Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
35.57 677.38 1322.83 1904.82 2398.34 2833.75 3192.11 3471.41 3671.19 3803.7 3845.89 3738.83 3569.69 3325.77 3015.63 2613.95 2142.89 1611.14 997.12 320.33 31.73
Max 22.76 695.33 1320.14 1919.84 2405.92 2832.25 3186.97 3470.02 3672.17 3816.63 3859.98 3750.21 3578.4 3328.56 2999.11 2618.68 2148.09 1616.81 977.01 299.48 14.43
4.31 685.27 1342.32 1918.97 2415.82 2831.09 3185.35 3468.71 3672.16 3817.98 3856.93 3744.85 3569.38 3317.64 3013.63 2606.04 2133.71 1600.69 978.85 301.5 7.04
17.84 672.95 1351.59 2068.58 2498.25 2881.5 3178.58 3460.53 3665.02 3803.06 3845.41 3737.98 3565.48 3323.87 3009.87 2607 2134.98 1602.28 979.3 300.85 9.43
-28.09 398.77 780.98 1121 1406.42 1655.64 1851.4 2002.39 2100.05 2157.42 2172.85 2130.34 2052.47 1923.89 1755.21 1531.25 1258.63 951.32 587.95 187.82 -12.93
Min -31.83 410.25 781.17 1132.64 1415.07 1659.44 1851.03 2001.96 2099.68 2161.07 2176.39 2134.04 2056.36 1926.82 1749.82 1538.89 1265.2 956.81 577.31 175.85 -7.83
-4.05 404.29 794.36 1132.14 1420.83 1658.81 1850.16 2001.27 2099.68 2161.59 2175.42 2131.76 2052.11 1920.99 1757.66 1531.53 1256.84 947.46 578.41 177.04 -4.21
-34.24 396.15 790.16 1175.48 1407.41 1655.64 1844.04 1996.54 2097.21 2157.17 2172.69 2129.97 2050.46 1919.09 1752.06 1527.23 1254.06 946.2 577.4 176.32 -14.62
Des Max Des Min 35.57 -34.24 695.33 396.15 1351.59 780.98 2068.58 1121 2498.25 1406.42 2881.5 1655.64 3192.11 1844.04 3471.41 1996.54 3672.17 2097.21 3817.98 2157.17 3859.98 2172.69 3750.21 2129.97 3578.4 2050.46 3328.56 1919.09 3015.63 1749.82 2618.68 1527.23 2148.09 1254.06 1616.81 946.2 997.12 577.31 320.33 175.85 31.73 -14.62
kN.m
Bending Moments 4000 3750 3500 3250 3000 2750 2500 2250 2000 1750 1500 1250 1000 750 500 250 0 -250 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Chainage Max
Column C
Column D
Column E
Min
Column G
Column H
Column I
Des Max
Des Min
17
18
19
20
Data Input 1 2
Concrete Class = K Value =
C45/55 45 Concrete Class 0.8 % Stress of Ultimate Tendon Stress
3
Element Class
=
Class 1 Allowable cracking to occur
4
System
=
Strength Class fctm (N/mm2) Ecm (kN/mm2) fcu (N/mm2)
35
Post - Tensioning System
C20/25 2.2
C25/30 2.6
C30/37 2.9
C35/45 3.2
C40/50 3.5
C45/55 3.8
C50/60 4.1
30
31
33
34
35
36
37
20
25
30
35
40
45
50
Design Section Properties 3 4
A Z1
= =
5 6
Z2 Y1
= =
7
Y2
=
700,250 mm2 1.50E+08 mm3 2.88E+08 mm3 832 mm 433 mm 1,265 mm 225 mm
Auto Dmax = 8 Tendon - cover =
Section Area Section Modulus for Top of Design Section
0.700 149.980
Section Modulus Bottom of Design Section From Bottom Edge to Centroid
288.270
From Top Edge to Centroid Total Section Depth Concrete Cover + Reinforcing + Cable Centroid
Design Concrete Stresses At Service Auto fa max
=
Auto fa min At transfer Auto fa maxt
=
= Auto fa mint = Tension Force - At Transfer Auto ƒ1 min = ƒ Auto 2 min =
14.9 MPa 0.0 MPa
33% f cu (Design Concrete Strength)
20.3 MPa -1.0 MPa
45% of f ci (Concrete Strength at Transfer) -1.000
40.2 MPa -7.5 MPa
Auto Pe min = 6167.6 kN Auto es max = 607.1 mm Tension Force - At Service Loading Auto ƒ1 max = 29.3 MPa Auto ƒ2 max Auto Pe min Auto es max
