDWLRQVRI x DQG y /HW 1

1

1

Eˆ { a 1 x 1 + a 2 x 2 x 1 } = cx 1 DQGVROYHIRU c LQWHUPVRI a 1 DQG a 2 DQGH[SHFWDWLRQV LQYROYLQJ x 1 DQG x 2 7KHQVKRZ b = c  2

2

2

8VH E { s } = E { E { s n } } 8VH3UREOHPDWROLPLW ( E { x i xj } ) 7KHIDFWWKDW

H-18

Gary Matchett

Hints — 9/5/02

x i ≥ 0 LVQRWQHHGHG 0/HWHYHQW An EHWKDWKHDGVILUVWDSSHDUVRQWKH n ¶WKWRVVLQJ1RWHWKDW [ A 1, A 2, … ] LVDSDUWLWLRQ8VHWRWDOSUREDELOLW\WRILQG E { x1 } 1H[WHVWDEOLVK E { x m x m – 1 } E\DVLPLODUDUJXPHQWZKHUHHYHQW B n LVWKDWWKHILUVWDSSHDUDQFHRI KHDGVDIWHUWRVV x m – 1 LVRQWRVV ( x m – 1 + n ) )LQDOO\XVH E { x m } = E { E { x m x m – 1 } }  jωm

jωm

8VH Φ ( ω ) = E { e } = E{E{e n } } WRILQGWKHFKDUDFWHULVWLFIXQFWLRQRI m  XVLQJWKHKLQWLQWKH7H[W &RPSDUHWKHUHVXOWZLWKWKHFKDUDFWHULVWLFIXQFWLRQRID 3RLVVRQSURFHVVREWDLQHGIURP(T 8VHWKHVHPLGLVFUHWHYHUVLRQRI(T LH f ( s ) = Σ n f ( s n )p n SOXV([DPSOH DQG(T JHQHUDOL]HG WRILQG f ( s n )  1RKLQW 8VH([DPSOH 1RWHWKDWWKHHYHQW { z < z ≤ z + dz, w < w ≤ w + dw } KDSSHQVLIWKHHYHQWV { x ≤ w }  DQG { x > z + dz } GRQRWKDSSHQDQGWKHHYHQWV { w < x ≤ w + dw } DQG { z < x ≤ z + dz }  KDSSHQRQFHDQGWKHHYHQW { w + dw < x ≤ z } KDSSHQV ( n – 2 ) WLPHV 7KLVIROORZVGLUHFWO\IURP(TZLWKLQGHSHQGHQFH 06KRZWKDW ( x, x 1 – x, …, x n – x ) DUHMRLQWO\QRUPDODQGWKDW x LVXQFRUUHODWHG ZLWKHDFK x i – x +HQFH x LVLQGHSHQGHQWRIWKHJURXS ( x 1 – x, …, x n – x ) DQG x LV 2

LQGHSHQGHQWRI s  8VH(TWRGHWHUPLQH α0  α 1 DQG α 2 8VH(TWRGHWHUPLQHWKH α 1 DQG α LQ Eˆ { s – η x – η , x – η } DIWHU\RXILJXUHRXWMXVWZKDWWKLVLV6HH(T 2

s

1

1

2

2

'HQRWH yˆ = Eˆ { y x 1, x 2 } = a 1 x 1 + a 2 x 2 1RZ Eˆ { Eˆ { y x 1, x 2 } x 1 } = Eˆ { yˆ x 1 } = ax 1  $OVR Eˆ { y x 1 } = bx 1 7KHSUREOHPKHUHLVWRVKRZWKDW a = b ZKLFKIROORZVIURP WKHRUWKRJRQDOLW\SULQFLSOH 08VH([DPSOHIRU F x ( x ) 8VH3UREOHPIRU Fy ( y ) 8VH([DPSOHWR REWDLQ F xy ( x, y )  ,'1RFRQFHSWXDOGLIILFXOWLHVKHUHEXWWKLVLVDWHGLRXVSUREOHP)LUVWGHGXFHWKDW

H-19

Gary Matchett

Hints — 9/5/02

2

σ v LVXQFKDQJHGLIWKHPHDQVRIWKH x i VDUHYDULHGDQGWKXVDVVXPHWKDWWKH x i VKDYH ]HURPHDQV8VHEUXWHIRUFHWRILQGLQRUGHU 2 2

2

2

2

2

E { x i }  E { xi x j }  E { x i xj }  E { xx i }  E { x }  E { x k x i xj }  E { xx i x j }  E { x x i x j }  3

4

E { x x i }  E { x } 2

2

2

4

([SDQG E { v } LQWHUPVRIWKHDERYHDQGVROYH1RWHWKDW σ v = E { v } – σ  8VH3UREOHP '1RWHWKDWIRU QRWQHFHVVDULO\VTXDUH PDWULFHV A DQG B ZKHUHWKHSURGXFW AB  LVVTXDUHWKDW tr ( AB ) = tr ( BA ) ZKHUH tr( ) LVWKHPDWUL[WUDFHIXQFWLRQ)RUDVFDODU t

t

–1

SURGXFW x  tr ( x ) = x $QRWKHUDSSURDFKLVWRQRWHWKDW R = ADA ZKHUH A = A  DQG D LVDGLDJRQDOPDWUL[ZLWKSRVLWLYHGLDJRQDOHQWULHV'HILQH Y = XAD t

–1

t

–1 ⁄ 2 t

A 

t

DQGVKRZWKDW E { YY } = E { XR X } = tr ( E { Y Y } )  )7KLVSUREOHPFDQQRWEHVROYHGDVVHWPRUHLQIRUPDWLRQDERXWWKH x i VLVQHHGHG $VVXPHWKHVHTXHQFH { x i } LVVXFKWKDWWKHFHQWUDOOLPLWWKHRUHPKROGV$PRQJRWKHU 2

