2.3.9
a
PRML :Mixtures of Gaussians
V%&f< M-1 !W$S 7
n4|
1/8
Limitation of single Gaussian 100 90 80 70 60 50 40
1
2
3
4
5
6
Figure A.5 Old Faithful dataset
2/8
Limitation of single Gaussian 100
100
80
80
60
60
40
40
1
2
3
Figure 2.21 1
D5,,[ 4
5
6
1
2
3
Figure 2.21 2
D5,,[ 4
5
6
2/8
Mixture of Univariate Gaussians p(x)
x
VkJ~OF5,,[ (gW 3 D)$V$~O 3 DN5,, [r~AkgG@?,['5,.g,[%
Figure 2.22
3/8
Mixture of Univariate Gaussians p(x)
x
VkJ~OF5,,[ (gW 3 D)$V$~O 3 DN5,, [r~AkgG@?,['5,.g,[%
Figure 2.22
=,JtN5,,[rQ$F$kg9k~N8tHF5,,[N? Q$&,6r409lP$[\4FN"3,[,awG-k% 3/8
Mixture of Gaussians
p(x) =
K X
πk N (x|µk , Σk )
(2.188)
k=1
1
1
(a)
0.5
0.2
(b)
0.5
0.3
0.5 0
0 0
Figure 2.23 3
0.5
1
0
0.5
1
D5,,[ (2 !5) r~AkgG@?5,.g,[ 4/8
3NaGO5,.g,[r7CF$k% lL*K>N,[r~Akg9lP$.g,[KJk% ?H(P 9.3.3 aGO%6,[G"k Bernoulli ,[r~AkgG@? .g,[KD$FD@9k% 5,.g,[N8t π OJ
K X
πk = 1
(2.189)
0 6 πk 6 1
(2.190)
k=1
5/8
sum,product
k
K X
p(k)p(x|k)
(2.191)
k=1
D^j0 (2.188) K*$F$π = p(k) r k V\N.,r*VlgNv 0N($N (x|µ , Σ ) = p(x|k) r k NlgN x NroU-N(,[K _J93H,G-k% k
k
k
p(x) =
K X
πk N (x|µk , Σk )
(2.188)
k=1
6/8
responsibilities
ve,[ p(k|x) OsoKEWG"k%responsibilities HbFV% Bayes j}rQ$F$ve,[,J
0 (2.192) N\YJraO 9 OK*$FT&%
(2.192)
7/8
`Y ln p(X|π, µ, Σ) =
N X
ln
n=1
X K k=1
πk N (xn |µk , Σk )
(2.193)
0 (2.193) K*$F$X = {x , . . . , x }$π ≡ {π , . . . , π }$ µ P≡ {µ , . . . , µ }$Σ ≡ {Σ , . . . , Σ } HjA9k% O ln NfG"k+i$µ , Σ rdj9klg$q7/Jk% 1 DN}!O+jV7tMW;Q$F$`YrGg=K9k µ , Σ r dj9k% b& 1 Dj!O 9 OKRp9k expectation maximization(EM) "k4 j:`G"k% N
1
K k=1
1
K
1
K
K
1
k
k
k
k
8/8