Class 1
Pre-stress Force Eccentricity
-6.1 MPa
=
4231.1 kN 825.7 mm
= =
Pre-stress Force Eccentricity
Bending Moments 9 Mmax
=
10 Mdn 11 Mmin
= =
3,860.0 kN/m 2,172.7 kN/m 0.0 kN/m
Maximum Bending Moments (without Dn) Bending moments due to own Dn Minimum Bending moments (without Dn)
Magnel Diagram Construction Auto emax TOP Auto emax BOT
=
400 mm
=
1,000 mm
Plotting: Upper Range Limit for Prestress Offset Plotting: Lower Range limit for prestress Offset
Magnel Diagram 150,000 125,000 100,000 75,000 50,000
1/Po
25,000 0 -25,000 -50,000 -75,000 -100,000 -125,000 -150,000 -175,000 -200,000 400
450
500
550
600
80 21
Pe
=
5200.0 kN
Max Negative Value -10 -9 -8 -7 -6 -5 -4 Min Pe -3 Min Pe -2 -1 Max Pe 0 Min Pe 1 2 3 4 5 6 7 8 650 700 750 800 850 900 950 1 9 000 10 e-offset Mx Positive Value Enter Pre-stress Force from Magnel Diagram at Max es
e values
Min Pe
Pe - Post Tensioning Force Max Pe Min Pe -150,152 112,260 40,857 24,973 17,982 14,049 11,528 9,774 8,483 7,493 6,711 6,076 5,551 5,109 4,733 4,408 4,125 3,876 3,655 3,459 3,282 3,122 2,978
400 427.27 454.55 481.82 509.09 536.36 563.64 590.91 618.18 645.45 672.73 700.00 727.27 754.55 781.82 809.09 836.36 863.64 890.91 918.18 945.45 972.73 1000
9,822 9,405 9,021 8,668 8,341 8,038 7,756 7,493 7,248 7,018 6,802 6,599 6,408 6,227 6,057 5,895 5,742 5,597 5,459 5,328 5,202 5,083 4,969
570
7,693
11,064
7,164 6,859 6,580 6,322 6,083 5,862 5,657 5,465 5,286 5,118 4,961 4,813 4,674 4,542 4,418 4,300 4,188 4,082 3,981 3,886 3,794 3,707 3,624
Min Pe -186,221 139,226 50,671 30,972 22,301 17,424 14,297 12,122 10,521 9,293 8,323 7,535 6,884 6,337 5,870 5,467 5,116 4,807 4,534 4,289 4,070 3,872 3,693
5,611
13,722
Class 2
Class 3
14.9 0.0
14.9 -2.4
14.9 -2.0
20.3 -1.0
20.3 -3.1
20.3 -3.0
Limiting Design Stress - Class 2 Sections System 30.0 Pre Post -
0 2.1 2.1
Concrete Grade (Mpa) 40.0 45.0 50.0 2.9 2.3 2.3
3.05 2.43 2.43
3.2 2.6 2.55
60.0 3.5 2.8 2.8
Bending Moments (kN.m) Chainage Mmin Mmax K Value fmax
=
fmin
= =
f'min
=
Zt
=
Zb
= =
A Emax Top Emax Bot
=
P (Mmax)
=
-34.24 396.15
35.57 695.33
461 543
363 446
-609 -450
-206 -47
2
780.98
1351.59
617
520
-292
111
3
1121
2068.58
683
585
-120
283
20.25 (N/mm ) Less than 0.45 x fcu for Upper Boundary Conditions -1.0 (N/mm2) Less than Zero for Lower Boundary Conditions 2.88E+08 mm3 Section Modulus of Top Beam Section
4
1406.42
2498.25
738
640
-17
386
5
1655.64
2881.5
785
688
75
478
6
1844.04
3192.11
822
724
150
553
1.50E+08 mm3 700250 mm2 -658 mm
Section Modulus of Bottom Section Section Area
7 8
1996.54 2097.21
3471.41 3672.17
851 870
754 773
217 265
620 669
Max Offset from Centroid to Top of Edge of Beam
9
2157.17
3817.98
882
785
300
704
607 mm 5,200,000 N
Max Offset from Centroid to Top of Edge of Beam Minimum Pre-stress Force
10
2172.69
3859.98
885
788
311
714
3750.21 3578.4 3328.56 3015.63 2618.68 2148.09 1616.81 997.12 320.33 31.73
877 861 836 804 761 708 649 578 501 464 461 885
779 764 739 706 664 611 552 481 404 367 363 788
284 243 183 108 12 -101 -229 -378 -540 -610 -610 311
687 646 586 511 415 302 174 26 -137 -207 -207 714
2
=
Po at Service Zt & Mmax Zb & Mmax