2

WKLQJVWKLVDVVXUHVWKDW σ 1 + … + σ n → ∞ DV n → ∞ 8VHWKHGLVFXVVLRQSULRUWR(T  0,I\RXDUHDPDWKHPDWLFLDQWKHUHLVQRWURXEOHKHUH,IQRWWKLVSUREOHPLVGLIL FXOWEHFDXVH\RXOLNHO\KDYHOLWWOHH[SHULHQFHZLWK³ ε, N ´OLPLWSURRIV
WKDWJLYHQDQ\ ε > 0 WKHUHH[LVWVDQ N VXFKWKDW E { x n – a } < ε IRUDOO n ≥ N 6LQFH a n → a ZHNQRZWKDWJLYHQDQ\ ε 1 WKHUHH[LVWVDQ N 1 VXFKWKDW a n – a < ε 1 IRUDOO 2

n ≥ N 1 6LQFH E { x n – a n } → 0 ZHNQRZWKDWJLYHQDQ\ ε 2 WKHUHH[LVWVDQ N 2 VXFK 2

WKDW E { x n – an } < ε 2 IRUDOO n ≥ N 2 8VHWKHWULDQJOHLQHTXDOLW\3UREOHPEWR UHODWHZKDWLVNQRZQWRZKDWLVQHHGHG )03URYHRQO\WKDWLIWKHOLPLWRI E { x n x m } H[LVWVWKHQ xn FRQYHUJHVLQWKHPHDQ VTXDUH7KHFRQYHUVHFDQQRWEHVKRZQ n

8VHWKH&DXFK\FULWHULRQ(T'HILQH α n =

∑ σk 6KRZWKDW { αn } FRQ 2

k=1

YHUJHVDQGXVHWKLVIDFWWRVKRZWKDW { y n } FRQYHUJHVLQWKHPHDQVTXDUHVHQVH

H-20

Gary Matchett

Hints — 9/5/02

/HW f n ( y ) EHWKHGHQVLW\RI y n = y n – 1 + x n 8VH(TWRUHODWH f n ( ) WR f n – 1 ( )  DQGWR f x ( ) 6ROYHIRUWKHILUVWIHZGHQVLWLHVFRPSDUHZLWKWKH(UODQJGHQVLW\ (T  DQGJXHVVWKHJHQHUDOUHVXOW7KHQFRQILUPWKHJHQHUDOUHVXOWE\LQGXFWLRQ 8VH3UREOHPDQGWKHFHQWUDOOLPLWWKHRUHP 1RKLQW 8VH3UREOHPEWRVKRZWKDWWKHVXPRI&DXFK\UDQGRPYDULDEOHVLV&DXFK\ DQGQHYHUEHFRPHVJDXVVLDQ 1RWHWKDW x DQG y DUHSUHVXPHGWREHQRUPDO8VH*RRGPDQ¶VWKHRUHP(T HYHQWKRXJK x DQG y DUHVFDODUV

 &KDSWHU &KDSWHULVRPLWWHGKHUH

 &KDSWHU  D )URP(TVDQGGHGXFHWKDWLI [ A 1, …, An ] LVDSDUWLWLRQWKHQ E { x } = E { x A 1 }P ( A 1 ) + … + E { x A n }P ( A n )  E 6LQFH x ( t ) KDVRQO\WZRYDOXHV IRU DQ\IL[HG t WKHQ P { x ( t ) ≤ x } FDQKDYHRQO\WKUHHGLIIHUHQWYDOXHVLQFOXGLQJ]HUR DQGRQH )LQG F ( x, t ) DQGGLIIHUHQWLDWHWRJHW f ( x, t )  6HH([DPSOH,QSDUW F QRWLFHWKDWDQHYHQWOLNH { x ( 2 ) = 2, x ( 4 ) = 4 } LVWKH VDPHDVWKHHYHQW { x ( 4 ) – x ( 2 ) = 2, x ( 2 ) = 2 } DQGWKDWWKHWZRVXEHYHQWVWKDWPDNH XSWKLVODWWHUIRUPDUHLQGHSHQGHQWDVWKH\FRXQW3RLVVRQSRLQWVLQQRQRYHUODSSLQJ LQWHUYDOV7KHFRPSXWDWLRQLVWHGLRXV  E 06HH3DSRXOLV$7KH)RXULHU,QWHJUDODQG,WV$SSOLFDWLRQV0F*UDZ+LOO $SSHQGL[,(T, 8VH(T ,0)
t

∫0 ( t – s )v ( s ) ds IRU t ≥ 0 6HHWKHVROXWLRQIRU 2

KRZWKLVLVGRQH1RWHWKHW\SR7KHFRUUHFWUHVXOWLV E { w ( t ) } =

t

∫0 ( t – s )

