Presentasi Unsur Transisi Periode 4

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Presentasi Unsur Transisi Periode 4 as PDF for free.

More details

  • Words: 10,247
  • Pages: 46
UNSUR TRANSISI PERIODE 4 MAKALAH

Anggota Kelompok :

1. 2. 3. 4.

Denny Reza K. Habib Suryo P. Dimas Hardityawan P. Selly F.

Scandium Scandium is a silvery-white metal which develops a slightly yellowish or pinkish cast upon exposure to air. It is relatively soft, and resembles yttrium and the rare-earth metals more than it resembles aluminium or titanium. Scandium reacts rapidly with many acids. Scandium is apparently a much more abundant element in the sun and certain stars than on earth. • • • • • •

Name: Scandium Symbol: Sc Atomic number: 21 Atomic weight: 44.955912 (6) Standard state: solid at 298 K CAS Registry ID: 7440-20-2

• • • • • •

Group in periodic table: 3 Group name: (none) Period in periodic table: 4 Block in periodic table: d-block Colour: silvery white Classification: Metallic

Isolation Isolation: preparation of metallic samples of scandium is not normally necessary given that it is commercially avaialable. In practice littel scandium is produced. The mineral thortveitite contains 35-40% Sc2O3 is used to produce scandium metal but another important source is as a byproduct from uranium ore processing, even though these only contain 0.02% Sc2O3.

2

Skandium

adalah unsur kimia dalam jadual berkala yang mempunyai simbol Sc dan nombor atom 21. Sejenis logam peralihan yang lembut, keperakan dan putih, skandium wujud dalam galian nadir daripada Skandinavia dan kadang kala dikelaskan bersama-sama dengan yttrium dan lantanid-lantanid sebagai nadir bumi.

Sifat-sifat utama : Skandium adalam sejenis unsur logam yang nadir, lembut, keperakan dan sangat ringan yang akan menghasilkan salutan kekuningan atau merah jambu apabila terdedah kepada udara. Logam ini tidak akan diserang oleh campuran 1:1 asid nitrik(HNO3) dan 48% HF.

Kegunaan : Kira-kira 20 kg (dalam bentuk Sc2O3) skandium digunakan setiap tahun di Amerika Syarikat untuk membuat lampu berkeamatan tinggi. Skandium iodida yang dicampur ke dalam lampu wap raksa akan menghasilkan sumber cahaya buatan kecekapan tinggi yang menyerupai cahaya matahari dan membolehkan salinan warna yang baik untuk kamera TV. Lebih kurang 80 kg skandium digunakan sejagat setiap tahun dalam pembuatan lampu mentol. Isotop radioaktif Sc-46 digunakan dalam peretak penapis minyak sebagai agen penyurih. Penggunaan utamanya dari segi isipadu adalah aloi aluminium-skandium untuk industri aeroangkasa dan juga untuk peralatan sukan (basikal, bet besbol, senjata api, dsb) yang memerlukan penggunaan bahan berprestasi tinggi. Apabila dicampur dengan aluminium, skandium boleh menghasilkan pembaikan dari segi kekuatan (pada suhu ambien dan suhu ternaik), kemuluran, tindak balas penuaan dan penghalusan ira melalui pembentukan fasa Al3Sc. Tambahan lagi, ia dapat mengurangkan pemejalan retak semasa pengimpalan aloi aluminium berkekuatan tinggi. Pengilang basikal mendakwa bahawa penggunaan asal aloi skandiumaluminium adalah pada muncung kon peluru berpandu balistik lancaran kapal selam Kesatuan Soviet. Kekuatan daripada hasil muncung kon tersebut adalah mencukupi untuk menembusi litupan ais tanpa kerosakan, maka membolehkan pelancaran peluru berpandu semasa masih lagi tenggelam di bawah litupan ais Artik. Sekiranya dakwaan ini benar, ini akan memberikan penjelasan mengapa simpanan stok bekas Kesatuan Soviet adalah sumber utama Skandium.

