Bab 4 Probabilitas
Chap 4-1
Topik
Konsep dasar probabilitas
Kondisi probabilitas
Sample spaces and events, simple probability, joint probability Statistical independence, marginal probability
Bayes’s Theorem
Chap 4-2
Topik
(continued)
probabilitas of a discrete random variable
Binomial distribution
Poisson distribution
Hypergeometric distribution
Chap 4-3
Ruang Sampel
Himpunan semua kemungkinan
e.g.: All six faces of a die:
e.g.: All 52 cards in a deck:
Chap 4-4
Kejadian
Kejadian sederhana
Kartu merah dari sekumpulan kartu bridge
Kejadian yang saling terhubung
Kartu As yang berasal dari kartu merah dan kartu hitam
Chap 4-5
Probabilitas
Probabilitas menyatakan
1
Certain
ukuran numerik dari suatu kejadian
Bernilai antara 0 dan 1
.5
Jumlah probabilitas seluruh kejadian 1 0
Impossible Chap 4-6
probabilitas dari kejadian E:
number of event outcomes P( E ) = total number of possible outcomes in the sample space X = e.g. P( ) = 2/36 T (There are 2 ways to get one 6 and the other 4)
Chap 4-7
Probabilitas kejadian A dan B yang saling terhubung , : P(A and B) = P(A ∩ B) number of outcomes from both A and B = total number of possible outcomes in sample space
E.g. P(Red Card and Ace) 2 Red Aces 1 = = 52 Total Number of Cards 26 Chap 4-8
Tabel Probabilitas Kejadian yang saling terhubung Event B1
Event
B2
Total
A1
P(A1 and B1) P(A1 and B2) P(A1)
A2
P(A2 and B1) P(A2 and B2) P(A2)
Total Joint Probability
P(B1)
P(B2)
1
Marginal (Simple) Probability Chap 4-9
Probabilitas kejadian , A or B: P( A or B) = P( A ∪ B)
number of outcomes from either A or B or both = total number of outcomes in sample space
E.g.
P (Red Card or Ace) 4 Aces + 26 Red Cards - 2 Red Aces = 52 total number of cards 28 7 = = 52 13 Chap 4-10
P(A1 or B1 ) = P(A1) + P(B1) - P(A1 and B1) Event Event
B1
B2
Total
A1
P(A1 and B1) P(A1 and B2) P(A1)
A2
P(A2 and B1) P(A2 and B2) P(A2)
Total
P(B1)
P(B2)
1
For Mutually Exclusive Events: P(A or B) = P(A) + P(B) Chap 4-11
The probabilitas kejadian B setelah kejadian A terjadi :
P( A and B) P( A | B) = P( B) E.g. P(Red Card given that it is an Ace) 2 Red Aces 1 = = 4 Aces 2 Chap 4-12
Color Type
Red
Black
Total
Ace
2
2
4
Non-Ace
24
24
48
Total
26
26
52
Revised Sample Space
P(Ace and Red) 2 / 52 2 P(Ace | Red) = = = P(Red) 26 / 52 26 Chap 4-13
Conditional probability:
P( A and B ) P( A | B) = P( B)
Penggandaan:
P ( A and B) = P( A | B) P ( B) = P( B | A) P ( A) Chap 4-14
(continued)
Kejadian A dan B independent jika :
P ( A | B) = P( A) or P ( B | A) = P( B) or P ( A and B ) = P( A) P ( B)
Kejadian A dan B independen jika probabilitas kejadian A, tidak dipengaruhi oleh kejadian lain Chap 4-15
Bayes’s Theorem P ( A | Bi ) P ( Bi ) P ( Bi | A ) = P ( A | B1 ) P ( B1 ) + • • • + P ( A | Bk ) P ( Bk ) P ( Bi and A ) = P ( A) Same Event
Adding up the parts of A in all the B’s Chap 4-16