2

q ( s ) ds 

 D 8VHLQHTXDOLW\ E /HW x 1 = x ( t + τ )  x 2 = x ( t ) )LQGWKHUHJLRQ D x RIWKH

H-21

Gary Matchett

Hints — 9/5/02

x 1 x 2 SODQHZKHUH x 1 – x 2 ≥ a DQGLQWHJUDWHWKHVHFRQGRUGHUGHQVLW\RYHU D x  1RKLQW 'RQRWIRUJHWWKHFRPSOH[FRQMXJDWHLQ(T 8VH(T %,07KH7H[WGRHVQRWIDLUO\SUHSDUH\RXWRVROYHWKLVSUREOHP,QWKHGLVFXV VLRQRIOLQHDUFRQVWDQWFRHIILFLHQWGLIIHUHQWLDOHTXDWLRQVEHJLQQLQJRQSDJH WKH7H[WQRWHVWKDWVXFKHTXDWLRQVDUHQRWXQLTXHO\VROYDEOHZLWKRXWLQLWLDOFRQGL WLRQV7RDVVXUHDXQLTXHVROXWLRQDQGWRDVVXUHWKHOLQHDULW\FRQGLWLRQ (T LV VDWLVILHGWKH7H[WVD\VWKDWLWZLOOSUHVXPHDVROXWLRQZLWK³]HUR´LQLWLDOFRQGLWLRQVDW t = 0 7KHWURXEOHZLWKWKLVDSSURDFKLVWKDWWKHGLIIHUHQWLDOHTXDWLRQWKHQRQO\ KROGVIRU t ≥ 0 DQGWKHUHLVQRZD\WKDW y ( t ) FDQEH:66%\FOHDULPSOLFDWLRQRIWKLV SUREOHPWKHHTXDWLRQLVWRKROGIRUDOOWLPHDQG y ( t ) ZLOOEH:66 7KHZD\WRDFFRPSOLVKWKHVHJRDOVWRJHWKHULVWULFN\6XSSRVHZHVHWVRPHDUELWUDU\ LQLWLDOFRQGLWLRQVDW t = t 0 DQGSUHVXPHWKDWWKHGLIIHUHQWLDOHTXDWLRQKROGVIRU t ≥ t 0 1RZZHOHW t 0 → – ∞ 7KLVDSSURDFKDFFRPSOLVKHVDOOWKHREMHFWLYHVSURYLGHG WKDWWKHGLIIHUHQWLDOHTXDWLRQKDVD XQLTXH VROXWLRQXQGHUVXFKDVVXPSWLRQVDQG WKHHIIHFWRIWKHLQLWLDOFRQGLWLRQVDW t 0 RQWKHVROXWLRQDWVRPHIL[HG t GHFOLQHVWR]HUR DV t 0 → – ∞  7KLVLVWUXHIRUVWDEOHGLIIHUHQWLDOHTXDWLRQV7KHGLIIHUHQWLDOHTXDWLRQ an y

(n)

( t ) + an – 1 y

( n – 1)

( t ) + … + a 1 y’( t ) + a 0 y ( t ) = x ( t )

LVVWDEOHLIDQGRQO\LIWKHDVVRFLDWHGSRO\QRPLDOHTXDWLRQLQ s n

an s + an – 1 s

n–1

+ … + a 1 s + a0 = 0

KDVRQO\URRWVZLWKQHJDWLYHUHDOSDUWV URRWVLQWKHOHIWKDOIRIWKH s SODQH :KHQ WKLVLVWUXHZHGHILQHWKH/DSODFHYHUVLRQRIWKHV\VWHPIXQFWLRQDV 1 + ( s ) = ------------------------------------------------------------------------------n n–1 an s + an – 1 s + … + a1 s + a0 7KH)RXULHUYHUVLRQRIWKHV\VWHPIXQFWLRQLVJLYHQE\ H ( ω ) = + ( jω ) DQGWKH LPSXOVHUHVSRQVHIXQFWLRQRIWKLVOLQHDUV\VWHPLVWKHLQYHUVH)RXULHUWUDQVIRUPRI WKHV\VWHPIXQFWLRQRU

H-22

Gary Matchett

Hints — 9/5/02

1 ∞ jωt h ( t ) ↔ H ( ω )  h ( t ) = ------ ∫ H ( ω )e dω 2π –∞ $OVRLQWKLVSUREOHPDVVXPH E { v ( t ) } = 0 7RPDNHWKLQJVPRUHPDQDJHDEOHGHILQH WKH]HURPHDQSURFHVV z ( t ) = y ( t ) – 2 DQGEHJLQZRUNZLWKLW -XVWQRWHWKDW f ( t 1 )g ( t 2 )δ ( t 1 – t 2 ) = f ( t 1 )g ( t 1 )δ ( t 1 – t 2 ) = f ( t 2 )g ( t 2 )δ ( t 1 – t 2 )  0,I ϕ ( τ ) LVWKHSKDVHDQJOHRI R xy ( τ ) FRQVLGHU E { x ( t + τ ) ± e

jϕ ( τ )

2

y( t) } 

6KRZWKDW x ( t ) = y ( t ) LQWKHPHDQVTXDUHVHQVH7KHQXVHWKH6FKZDU]LQHTXDOLW\ (TWZLFHWRVKRZ R xx ( τ ) = Rxy ( τ ) DQG R yy ( τ ) = Rxy ( τ )  1RKLQW 3UHVXPH ϕ WREHUHDO8VH Φ ( 1 ) = 0 WRHVWDEOLVK E { cos ϕ } = E { sin ϕ } = 0 DQG XVH Φ ( 2 ) = 0 WRHVWDEOLVK E { cos 2ϕ } = E { sin 2ϕ } = 0 7KHQVKRZ η ( t ) = 0 DQG 1 R ( t 1, t 2 ) = --- cos [ ω ( t 1 – t 2 ) ]  2  D %7KHUHLVDPLVVLQJGHILQLWLRQKHUH7KHVWRFKDVWLFSURFHVV x ( t ) KDVRUWKRJR QDOLQFUHPHQWVLIIRU t a ≤ t b ≤ t c ≤ t d  E { [ x ( t d ) – x ( t c ) ] [ x ( t b ) – x ( t a ) ] } = 0 8VLQJWKLV GHILQLWLRQVXEVWLWXWH t d = t 2  t c = t b = t 1 DQG t a = 0  E )


∫–∞ fy ε ( y1, …, y n ; t1, …, tn ε )fε ( ε ) dε DQGWKDW

f y ε ( y 1, …, y n ; t 1, …, t n ε ) = f x ( y 1, …, y n ; t 1 – ε, …, t n – ε )  8VH(TVDQG  E 1RWHWKDW f x ( x, t ) = f x ( x ) 1RWHWKDW z DQG w DUHMRLQWO\QRUPDO8VH(TWR ILQGWKHLUFRUUHODWLRQFRHIILFLHQW )
H-23