0 1
0.8 Factor % Stress of Ultimate Tendon Stress 14.85 (N/mm2) Calculated from concrete class 0.0 (N/mm2) Minimum is 0
=
f'max
11 2129.97 12 2050.46 13 1919.09 14 1749.82 15 1527.23 16 1254.06 17 946.2 18 577.31 19 175.85 20 -14.62 Minimum Values Maximum Values
Cable Zone
mm Offset
All values from previous sheet
Design Data from Pre-stress Calcs
Po at Transfer Zt & Mmin Zb - Mmin
900 800 700 600 500 400 300 200 100 0 -100 -200 -300 -400 -500 -600 -700 0
1
2
3
4
5
6
7
8
9
10
11
12
13
Beam Chainage
Po at Transfer
Column L
Po at Service
Column N
14
15
16
17
18
19
20
Data Input 1
Concrete Class =
Auto K Value
=
Auto Element Class
=
45 Concrete Class
C45/55
0.8 % Stress of Ultimate Tendon Stress Class 1 Allowable compressive Stress
Design Concrete Stresses At Service Auto fmax 3 fmin At Transfer 4 f'max 5
2 14.9 (N/mm ) 33% fcu 0.0 (N/mm2) 36% x √fcu
= =
20.3 (N/mm2) 80% of fa max -1.0 (N/mm2) 36% x √(80% fcu)
=
f'min
=
Design Section Properties 6
A
=
700,250 mm
7 8
Ztop Z bot Dmax
= =
1.50E+08 mm 2.88E+08 mm3 1,265 mm 225 mm
9 10
= Tendon - cover =
2
Section Area
3
Section Modulus for Top of Design Section Section Modulus Bottom of Design Section Maximum Section Depth
Bending Moments 11 Mmax 12 Mmin
=
3,860.0 kN/m
Maximum Bending Moments
=
2,172.7 kN/m
Minimum Bending moments
Magnel Diagram Construction Auto emax TOP
=
0 mm
Auto emax BOT Auto ZB/A Auto ZT/A
= =
950 mm 412 mm
=
-214 mm
Upper Range Limit for Prestress Offset Lower Range limit for prestress Offset e value for Magnel Construction
Magnel Diagram
106/Po - Post Tensioning Fo
400 350 300 250
1/Po
200 150 100 50 0 -50 -100 -150 0
100
200
300
400
3000 13 emax Auto Max Po Auto Min Po 14 emin Auto Max Po Auto Min Po Auto Pe
500
600
700
800
900
e-offset
Max Negative Value -10 -9 -8 -7 -6 -5 -4 Max Po -3 Max Po -2 -1 Min Po 0 Min Po 1 2 3 4 5 6 7 8 9 1000 10 Mx Positive Value
= = =
820 mm 3,917 kN 3,834 kN
Enter the Maximum e value within Area of 4 lines
= = = =
600 mm 5,290 kN 7,918 kN 5,200 kN
Enter the Minimum e value within Area of 4 lines
Safe Value for Post tensioning Force
e values
Max Po
0 43.18 86.36 129.55 172.73 215.91 259.09 302.27 345.45 388.64 431.82 475.00 518.18 561.36 604.55 647.73 690.91 734.09 777.27 820.45 863.64 906.82
-105 -84 -63 -41 -20 1 22 43 64 85 107 128 149 170 191 212 234 255 276 297 318 339
950
361
106/Po - Post Tensioning Force Max Po
Min Po
Min Po
20
85 94 103 112 121 130 139 148 157 166 175 184 193 202 211 220 229 237 246 255 264 273
-92 -74 -55 -36 -18 1 19 38 57 75 94 112 131 149 168 187 205 224 242 261 280 298
51 57 62 68 73 78 84 89 95 100 105 111 116 121 127 132 138 143 148 154 159 165
282
317
170
fctm Ecm fcu
Class 1 Class 2 Class 3 14.9 14.9 14.9
1,040
0.0
-2.4
-2.0
11.9
11.9
11.9
-1.0
-3.1
-3.0
Strength Class C20/25
C25/30
C30/37
C35/45
C40/50
C45/55
C50/60
(N/mm2)
2.2
2.6
2.9
3.2
3.5
3.8
4.1
(kN/mm2)
30
31
33
34
35
36
37
(N/mm )
20
25
30
35
40
45
50
2
Class Element Prestress Loss % Class 1 Class 2 0 Class 3 1 2 3 4 5 6 7 8 10 11 17 18 19
Design Data from Pre-stress Calcs K Value fmax
=
fmin
= =
