Probability Distributions Summary - Exam P

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Probability Distributions Summary - Exam P as PDF for free.

More details

  • Words: 467
  • Pages: 1
Summary of Special Probability Distributions Continuous Probability Distributions Distribution

Parameters a, b

Uniform on [a, b]

µ, σ

Normal

λ

Exponential

λ, r

Gamma

n

Chi-square

Density Function 1 f ( x) = , a≤ x≤b b−a

f ( x) =

1 e σ 2π

( x − µ )2 − 2σ 2

Mean µ=

f ( x) =

Γ (r )

b+a . 2

µ=

x r −1e − λ x , x > 0

µ=

n −1 1 f ( x ) = n 2 n x 2 e− x 2 , x > 0 2 Γ( 2 )

(b − a )

σ2 =

µ

, −∞ < x < ∞

f ( x ) = λ e − λ x if x ≥ 0

λr

Variance

12

2

Moment Generating Function etb − eta , t ≠ 0. M (t ) = (b − a ) t

M (t ) = e

σ2 1

σ2 =

λ r

σ2 =

λ

µ=n

1

λ

M X (t ) =

.

λ

, t<λ λ −t r ⎛ λ ⎞ M (t ) = ⎜ ⎟ , t<λ ⎝ λ −t ⎠

2

r

λ2

σ 2 = 2n

1 2

µ t + σ 2t 2

⎛ 1 ⎞ M (t ) = ⎜ 1 2 ⎟ ⎝ 2 −t ⎠

n2

=

1

(1 − 2t )

n2

, t<

1 2

Discrete Probability Distributions Distribution Binomial Negative Binomial Geometric Poisson

Parameters n, p k, p

p

λ

Mass Function ⎛n⎞ n− x f ( x ) = ⎜ ⎟ p x (1 − p ) , x = 0, 1, 2, …, n ⎝ x⎠ ⎛ x − 1⎞ k x−k f ( x) = ⎜ ⎟ p (1 − p ) , ⎝ k − 1⎠ x = k , k + 1, k + 2, … .

f ( x ) = p (1 − p ) f ( x ) = e− λ

λx x!

x −1

, x = 1, 2, 3, …

, x = 0, 1, 2, …

Mean

Variance

µ = np

σ 2 = np (1 − p )

k µ= p

k (1 − p ) σ = p2

µ=

1 p

µ =λ

2

σ2 =

1− p p2

σ2 =λ

Moment Generating Function

(

M ( t ) = 1 + p ( et − 1)

M X (t ) =

( pe )

t k

⎡⎣1 − (1 − p ) et ⎤⎦

M X (t ) =

k

)

n

, t < − ln (1 − p )

pet , t < − ln (1 − p ) 1 − (1 − p ) et

M ( t ) = exp ⎡⎣λ ( et − 1) ⎤⎦

Related Documents