Gary Matchett

Hints — 9/5/02

VWDQWPHDQ 7KHGLVFXVVLRQIROORZLQJ(TDVVXUHVWKDW x’( t ) LVQRUPDO(T 2

ZLOOKHOSWRILQG σ x’  06HHWKHKLQWLQWKHSUREOHPZKLFKLV8VH(TDQGHVWDEOLVKWKH)RXULHU ∞

VHULHV sin

–1

z =

1

∑ --n- [ J0 ( nπ ) – ( –1 )

n

]sin nπz 

n=1

3UHVXPHDVLVLPSOLHGE\WKHSUREOHPWKDW x ( t ) LV:667KHUHDUHWZRZD\VWR SURFHHG2QHZD\LVGLUHFWEXWDOJHEUDLFDOO\GHPDQGLQJ7KHRWKHUZD\LVOHVVGLUHFW EXWHDVLHU7KHGLUHFWPHWKRGVLPSO\UHOLHVRQWKHUHODWLRQVKLSV E{ g( x( t ) ) } = E { g ( x ( t 1 ), x ( t 2 ) ) } =



∫–∞ g ( x )f ( x, t ) dx ∞



∫–∞ ∫–∞ g ( x1, x2 )f ( x1, x2 ; t1, t2 ) dx1 dx2

ZKLFKDUHREYLRXVH[WHQVLRQVRI(TVDQG7KHILUVWDQGVHFRQGRUGHUGHQ VLW\IXQFWLRQDUHREWDLQHGIURPWKHIDFWWKDW x ( t ) LVQRUPDO7KHLQWHJUDWLRQLVGLIIL FXOWEXWGRDEOH7KHOHVVGLUHFWPHWKRGUHOLHVRQWKHFORVHFRQQHFWLRQEHWZHHQWKH GHVLUHGH[SHFWHGYDOXHVDQGWKHILUVWDQGVHFRQGRUGHUFKDUDFWHULVWLFIXQFWLRQVRI x ( t ) ZKLFKDUHIXOO\GHYHORSHGIRUDQRUPDOSURFHVVLQ(TVDQG,Q 2

HLWKHUFDVHRQHPXVWQRWHWKDW σ ( t ) = R x ( 0 ) DQG r ( t + τ, t ) = r ( τ ) = R x ( τ ) ⁄ R x ( 0 )   E )$VVXPH τR x ( τ ) → 0 DV τ → 0  QRWMXVW R x ( τ ) → 0 DVLQWKHSUREOHPVWDWH PHQW  :ULWH y ( t 1 )y ( t 2 ) DVDGRXEOHLQWHJUDODQGWDNHH[SHFWHGYDOXHV 2

 D :ULWH y ( t ) DVDGRXEOHLQWHJUDODQGWDNHH[SHFWHGYDOXHV E ,0)LQGWKH JHQHUDOIRUPDOVROXWLRQWRWKLVGLIIHUHQWLDOHTXDWLRQ DQHTXDWLRQZKLFKLVQRWWLPH LQYDULDQW 7KHQSURFHHGDVLQSDUW D   D :ULWHDIRUPDOVROXWLRQIRU y ( t ) WRILQGWKHLPSXOVHUHVSRQVHIXQFWLRQ h ( t )  7KHQXVH(T 1RKLQW )$VVXPHWKDW x ( t ) LV:668VHDPHWKRGDQDORJRXVWRWKDWXVHGWRGHYHORS(T   D 8VHWKHVROXWLRQWR3UREOHPRURWKHUZLVHILQGWKHLPSXOVHUHVSRQVHIXQF H-24

Gary Matchett

Hints — 9/5/02

WLRQ8VH(TVDQG E 8VH([DPSOH  D 06HH([DPSOH E 8VH cos ω 0 τ cos ωτ = [ cos ( ω 0 – ω )τ + cos ( ω 0 + ω )τ ] ⁄ 2 ZLWKSDUW D  $VVXPH x ( t ) LVUHDO 8VHWKHLGHQWLWLHV e

j2aω

+e

– j 2aω

2

= 2 cos 2aω DQG 1 – cos 2aω = 2sin 2aω 

1RKLQW 06KRZ η y = I 8VH(TIURP([DPSOHWRILQG R y WKHQXVH7DEOHWR ILQG Sy  jωτ 2 1 ∞ 6LQFH S ( ω ) ≥ 0 FOHDUO\ A = ------ ∫ S ( ω ) Σ i a i e i dω ≥ 0  2π –∞

 D 08VH&DXFK\¶VUHVLGXHWKHRUHPWRILQG R ( τ ) YLDFRQWRXULQWHJUDWLRQDVLQWKH VROXWLRQWR3UREOHP E 08VHWKHVDPHDSSURDFK7KHSROHKHUHLVRIRUGHU d 2 WZRDQGWKHUHVLGXHLVJLYHQE\ r = ------- [ ( ω – ωp ) h ( ω ) ] ZKHUH ω p LVWKHSROH dω ω = ωp DQG h ( ω ) LVWKHLQWHJUDQG ' H ( ω ) LVDFRPSOH[IXQFWLRQRIWKHUHDOYDULDEOH ω  + ( s ) LVDFRPSOH[IXQFWLRQ RIWKHFRPSOH[YDULDEOH s 7RWDNHWKHFRPSOH[FRQMXJDWHRI + ( s ) \RXPXVWFRQMXJDWH ERWKWKHIXQFWLRQ +( ) DQGWKHYDULDEOH s 7RDVVLVWLQWKHQRWDWLRQGHILQHLQWKH ILUVWDQGVHFRQGSDUWVRIWKHSUREOHP  : ( s ) = +* ( –s* ) =