0.8 Factor % Stress of Ultimate Tendon Stress 14.85 (N/mm2) Calculated from concrete class 0.0 (N/mm2) Minimum is 0 20.25 (N/mm2) Less than 0.45 x fcu for Upper Boundary Conditions -1.0 (N/mm2) Less than Zero for Lower Boundary Conditions
=
f'max f'min Zt
=
1.50E+08 mm3 2.88E+08 mm3 700250 mm2 5,200,000 N
= = = =
Zb A P (Mmax)
Section Modulus of Top Beam Section Section Modulus of Bottom Section Section Area Minimum Pre-stress Force
Po at Transfer Zt & Mmin Zb - Mmin
Po at Service Zt & Mmax Zb & Mmax Profile 1 offset
236 319
704 787
-313 -154
-403 -245
536 535
300 285
236 250
-300 -285
-64 -35
0 1
296 297
596 582
896 867
2
780.981
1351.593
393
861
4
-87
545
265
280
-265
15
2
287
552
817
3 4
1120.997 1406.415
2068.579 2498.246
459 513
926 981
176 279
86 189
555 585
220 180
335 405
-220 -180
115 225
3 4
277 247
497 427
717 607
5
1655.638
2881.503
561
1,029
371
281
630
165
465
-165
300
5
202
367
532
3192.113 3471.409 3672.167 3817.980 3859.982 3750.208 3578.399 3328.564 3015.631 2618.684 2148.093 1616.811 997.117 320.328 31.730
598 627 646 658 661 653 637 612 580 537 484 425 354 277 240 236 661
1,066 1,095 1,114 1,126 1,129 1,121 1,105 1,080 1,047 1,005 952 893 822 745 708 704 1,129
446 513 562 597 607 580 539 479 404 308 195 67 -82 -244 -314 -314 607
356 423 471 506 516 490 449 388 313 218 105 -23 -172 -335 -404 -404 516
660 670 670 670 680 670 670 670 660 630 585 555 545 535 536
145 130 110 100 100 100 110 130 145 165 180 220 265 285 300
515 540 560 570 580 570 560 540 515 465 405 335 280 250 236
-145 -130 -110 -100 -100 -100 -110 -130 -145 -165 -180 -220 -265 -285 -300
370 410 450 470 480 470 450 410 370 300 225 115 15 -35 -64
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
172 162 162 162 152 162 162 162 172 202 247 277 287 297 296
317 292 272 262 252 262 272 292 317 367 427 497 552 582 596
462 422 382 362 352 362 382 422 462 532 607 717 817 867 896
6 1844.041 7 1996.542 8 2097.214 9 2157.169 10 2172.692 11 2129.973 12 2050.456 13 1919.090 14 1749.816 15 1527.226 16 1254.058 17 946.196 18 577.311 19 175.850 20 -14.617 Minimum Values Maximum Values
mm Offset
700 500 300 100 -100 -300 Row 5
Row 6
Row 7
Row 8
Row 9
Row 10
Row 11
Row 12
Row 13
Row 14
Row 15
Row 16
Row 17
Row 18
Row 19
Row 20
Row 21
Row 22
Row 23
13
14
15
16
17
18
19
20
Beam Chainage
Zt & Mmin
Zb - Mmin
Zt & Mmax
Zb & Mmax
Cable Profiles 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0 -50 -100 0
1
2
3
4
5
6
7
8
9
10
11
Beam Chainage
Column Q
Column O
Column S
Profile 3
35.570 695.330
900
Row 4
Distance from soffit Profile 1 Profile 2
Profile 3 Chainage
-34.244 396.146
1,100
-500 Row 3
Design Profile 2 offset
0 1
Cable Zone
mm Offset
All values from previous sheet
Bending Moments (kN.m) Chainage Mmin Mmax
12
All Auto values from previous sheets
Design Data from Pre-stress Calcs K Value fmax
=
fmin
=
f'max
=
f'min
=
Zt
=
Zb
= =
A P (Mmax) Md e fcu f'cu
=
= = = = =
% Stress of Ultimate Tendon Stress
20.25 N/mm2 -1 N/mm2
Less than 0.45 x fcu for Upper Boundary Conditions
Pre - Tensioning
5.33E-05
4.80E-05
4.80E-05
Less than Zero for Lower Boundary Conditions
Post - Tensioning
4.00E-05
3.60E-05
3.60E-05
4.00E-05
3.60E-05
Calculated from concrete class Minimum is 0
