Power Electronics Professor Mohamed A. El-Sharkawi
Power Control
ton Ps = P τ
Power On-time
P
(ton)
ρ
Ps Off-time
(toff)
Time
τ)
Period (
El-Sharkawi@University of Washington
2
Load Switching Power P
On-time (ton)
Off-time
(toff)
Time (t)
τ)
Period (
toff
ton El-Sharkawi@University of Washington
3
Energy Consumption (E) Power P
On-time (ton)
Ps Off-time
Time (t)
(toff)
τ)
Duty Ratio (K)
Period (
E ≡ Pt
ton Es = Ps t = Pt τ El-Sharkawi@University of Washington
4
vsw
Ideal Switch +
i vs
vt -
R
i
vs R
vs Vsw
El-Sharkawi@University of Washington
6
El-Sharkawi@University of Washington
7
El-Sharkawi@University of Washington
8
El-Sharkawi@University of Washington
9
Bi-polar Transistor (C)
(C)
IC
Collector Base (B)
(C)
VCB
N
IB (B)
P N
VCE
(B) VBE
Emitter
IE
(E) (E)
IC ≈ β I B I E = I B + IC
(E)
VCE = VCB + VBE
(C)
Characteristics of Bi-polar Transistor
IC VCB IB VCE
(B) VBE IE
IB
Saturation Region IC
(E)
IB1 IB2< IB1 Linear Region IB= 0
V 0.6 BE Base Characteristics
Cut Off Region
VCE
Collector Characteristics
IC
IB max
IC RL
VCC RL
IB
(1)
V CE V CC (2) IB = 0
VCC = VCE + RL I C At point (1) VCE is very small
VCC IC ≈ RL
Closed switch Open switch
VCC
At point (2) IC is very small
VCE ≈ VCC
VCE
Example •
Estimate the losses of the transistor at point 1 and 2. Also calculate the losses at a mid point in the linear region where IB=0.1A. The current gain in the saturation region is 4.9 and in the linear region is 50.
IC
IB max
IC 10Ω
VCC RL
IB max=2A
(1)
V CE 100V (2) IB = 0 VCC El-Sharkawi@University of Washington
VCE 13
Solution IC 10Ω IB max=2A
IC Vcc RL
VCE
IB max 1 3
100V 2 IB = 0
At point 1 Total losses = base loses + collector losses
VCC VCE
Total losses = I B max * VBE + I C1 * VCE1
2* 0.7 + [4.9 * 2]* (100 − 4.9 * 2 * 10 ) = 21 W
El-Sharkawi@University of Washington
14
Solution IC 10Ω IB max=2A
IC Vcc RL
VCE
IB max 1 3
100V 2 IB = 0
At point 2 Total losses = collector losses Assume VCE=0.99 VCC
VCC VCE
Total losses = I C 2 * VCE 2 ⎡100 − 0.99 * 100 ⎤ * (0.99* 100) = 10 W ⎥ ⎢⎣ 10 ⎦ El-Sharkawi@University of Washington
15
Solution IC 10Ω IB max=0.1A
IC Vcc RL
VCE
IB max 1 3
100V 2 IB = 0
At point 3 Total losses = base loses + collector losses
VCC VCE
Total losses = I B 3 * VBE + I C 3 * VCE 3
0.1* 0.7 + [50 * 0.1]* (100 − 50 * 0.1* 10 ) = 250.07 W
Power transistors cannot operate in the linear region El-Sharkawi@University of Washington
16
Thyristors [Silicon Controlled Rectifier (SCR)] Anode (A)
IA
Ig = max Ig > 0 Gate (G)
VRB
Ig = 0
Ih V AK
Cathode (K)
V
TO
VBO
Closing Conditions of SCR Anode (A)
1. Positive anode to cathode voltage (VAK) 2. Maximum triggering pulse is applied (Ig)