∫–∞ h* ( t )e

st

dt  : ( z ) = + * ( 1 ⁄ z * ) = Σ n h * [ n ]z

n

%7RVROYHWKLVSUREOHPLWLVEHVWWRXVHWKHJHQHUDOFRQYROXWLRQWKHRUHP7KHUH DUHWZRYHUVLRQVDQGERWKDVVXPHWKUHHSDLUVRI)RXULHUWUDQVIRUPV f ( τ ) ↔ F ( ω )  g ( τ ) ↔ G ( ω ) DQG h ( τ ) ↔ H ( ω )  , ,I H ( ω ) = F ( ω )G ( ω ) WKHQ h ( τ ) = f ( τ ) * g ( τ ) 1 ,, ,I h ( τ ) = f ( τ )g ( τ ) WKHQ H ( ω ) = ------ F ( ω ) * G ( ω ) 2π 1RWLFHWKHIDFWRURIWZRSLLQWKHVHFRQGYHUVLRQRIWKHWKHRUHP$SSDUHQWO\WKLVIDF

H-25

Gary Matchett

Hints — 9/5/02

WRUZDVQHJOHFWHGLQWKHVHWWLQJRIWKHSUREOHPOHDGLQJWRWKHW\SR7KHFRUUHFWUHVXOW 1 2 LV S y ( ω ) = 2πR x ( 0 )δ ( ω ) + --- Sx ( ω ) * S x ( ω )  π $OVR\RXQHHGWRNQRZZKDWLGHDO/3 ORZSDVV DQG%3 EDQGSDVV VSHFWUDDUH 7KH\DUHVLPSO\XQLWLQWHQVLW\ZKLWHQRLVHSURFHVVHVSXWWKURXJKDQLGHDOL]HGILOWHU 7KH\DUHLOOXVWUDWHGEHORZ Sx ( ω )

Sx ( ω ) 1

1

ω

ω –ω 2

ωc

–ωc

– ω1

/RZ3DVV

ω1

ω2

%DQG3DVV

8VH(TWRILQG Rxx’( τ ) DQG R x’x’( τ ) 1RWHWKDW R xx’( τ ) LVGLVFRQWLQXRXVDWWKH RULJLQOHDGLQJWRD δ ( τ ) WHUPLQ R x’x’( τ ) 8VH7DEOHWRFRQYHUWIURP R yy ( τ ) WR S yy ( ω )   D 8VH([DPSOHD E 8VH(T 1RWHWKDW R ( 0 ) PXVWEHUHDODQGQRQQHJDWLYHVRWKDWLWPXVWEHWKDW jϕ

R ( τ 1 ) = R ( 0 )e IRUVRPHSKDVHDQJOH ϕ 'HILQH ω = ϕ ⁄ τ 1   D 07KHSUHVXPSWLRQLVWKDW x ( t ) LVUHDO([SUHVV E { x ( t )xˆ ( t ) } LQWHUPVRI S xx ( ω ) XVLQI(T$WWHPSWLQJWRXVH R xx ( τ ) ZLOOIDLO  E '([SUHVV x˜ ( t )  P\V\PEROIRUGRXEOHXSVLGHGRZQKDWVZKLFK,ODFN LQWHUPV 2

RI x ( t ) DQG h ( t ) YLDDQLWHUDWHGFRQYROXWLRQ6LQFH H ( ω ) = – 1 LWIROORZVWKDW ρ ( t ) = – δ ( t ) $QLQQRYDWLYHDOWHUQDWHDSSURDFKLQYROYHVWKH)RXULHUWUDQVIRUPRI x ( t ) LWVHOIEXWWKLVPHWKRGODFNVJHQHUDOLW\ )LQGVRPH G ( ω ) VXFKWKDW S yy ( ω ) = S xx ( ω )G ( ω ) 7KHQILQGWKDW ω = ± ω 0 PD[L PL]HV G ( ω ) DQGSXWDOOWKHDYDLODEOHHQHUJ\RI S xx ( ω ) DWWKHVHIUHTXHQFLHV 8VHLQHTXDOLW\WRVKRZWKDW S xy ( ω ) = 0 IRU ω ≠ ω 0 'HGXFHWKDW

H-26

Gary Matchett

Hints — 9/5/02

S xy ( ω ) = 2πBδ ( ω – ω 0 )   D 8VHFRQYROXWLRQLQWHJUDOVGLUHFWO\1RWH R yx LQVWHDGRI R xy  3UHVXPHWKDWRYHUVXIILFLHQWO\VPDOOLQWHUYDOVRIWKHIUHTXHQF\D[LVWKDWWKHIXQF WLRQV S xy ( ω )  S xx ( ω ) DQG S yy ( ω ) DUHHVVHQWLDOO\FRQVWDQW8VH(T 3UHVXPHWKDW x ( t ) LVUHDO8VHWKHFRVLQHLQHTXDOLW\(T 3URFHHGDVLQ3UREOHP1RWHWKHW\SRWKHJUHDWHUWKDQVLJQVKRXOGEHD JUHDWHUWKDQRUHTXDOVLJQ ([SUHVV R [ m ] LQWHUPVRI f ( ω ) &RPSDUHZLWK(T  D ,0)LQGWKHVROXWLRQVWRWKHKRPRJHQHRXVGLIIHUHQWLDOHTXDWLRQ8VHWKH YDULDWLRQRISDUDPHWHUVPHWKRGWRILQGWKHVROXWLRQWRWKHQRQKRPRJHQHRXVGLIIHU 2

HQWLDOHTXDWLRQ:ULWH y ( t ) DVDGRXEOHLQWHJUDODQGWDNHH[SHFWHGYDOXHV E ,'8VHWKHVDPHDSSURDFKDVDERYHIRUWKHGLIIHUHQFHHTXDWLRQ  D ,)LQGWKHJHQHUDOVROXWLRQWRWKHGLIIHUHQFHHTXDWLRQ E ,0RGLI\WKHGHYHORSPHQWRISDUW D 

 &KDSWHU  D 8VH(T E 8VH(TDQG([DPSOH 8VH(TIRU f x ( x, t ) DQG f y ( y, t ) 7KHQXVH(TIRU f z ( z, t )  ,)LQGWKHGLIIHUHQWLDOHTXDWLRQUHODWLQJ v ( t ) DQG n e ( t ) 8VH/DSODFHWUDQVIRUPVWR 2