1.50E+08 mm3 2.88E+08 mm3 700250 mm2 5,200,000 N 2,173 kN.m 607 mm 45 MPa 36 MPa
ec
=
r ∂ ∆P(x)R + ∆P(x)w
= =
88 m #N/A
=
#N/A kN
i
=
ℓo Pℓo
=
P'jack ∆P(x)ws
Modulus of Elasticity for Concrete Moment of Inertia Perimeter of X-section
Number of cables Sheath inside Diameter Total Tendon Area 7-wire Strand Manufacturers specs Manufacturers specs Midspan or Span/2 Total depth of cable eccentricity (maxe + mine)
26 28 29.5 31
Losses due to friction caused by radius of duct and wobble
45
32
50 60
34 36
Wedge Slip in (From Manufacturers) Length of Tendon effected by wedge slip
= =
#N/A kN
Stressing at Anchor
Description
=
#N/A kN
Losses due to slip
High Tensile Steel Wire
205
7-wire Strand
195
High Tensile Alloy Steel Bars
165
=
Es
=
20.25 MPa 195.00 GPa
Ec
=
32 MPa
Loss Ecs
= =
62 MPa 3 kN
∆P1 P'
= =
Stress at ℓo
#N/A N #N/A kN
f'cu
=
Higher than 40 Mpa
fck
=
3.60E-05
0.4 x fcu
=
18.00 MPa
∆fck
= =
126 MPa 6.7 kN
P' - (∆P1 + ∆P2) =
Friction Coefficient
Total Short Term Losses Total After Short Term Losses
Strand or Wire in Steel Duct 0.25 Pulled through Oversized Duct with water-saluble oil0.17
Concrete Cube Strength at Transfer
0.55 0.33
Grease strand running in plastic sleeve
0.05
Manufacturers specs
0.18
Creep Coefficient Concrete Stress Stress x Creep Factor Losses due to Creep
1.40E-04 Shrinkage Strain 27 MPa 1 kN #N/A kN
Long term and Short term losses
Steel Relaxation
Wobble Factor Minimum Strong Rigid Sheath - no displacement
3.30E-03 1.70E-03
Greased Strands in Plastic sleeves
2.50E-03
Manufacturers specs
1.70E-03
Initial Jacking Force 70%
= =
80% Percentage of Ultimate Tendon Stressing Force - Pe 10% Relaxation % of Stressing force
75% 80%
=
#N/A kN
85%
Initial Prestress Force #N/A Plosses Pinitial
GPA
Lightly rusted Tendon, Unlined concrete Duct Lightly rusted Tendon, Lightly rusted Duct
Shrinkage: = = =
Modulus of Elasticity for Steel
Loss due to Elastic Shortening
Creep:
Po Factor Pu
Modulus of Elasticity (Gpa) 25
30 35 40
Elastic Shortening:
Shrinkage
Modulus of Elasticity for Concrete
Cube Strength (Mpa) 20
#N/A m #N/A kN
fcs
HUMID ATMOSPHERES (OUTSIDE: 80% RH)
Higher than 40 MPa
Shrinkage Coefficient Shrinkage per Unit length System Humidity Pre - Tensioning Post - Tensioning 80% - Coastal 1.80E-04 1.40E-04 60% - Mostly inland 3.10E-04 2.50E-04 35% - Low e.g. Windhoek 4.20E-04 3.50E-04
Radius of Tendon Curvature Stress Factor
Wedge Slip
cs
Lower than 40 MPa
25
Friction
6.5 mm
System used
Section Modulus of Bottom Section Section Area Minimum Pre-stress Force Max moments due to Own Weight Maximum Cable Offset from Section Sentroid Concrete Strength during Service Concrete Strength at Transfer
32 MPa = = 1.248E+11 Ixx = 6,515 mm = 80% - Coastal = Post - Tensioning = 3 no = 75 mm = 13254 mm2 = 195 kN/mm2 = 3.30E-01 Coefficient = #N/A Factor = 10000 mm 570 mm
DRY ATMOSPHERES (INSIDE: 50% RH)
Concrete Cube Strength at Transfer
Section Modulus of Top Beam Section
Ecm I U Humidity System No Diameter Ap Es µ k x
ε
CREEP COEFFICIENT OF CONCRETE - fck
0.8 Factor 14.85 N/mm2 0 N/mm2
=
#N/A kN
Total Losses
=
#N/A kN
Initial Stressing Force
90% 95% 100%
0 0 0