Gate (G)
Cathode (K)
Closing angle is α
El-Sharkawi@University of Washington
18
Opening Conditions of SCR 1. Anode current is below the holding value (Ih) VRB
IA
Ig = 0 Ih V AK
Opening angle is β El-Sharkawi@University of Washington
19
Power Converters
El-Sharkawi@University of Washington
20
Power Converters
El-Sharkawi@University of Washington
21
AC/DC Converters
El-Sharkawi@University of Washington
22
Single-Phase, Half-Wave
vs
i
+ vt -
R
vs = Vmax sin( ω t )
vs i = ( only when SCR is closed ) R vt = i R = vs ( only when SCR is closed )
vt i= R vt
α
i
i
vs
+ vt -
R
ωt
β
vs El-Sharkawi@University of Washington
24
Average Voltage Across the Load 1 Vave = 2π
β
2π
1 ∫0 vt dω t = 2 π α∫ vs dω t
i
vt
α
ωt
β
vs El-Sharkawi@University of Washington
25
β
Load voltage
π
1 1 Vave = vs dω t = v s dω t ∫ ∫ 2π α 2π α π
i
vt
1 Vave = Vmax sin (ω t ) dωt ∫ 2π α
Vmax Vave = ( 1 + cos α ) 2π
α I ave
Vave = R
ωt
β
vs El-Sharkawi@University of Washington
26
Vave
Vmax Vave = ( 1 + cos α ) 2π
Vmax
π
Vmax 2π
π 2
π
α
Root-Mean-Squares (RMS)
(.) 1 2π
2π
∫ 0
. dωt
2
Root Mean Squares of f 1 Step 2: 2π
2π
∫
( f ) dωt 2
0
Step 1: Step 3:
1 2π
2π
( f ) d ω t ∫ 2
0
(f)
2
Concept of RMS Average of v2
v2
Square root of the average of v2 El-Sharkawi@University of Washington
ωt v
Average of v=0
30
Root-Mean-Squares (RMS) of a sinusoidal voltage 1 Vmean = Vave = 2π 1 Vrms = 2π
2π
∫ [v( t )]
0
2
2π
∫
v( t ) dωt
0
1 dωt = 2π
2π
∫ [Vmax sin( ωt )]
0
2
dωt
RMS of load voltage
i
vt
α
ωt vs
2 π Vmax Vrms = [ sin(ω t )]2 dω t =
2π
Vrms
∫
α
Vmax = 2
Vmax =
2 π Vmax [ 1 − cos( 2ω t ] dωt
4π
∫
α
α sin ( 2α ) [1 − + ] π 2π
2 Vs rms
RMS of Supply Voltage
Vrms Vmax 2
Vrms I rms = R
π
α
Example.2: An ac source of 110V (rms) is connected to a resistive element of 2 Ω through a single SCR. o o For α = 45 and 90 , calculate the followings: a) b) c)
rms voltage across the load resistance rms current of the resistance Average voltage drop across the SCR
i
vs
Solution:
+ vt -
R
For α = 45
o
a)
Vrms =
Vsrms 2
⎡ α sin(2α ) ⎤ 110 ⎢⎣1 − π + 2π ⎥⎦ = 2
)
V 74.13 I rms = rms = = 37.07 A R 2
b) ⎡α
c)
(
⎛ 45 π ⎞ ⎜ 1− 180 + sin( 90 ) ⎟ = 74.13 V ⎜⎜ π 2 π ⎟⎟ ⎝ ⎠
2π
1 ⎢ v s dωt + ∫ v s dωt VSCR = 2π ⎢ ∫ π ⎣0 VSCR = −
vt
⎤ V ⎥ = − max ( 1 + cos α ) 2π ⎥⎦
2 110 [ 1 + cos( 45 )] = − 42.27 V 2π
α
This looks like the negative i of the average voltage across the load. Why? ωt
vs
Electric Power 2 Vrms 2 P = = I rms R
R
2 Vmax P = [2(π − α ) + sin( 2α )]
8π R
Single-Phase, Full-Wave, AC-to-DC Conversion for Resistive Loads C
i1 S1
S3 vs
i2 R
A S4
B S2 D
vt
Single-Phase, Full-Wave, AC-to-DC 2-SCRs and 2 Diodes C
