Prob17-convertido.docx

  • Uploaded by: Diana Serrano
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Prob17-convertido.docx as PDF for free.

More details

  • Words: 708
  • Pages: 2
MATH 204

Section 4.4, Problem 17

Dr. TeBeest

Solve the nonhomogeneous ODE yjj − 2yj + 5y = ex cos 2x ,

(N)

NOTE: The input function is g(x) = ex cos 2x. STEP 1: Solve the associated homogeneous problem: yjj − 2yj + 5y = 0 ,

(H)

to obtain the complementary solution of (N): yc = c1 ex cos 2x + c2 ex sin 2x .

(C)

STEP 2: Construct a particular solution yp of (N) by Undetermined Coefficients. Input Function: g = ex cos 2x gj = ex cos 2x − 2 ex sin 2x gjj = −3 ex cos 2x − 4 ex sin 2x

Terms ex cos 2x ex cos 2x, ex sin 2x ex cos 2x, ex sin 2x List: ex cos 2x, ex sin 2x New List: x ex cos 2x, x ex sin 2x

Q: Do any terms in the List already appear in yc? A: Yes, both terms ex cos 2x and ex sin 2x already appear in yc, so must modify the List: ex cos x → x ex cos x ,

ex sin x → x ex sin x .

So we seek a particular solution of (N) that is a linear combination of terms in the New List: yp = ax ex cos 2x + bx ex sin 2x .

(P)

We will substitute yp into (N), but first yp = ax ex cos 2x + bx ex sin 2x , ypj =

aex cos 2x + ax ex cos 2x − 2ax ex sin 2x + bex sin 2x + bx ex sin 2x + 2bx ex cos 2x , = aex cos 2x + bex sin 2x + (a + 2b)xex cos 2x + (−2a + b)xex sin 2x ,

(note symmetry)

ypjj =

2aex cos 2x − 4aex sin 2x − 3axex cos 2x − 4aex sin 2x + 2bex sin 2x + 4bex cos 2x − 3bxex sin 2x + 4bxex cos 2x . (note symmetry) x x x = (2a + 4b)e cos 2x + (−4a + 2b)e sin 2x + (−3a + 4b)xe cos 2x + (−4a − 3b)xex sin 2x .

c 2000 Prof. K.G. TeBeest §

Kettering University

1

file: prob17.tex

Winter 2000

Plug these into (N) to obtain

yjj − 2yj + 5y = ex cos 2x ,

(2a + 4b)ex cos 2x + (−4a + 2b)ex sin 2x + (−3a + 4b)xex cos 2x + (−4a − 3b)xex sin 2x Σ

Σ

− 2 aex cos 2x + bex sin 2x + (a + 2b)xex cos 2x + (−2a + b)xex sin 2x ,

,

+ 5 ax ex cos 2x + bx ex sin 2x

ex cos 2x .



Collect like terms: (2a + 4b − 2a)ex cos 2x + (−4a + 2b − 2b)ex sin 2x + (−3a + 4b − 2a − 4b + 5a)xex cos 2x (note symmetry) x x + (−4a − 3b + 4a − 2b + 5b)xe sin 2x ≡ e cos 2x . Simplify: 4bex cos 2x − 4aex sin 2x

ex cos 2x .



(note symmetry)

Equate like terms: ex cos 2x :

4b ≡ 1

=⇒

b = 1/4

ex sin 2x :

−4a ≡ 0

=⇒

a=0

Litmus Test: Note that these terms are exactly those terms that were in the “List”. So by (P), a particular solution of (N) is yp = axex cos 2x + bxex sin 2x 1 x = xe sin 2x . 4 STEP 3: Then the general solution of the nonhomogeneous problem (N) is y = yc + yp

1 x x = c1 ex cos 2x + c2 e sin 2x + xe sin 2x . 4

It is a 2–parameter family of solutions of (N).

COMMENTS: 1. Note the numerical “symmetry” at most every step when trig functions are involved. 2. Note that trig functions always come in pairs: • if there’s a cos 2x, there will also be a sin 2x • if there’s a e3x cos 2x, there will also be a e3x sin 2x • if there’s a x4 cos 2x, there will also be a x4 sin 2x c 2000 Prof. K.G. TeBeest §

Kettering University

2

file: prob17.tex

Winter 2000

More Documents from "Diana Serrano"

Examen Berenice Serrano
November 2019 37
Intariri.docx
June 2020 63
June 2020 67
Metoda Cubului.docx
August 2019 96