ILQG + ( s ) DQGWKHQVROYHIRU H ( ω ) 8VH(TWRILQG S v ( ω ) $VLPLODUSURFHVV ZRUNVIRUWKHFXUUHQWFDVH 1RWHWKDW e

– 2αt

1 U ( t ) ↔ ------------------------ DQGLI h ( t ) ↔ H ( ω ) WKHQ h’( t ) ↔ jωH ( ω )  ( jω + 2α )

8VH([DPSOHDQG(T 3UHVXPHWKDWWKH:LHQHUSURFHVV w ( t ) LVDQRUPDOVWRFKDVWLFSURFHVVZLWK]HUR PHDQ8VH(TWRILQG R y DQG3UREOHPWRILQG R z  8VH&DPSEHOO¶VWKHRUHP(T1RWHWKDW s ( 7 ) FDQEH]HURRQO\LIQR3RLVVRQ

H-27

Gary Matchett

Hints — 9/5/02

SRLQWVDUULYHLQWKHLQWHUYDOSULRUWR t 0 = 7 ZKHQ h ( 7 – t ) LVQRW]HUR 6KRZWKDW S xy ( ω ) LVSXUHO\LPDJLQDU\7KHQXVH(TVDQGWRFRQILQH H( ω)  '$EUXWHIRUFHDSSURDFKZRUNVKHUHEXWLWLVERWKOHQJWK\DQGGHPDQGLQJ )$VWKH7H[WSRLQWVRXWRQWKHERWWRPRISDJHJLYHQMXVW x ( t ) WKHUHLVQR XQDPELJXRXVFRPSOH[HQYHORSH
T

∫0 f ( t )e

2 – jωt

dt





m = –∞

2πm δ  ω – ----------- T

%HJLQE\VKRZLQJWKDWWKHVWRFKDVWLFSURFHVV y ( t ) = f ( t ) LV66&67KHQVKRZ x ( t ) LV 666DQGXVH(TIRU R xx ( τ ) )LQG S xx ( ω ) GLUHFWO\IURP(TWKHQVSOLWXS WKHLQILQLWHWLPHLQWHJUDOLQWRDVXPRYHUFRQVHFXWLYHVSDQVRIOHQJWK T )LQDOO\XVH (T$WRJHWWKHGHVLUHGUHVXOW 00LPLF(TDQGGHILQH N

yN ( t ) = x ( t + τ ) –

∑ n = –N

sin σ ( τ – nT ) x ( t + nT ) --------------------------------  T = π ⁄ σ σ ( τ – nT )

1RWHWKDW ε N ( t ) = y N ( 0 )  $VVXPH x ( t ) LVUHDODQGXVHWKHSURRIDWWKHERWWRPRISDJH 8VH(T(TZLWK ω = 0 DQG7DEOH 6HHKLQWDERYH

H-28

Gary Matchett

Hints — 9/5/02

π 1RWHWKDWLQWKHUDQJH τ < ------ DQG ω ≤ σ WKHQ cos ωτ ≥ cos στ $OVRDVVXPHWKDW 2σ x ( t ) LVUHDODVXVXDOLQ%/SUREOHPV 07KLVLVDVWUDLJKWIRUZDUGDSSOLFDWLRQRIWKH³3DSRXOLV6DPSOLQJ([SDQVLRQ´RQ 7H[WSDJHEXWGLIILFXOWEHFDXVHLWLQYROYHVFRQVLGHUDEOHPDQLSXODWLRQ)RUVRPH ω jστ 1 jστ KHOSQRWHWKDW P 1 ( ω, τ ) = 1 – ---- ( e – 1 )  P2 ( ω, τ ) = ----- ( e – 1 ) DQG σ jσ 0 jωτ jωτ 1 0 ω jστ 1 jστ p 1 ( τ ) = --- ∫ 1 – ---- ( e – 1 ) e dω  p 2 ( τ ) = -------2- ( e – 1 ) ∫ e dω 8VH(T σ –σ σ –σ jσ

ZLWK t 0 = 0 QRWLQJWKDW y 1 ( nT ) = y 1 ( n∆ ) = x ( n∆ )  y 2 ( nT ) = y 2 ( n∆ ) = x’( n∆ )  8VHWKHPHWKRGRI(TZLWK f ( t ) = cos ω 0 t cos ωt DQGZLWKWKHLQWHJUDO OLPLWVIURP – a WR a *HWHTXLYDOHQWIRUPXODVWRWKRVHIROORZLQJ(T 1 ))LUVWFRUUHFWWKHW\SR7KHVXPVKRXOGEH X c ( ω ) = --λ



x ( t i )e

– jωt i

1H[W\RX

i ti < a

PXVWDVVXPHWKDW x ( t ) LVLQGHSHQGHQWRIWKHSURFHVV z ( t ) =

∑ δ ( t – ti ) 7KHLQWHJUDO i

WUDQVIRUPRI(TYDOLGIRUDQ\IXQFWLRQ C ( τ ) LVDOVRXVHIXO 1RKLQW n

&RQVLGHU I =

n

∑ ∑

2

a i b *j – a j b *i ≥ 0 

i=1 j=1

 D '7KHWUHDWPHQWRIGLVFUHWHSURFHVVHVLQWKH7H[WLVWRREULHIWRHYHQJLYHD XVHIXOKLQWKHUHH[FHSWWRPLPLFWKHPDWFKHGILOWHUGLVFXVVLRQIRUDFRQWLQXRXVSUR FHVV$VVXPHUHDOSURFHVVHV 2

yf [ 0 ] E '1RWHWKDW v [ n ] LVQRWSUHVXPHGWREHZKLWHKHUH7RPD[LPL]H r = ---------------------- 2 E { yv [ n ] } \RXVKRXOGPLQLPL]HWKHGHQRPLQDWRUZKLOHKROGLQJWKHQXPHUDWRUFRQVWDQW8VH WKHPHWKRGRI/DJUDQJHPXOWLSOLHUV 0)LQGWKHLPSXOVHUHVSRQVHIXQFWLRQ h ( t )  VHH([DPSOH )URPWKHGHWHU PLQLVWLFLQSXW f ( t ) = A cos ω 0 t ILQGWKHGHWHUPLQLVWLFRXWSXWLQWKHIRUP y f ( t ) = B cos ( ω 0 t + ϕ ) WRUHODWH B WR A  α DQG ω 0 )LQGWKHVSHFWUXPRIWKHQRLVH