i1 S1
S2 vs
i2 R
A D2
B
vt
D1
El-Sharkawi@University of Washington
D
37
C
i1 S1
S3 vs
i2 R
A
B S2
S4
D
i1
vt
vt
α
i2
ωt vs
vt
i1
vt
i2
vt
α
ωt vs
Vave =
1
π
Vrms =
π
∫α v
t
1 2π
dωt =
1
π
2π
∫ v(t ) 0
2
π
∫α V
max
dωt =
sin( ωt ) dωt =
1
π
[V ∫ πα
max
Vmax
π
( 1 + cos α )
sin(ωt )] dωt 2
Vrms =
2 Vmax
π
π
π
α
α
2 V 2 max [ 1 − cos( 2ωt )] dωt sin( t ) d t ω ω = ∫ 2π ∫
Vmax Vrms = 2
⎡ α sin( 2α ) ⎤ ⎢⎣1 − π + 2π ⎥⎦
2 2 Vrms Vmax P = = [2(π − α ) + sin( 2α )]
R
4π R
Half Wave Versus Full Wave Half Wave Average Voltage RMS Voltage Power
Full Wave
Vmax Vave = (1 + cos α ) 2π Vrms =
Vmax 2
⎡ α sin( 2α ) ⎤ ⎢1 − π + 2π ⎥ ⎣ ⎦
2 Vmax P = [2(π − α ) + sin ( 2α )] 8π R
Vave = Vrms
Vmax
Vmax = 2
π
(1 + cos α )
⎡ α sin( 2α ) ⎤ ⎢1 − π + 2π ⎥ ⎣ ⎦
2 Vmax P = [2(π − α ) + sin ( 2α )] 4π R
El-Sharkawi@University of Washington
41
Example A full-wave, ac/dc converter is connected to a resistive load of 5 Ω. The voltage of the ac source is 110 V(rms). It is required that the rms voltage across the load to be 55 V. Calculate the triggering angle, and the load power.
Solution Vrms = Vsrms 55 = 110 π
α
sin( 2α ) [1 − + ] π 2π α sin( 2α )
[1 −
π
+
sin( 2α ) 2.25 = α − 180 2
2π
]
α ≈ 112.5 o
2 Vrms ( 55 )2 P= = = 605 W R 5
DC/DC Converters
El-Sharkawi@University of Washington
44
DC-to-DC Conversion 1. Step-down (Buck) converter: where the output voltage of the converter is lower than the input voltage. 2. Step-up (Boost) converter: where the voltage is higher than the input voltage. 3. Step-down/step-up (Buck-Boost) converter.
output
Step Down (Buck converter) VS
I Vl ton
Time
τ
VCE
VS
I + Vl -
ton
Time
τ
Vave =
1
τ
t on
∫ Vs dt =
0
ton
τ
Vs = K Vs
Example f = 5 kHz ( switching frequency ) Vs = 12 V ; Vave = 5 V ; ton = ? Solution
1 1 τ = = = 0.2 ms f 5 Vave =
ton
τ
Vs = K Vs
5 K = = o.417 12 ton = 0.417 × 0.2 = 0.0834 ms El-Sharkawi@University of Washington
47
Step up (Boost converter) L
it
Is vs
C
El-Sharkawi@University of Washington
R
vt
48
L
it
Is vs
C
R
vt
Keep in mind •Inductor current is unidirectional •Voltage across inductor reverses •Inductor cannot permanently store energy
L
L
ion vs
ioff vs
El-Sharkawi@University of Washington
C
R
vt
49
L
vs
Δi
L
ion
i off
vs
ion
ton
C
R
vt
ioff
toff
Time
50
Inductor current
Δi
ton Inductor voltage
toff
Time
von
voff Time
Energy is acquired by inductor Energy is released by inductor 51
L
L
i on
i off
VS
VS
Vs = L
Δ ion
V s = vt − L
ton
R
C
At steady state Δ ion = Δ ioff
vt =Vs + L
Δ ioff t
El-Sharkawi@University of off Washington
vt
Δ ioff t off
⎛ t on ⎜ = Vs 1 + ⎜ t off ⎝ 52
⎞ ⎟ ⎟ ⎠
Example • A Boost converter is used to step up 20V into 50V. The switching frequency of the transistor is 5kHz, and the load resistance is 10Ω. Compute the following: 1. The value of the inductance that would limit the current ripple at the source side to 100mA 2. The average current of the load 3. The power delivered by the source 4. The average current of the source El-Sharkawi@University of Washington
53
Solution Part 1
⎞ ⎛ t Vt = Vs ⎜1 + on ⎟ ⎜ t ⎟ off ⎠ ⎝ ⎞ ⎛ t on ⎟ ⎜ 50 = 20 1 + ⎜ t ⎟ off ⎠ ⎝ ton =1.5 * t off
ton + toff
1 1 = = = 0.2 ms f 5
ton =1.5* t off = 1.5* (0.2 − ton ) = 0.12 ms
El-Sharkawi@University of Washington
54
Vs = L
Δ ion ton
100 20 = L 0.12
L = 24 mH
Part 2
Part 3
Vt 50 = =5 A It = R 10 Part 4
P = Vt * I t = 50 * 5 = 250 W
P 250 Is = = = 12.5 A Vs 20 El-Sharkawi@University of Washington
55
Buck-Boost converter it
is vs
L
C
El-Sharkawi@University of Washington
R
vt
56
-
vs
L
ion
C
ioff
R
L
vt +
Vs = L
Δ ion ton
if Δ ion = Δ ioff
vL = − L
Δ ioff toff
= vt
ton Vt = −Vs toff El-Sharkawi@University of Washington
57
DC/AC Converters
El-Sharkawi@University of Washington
58
DC/AC Conversion Q1 A Q3
Load voltage
Q4
I1 B I2
Q2
Q 1 and Q 2 are on
VAB Time
Q 3 and Q 4 are on
Q3
Q1 Vdc a Q4
o
Q5 b
Q6
a
b
c Q2 n
Q 1 Q 2 Q 3 Q 4 Q 5 Q 6
c
Q1
First Time Interval
Q2 Q3
Q3
Q1 Vdc a Q4
b Q6
a
Q5
b
c
Q4 Q5
c
Q6
Q2 n
o
I/2
I I/2
vab = va − vb = Vdc vbc = vb − vc = − Vdc vca = vc − va = 0
I/2 Q5
Q1
Vs
a
b
c
Q6 I
I
I/2
El-Sharkawi@University of Washington
I
n
I/2
61
Q1
Second Time Interval
Q2 Q3
Q3
Q1 Vdc a Q4
b Q6
a
Q5
b
c
Q4 Q5
c
Q6
Q2 n
o
I I
vab = va − vb = Vdc
Q1
Vs
a
b
vbc = vb − vc = 0 vca = vc − va = − Vdc
c
Q6 I
El-Sharkawi@University of Washington
Q2
I
I/2
I
I/2
n
I/2
62
Voltage Waveforms Across Load vab - Vdc vbc
vca
•
Waveforms are symmetrical and equal in magnitude
•
Waveforms are shifted by 120 degrees
AC/AC Converters
El-Sharkawi@University of Washington
64
1. Single-Phase, Bidirectional i1 i2
vs
i
i1
vt
vt
α
vs
+ vt -
R
i2
ωt
El-Sharkawi@University of Washington
65
i1
vt
vt
α
Vave
Vrms =
1 2π
2π
∫ v(t ) 0
2
i2
ωt
vs
1 = 2π
dωt =
2π
∫v
t
d ωt = 0
α
1
π
[V ∫ πα
El-Sharkawi@University of Washington
max
sin(ωt )] dωt 2
66
Vrms =
2 Vmax
π
π
π
α
α
2 V 2 max [ 1 − cos( 2ωt )] dωt sin( t ) d t ω ω = ∫ 2π ∫
Vmax Vrms = 2
P =
2 Vrms
R
=
⎡ α sin( 2α ) ⎤ ⎢⎣1 − π + 2π ⎥⎦
2 Vmax
4π R
[2(π − α ) + sin( 2α )]
El-Sharkawi@University of Washington
67
2. DC Link iin
Idc AC/DC
dc Link
iout DC/AC
El-Sharkawi@University of Washington
68
3. Uninterruptible Power Supply (UPS) iin
Idc AC/DC
Ib
iout DC/AC
dc Link
Idc
iin = 0 AC/DC
Ib
iout DC/AC
dc Link El-Sharkawi@University of Washington
69