H-29

Gary Matchett

Hints — 9/5/02

RXWSXWDQGIURPWKDWILQGWKHDXWRFRUUHODWLRQRIWKHQRLVHRXWSXWXVLQJ7DEOH 8VH(TWRILQGWKHDYHUDJHSRZHURIWKHQRLVHRXWSXW T

0 D ,WKHOSVWRGHILQHWKHYHFWRUVDQGPDWULFHV a = ( a 0, a 1, …, a m )  R 00 R 01 … R 0m R 10 R 11 … R 1m

T

f = ( f 0, f 1, …, f m ) = ( f ( t 0 ), f ( t 0 – T ), …, f ( t 0 – mT ) ) DQG R =

… … … R m0 R m1 … R mm



ZKHUH R ij = R v ( iT – jT ) = E { v ( t 0 – iT )v ( t 0 – jT ) } 7KHQVKRZ m

yf = yf ( t0 ) =

∑ aifi

T

T

2

= a f DQG E = E { y v ( t 0 ) } = a Ra 0D[LPL]H r E\PLQLPL]LQJ

i=0

E VXEMHFWWRWKHFRQVWUDLQWRIDJLYHQYDOXHRI y f > 0 E\WKHPHWKRGRI/DJUDQJHPXO WLSOLHUV T –1

E 7KHPD[LPXPYDOXHRI r LV f R f =

yf ⁄ k 

7KLVIROORZVGLUHFWO\IURP(TXVLQJ UHSHDWHGO\ WKHLGHQWLW\ ∞

∫–∞ e

– jωτ

dτ = 2πδ ( ω ) 

06HYHUDOIDFWVDUHXVHIXOKHUH,I t 1 < t 2 < t 3 WKHQ x˜ ( t 3 ) = x˜ ( t 1 ) + [ x˜ ( t 2 ) – x˜ ( t 1 ) ] + [ x˜ ( t 3 ) – x˜ ( t 2 ) ] DQGWKHWKUHHUDQGRPYDULDEOHV x˜ ( t 1 )  x˜ ( t 2 ) – x˜ ( t 1 ) DQG x˜ ( t 3 ) – x˜ ( t 2 ) DUHPHDQ]HURDQGLQGHSHQGHQWEHFDXVHWKH\FRXQW 3RLVVRQSRLQWVLQQRQRYHUODSSLQJLQWHUYDOV)URPWKHGLVFXVVLRQRI3RLVVRQUDQGRP 3

YDULDEOHVRQSDJHRIWKH7H[WLWIROORZVWKDW E { x˜ ( t 1 ) } = λt 1 )LQDOO\LJQRUHWKH KLQWLQWKHSUREOHPDQGXVHLQVWHDGWKHWKUHHLGHQWLWLHV ∂min ( t a, t b ) min ( t 1, t 2, t 3 ) = min ( t 1, min ( t 2, t 3 ) )  ----------------------------- = U ( t b – t a ) ∂t a U ( min ( t 2, t 3 ) – t 1 ) = U ( t 2 – t 1 )U ( t 3 – t 1 ) )ROORZWKHRXWOLQHLQWKHSUREOHP

 &KDSWHU ')LQGLQJWKHZKLWHQLQJILOWHULVHDV\HVSHFLDOO\LI\RXQRWHWKDW

H-30

Gary Matchett

Hints — 9/5/02

2

–2

cos 2ω = ( z + z ) ⁄ 2 )LQGLQJWKHDXWRFRUUHODWLRQVHTXHQFH R xx [ m ] LVKDUG²VR KDUGWKDWQRKLQWLVJLYHQKHUHVHHWKHVROXWLRQ N ( s )N ( – s ) N( s) )DFWRU 6 ( s ) = --------------------------- WKHQVHW / ( s ) = -----------  D ( s )D ( – s ) D(s) ∞

8VHWKHFRQYROXWLRQVXP s [ n ] =

∑ ls [ k ]i [ n – k ]  k=0

 D ,1RWHWKDW R yx’( τ ) = E { y’( t + τ )x * ( t ) } HWF E ,08VHWKHGLVFXVVLRQIROORZLQJ(T1RWHWKDW +

-

+

6 yx ( s ) = 6 yx ( s ) = q ⁄ D ( s ) WRILQG R yx ( τ ) IRU τ > 0 1RWHWKDW 6 yy ( s ) = 6 yy ( – s ) DQG + q 6 yy ( s ) = --------------------------- WRILQG 6 yy ( s ) DQGKHQFH R yy ( τ ) IRU τ > 0  D ( s )D ( – s )

6KRZ R xx [ m ] = R ss [ m ] + R vv [ m ] DQG R vv [ m ] = qδ [ m ] 'HGXFHWKDW 1 6 ss ( z ) = ------------------------------- ZKHUH D ( z ) KDVDOOLWVURRWV z i ZLWK z i < 1 &RQFOXGHWKDW D ( z )D ( 1 ⁄ z ) 6 xx ( z ) LVDOVRUDWLRQDOZLWKWKHVDPHSROHVDV 6 ss ( z ) DQGWKDW 6 xx ( z ) = 6 xx ( 1 ⁄ z )  n

1 'HILQH s ( t ) = --n

∑ x ( t + kT ) DQGUHJDUG s ( t ) DVWKHRXWSXWRIDOLQHDUV\VWHPZLWK k=1

LQSXW x ( t ) )LQGWKHLPSXOVHUHVSRQVHIXQFWLRQWKHV\VWHPIXQFWLRQDQGXVH(T  ')3UHVXPH x ( t ) LV:66VRWKHRULJLQRIWKHWLPHVFDOHPD\EHVKLIWHGVRWKDWWKH LQWHUYDO ( 0, T ) LQWKHROGWLPHVFDOHFRUUHVSRQGVWRWKHLQWHUYDO ( – a, a ) LQWKHQHZ WLPHVFDOH3DUWLFXODUL]HWKHLQWHJUDOHTXDWLRQ'LIIHUHQWLDWHWKHLQWHJUDOHTXD WLRQWZLFHWRREWDLQDGLIIHUHQWLDOHTXDWLRQ)LQGWKHJHQHUDOVROXWLRQVWRWKHGLIIHUHQ WLDOHTXDWLRQDQGSXWWKHPEDFNLQWRWKHLQWHJUDOHTXDWLRQWROHDUQPRUHDERXWWKHP 8VHWKHQRUPDOL]DWLRQHTXDWLRQ(TWRVFDOHWKH ϕ ( t ) IXQFWLRQV1RWHWKDWWKH λ n – 1 ⁄ 2 λ n’ –1 ⁄ 2   ---UHVXOWVVKRXOGUHDG β n =  a +  DQG β n’ =  a + ------ QRWWKHUHVXOWVJLYHQ 2 2 LQWKH7H[W 2

:ULWH E { X ( ω ) } DVDGRXEOHLQWHJUDO7UDQVIRUPWRDVLQJOHLQWHJUDODVLQ(T 'LIIHUHQWLDWHZLWKUHVSHFWWR T 

H-31

Gary Matchett

Hints — 9/5/02

1RKLQW 1RKLQW 08VH(T D 6KRZ  E { x ( t )x* ( t ) } = E { x ( t )xˆ * ( t ) } = E { xˆ ( t )x * ( t ) } = E { xˆ ( t )xˆ * ( t ) } = R ( 0 ) ,QRUGHUWRGRSDUW D LWLVXVHIXOWRGRSDUW E  F 6XEVWLWXWH s = t – α LQWKH β n ( α )  H[SUHVVLRQ $VLVXVXDOLQWKHVHFDVHVVKRZWKDW E { x ( t ) } = 0 DQGWKDW E { x ( t )x* ( s ) } LVDIXQF WLRQRI t – s  'HGXFHWKDWLI A DQG B VDWLVI\(TVWKHQLWPXVWEHWKDW E { A ( u )A ( v ) } = E { B ( u )B ( v ) } = Q ( u )δ ( u – v ) DQG E { A ( u )B ( v ) } = 0  T

01RWHWKDW ∫ f ( t )e

– jωt



dt =

–T

∫–∞ f ( t )pT ( t )e

– jωt

dt ZKHUH –T < t < T

1 pT ( t ) = U ( t – T ) – U ( T – t ) =  0 8VHWKHIUHTXHQF\FRQYROXWLRQWKHRUHPLI F1 ( ω ) = F2 ( ω ) =



∫–∞ f2 ( t )e

– jωt

otherwise ∞

∫–∞ f1 ( t )e

– jωt

dt DQG

dt WKHQ

 F 12 ( ω ) =



∫–∞

f 1 ( t )f 2 ( t )e

– jωt

1 ∞ dt = ------ ∫ F 1 ( y )F 2 ( ω – y ) dy 2π –∞

∞ sin 2 αT

- dα = Tπ ------  8VH(T1RWHWKDW ∫ ---------------2 2 0 α

 &KDSWHU 1RKLQW 2

,'1RWHWKDW x ( t ) LV:668VH(TWRGHGXFHWKDW f ( x, x ; τ ) → f ( x ) DV τ → ∞ )LQGERWKVLGHVRIWKLVOLPLWH[SOLFLWO\DQGVKRZWKDWWKHOLPLWUHTXLUHV

H-32

Gary Matchett

Hints — 9/5/02

r ( τ ) → 0 8VH(T 8VH(T 6KRZWKDW C zz ( τ ) GRHVQRWGHSHQGRQ τ VRWKDW(TFDQQRWEHVDWLVILHG 2

,5HFDOOWKDW lim R T = R xy ( λ ) LIDQGRQO\LIERWK E { R T } = R xy ( λ ) DQG σ RT → 0  T→∞

)',7KHFRQGLWLRQLQWKLVSUREOHPVKRXOGUHDG R ( t + τ, t ) → η ( t + τ )η ( t ) DV 2

τ → ∞ XQLIRUPO\LQ t $OVR\RXPXVWDVVXPH C ( t, t ) < σ IRUVRPH σ DQGDOO t  1 T ,JQRUHWKHKLQWLQWKH7H[W'HILQHWKHDYHUDJHPHDQDV η = --- ∫ η ( t ) dt 6KRZWKDW T 0 2 1 c lim ------ ∫ η ( t ) dt = η 8VHWKLVUHVXOWWRVKRZWKDW lim E { ( η c – η ) } = 0 LVHTXLYD c → ∞ 2c – c c→∞ OHQWWRWKHUHYLVHGFRQGLWLRQDERYH'R3UREOHPILUVWWRXQGHUVWDQGWKLVODWWHU UHVXOW 2

,'$VVXPHWKDW C ( t, t ) < σ IRUVRPH σ DQGDOO t 8VH(TWRJHW 1 T T 2 σ T = --------2- ∫ ∫ C ( t 1, t 2 ) dt 1 dt 2 &KDQJHYDULDEOHVWR t = t 2  τ = t 1 – t 2 %UHDNXSWKH 4T –T –T LQWHJUDOLQWKH tτ SODQHLQWRSRUWLRQVZKHUH τ ≥ T 2 DQG τ < T 2 DQGILQGZD\VWR OLPLWERWKSDUWV

H-33

Gary Matchett

Hints — 9/5/02

H-34

Related Documents