Sejarah :

3

Dmitri Mendeleev menggunakan hukum berkala, dalam tahun 1869, untuk meramal kewujudan dan juga sifat-sifat tiga unsur yang belum diketahui termasuklah satu yang beliau namakan ekaboron. Lars Fredrick Nilson dan pasukannya, tidak menyedari tentang ramalan tersebut pada musim bunga tahun 1879, sedang mencari logam-logam nadir bumi; dia telah menemui unsur yang baru menggunakan analisis spektra dalam mineral euksenit dan gadolinit. Beliau namakannya sebagai Skandium, daripada Latin Scandia yang bermaksud "Skandinavia", dan dengan cara pengasingan unsur dengan memproses 10 kilogram euksenit dengan sisa baki nadir bumi, beliau berjaya memperolehi 2 gram skandium oksida (Sc2O3) yang sangat tulen. Per Teodor Cleve membuat kesimpulan bahawa skandium berpadanan tepat dengan ekaboran yang dicari-cari, dan telah memberitahu Mendeleev tentang perkara itu pada bulan Ogos. Fischer, Brunger, and Grienelaus menyediakan logam skandium dengan julung-julung kalinya pada tahun 1937, melalui elektrolisis leburan eutektik kalium, litium, dan skandium klorida pada suhu 700 to 800°C. Dawai tungsten dalam sebekas zink cecair merupakan elektrod-elektrod dalam mangkuk pijar grafit. Paun pertama ketulenan 99% logam skandium tidak dihasilkan sehinggalah tahun 1960.

Ragam kewujudan : Skandium teragih secara luas pada bumi, dan wujud pada kandungan yang surih dalam lebih daripada 800 mineral. Hanya galian nadir daripada Skandinavia dan Madagascar seperti tortveitit, euksenit dan gadolinit merupakan sumber padat yang diketahui bagi unsur ini (yang tidak pernah dijumpai dalam bentuk unsur bebas). Ia ditemui pada hasil baki setelah tungsten disarikan daripada wolframit. Warna biru beril jenis akuamarin dianggap disebabkan oleh scandium

Pengasingan : Tortveitit merupakan sumber perdana skandium dan hasil sampingan amang kisaran uranium juga merupakan sumber penting. Skandium tulen dihasilkan secara komersil melalui penurunan skandium fluorida dengan logam kalsium. Sumber utama skandium adalah daripada simpanan stok ketenteranan bekas Kesatuan Soviet, yang juga merupakan hasil penyarian daripada amang uranium. Tidak terdapat penghasilan utama di benua Amerika dan Eropah. Sebatian

4

Keadaan pengoksidaan paling biasa bagi skandium dalam sebatian adalah +3. Unsur ini menyerupai yttrium dan logam nadir bumi lebih daripada aluminium atau titanium (yang berada lebih dekat dalam jadual berkala).

Isotop : Skandium yang wujud secara semula jadi hanyalah terdiri daripada 1 isotop stabil 45Sc. 13 radioisotop telah dicirikan dengan isotop yang paling stabil adalah 46Sc dengan separuh hayat 83.79 hari, 47Sc dengan separuh hayat 3.3492 hari, dan 48Sc dengan separuh hayat 43.67 jam. Kesemua isotop radioaktif lain mempunyai separuh hayat kurang daripada 4 jam dan kebanyakannya mempunyai separuh hayat kurang daripada 2 minit. Unsur ini juga mempunyai 5 keadaan meta dengan yang paling stabil adalah 44mSc (t½ 58.6 j). Isotop-isotop skandium mempunyai berat atom yang berjulat antara 39.978 uja (40Sc) dan 53.963 uja (54Sc). Cara reputan utama sebelum satu-satunya isotop stabil, 45Sc, adalah tawanan elektron dan merupakan cara utama selepas pancaran beta. Hasil reputan utama sebelum 45Sc adalah isotop unsur 20 (kalsium) dan hasil utama selepas itu ialah isotop unsur 22 (titanium).

5

Titanium Titanium s a lustrous, white metal when pure. Titanium minerals are quite common. The metal has a low density, good strength, is easily fabricated, and has excellent corrosion resistance. The metal burns in air and is the only element that burns in nitrogen. It is marvellous in fireworks. Titanium is resistant to dilute sulphuric and hydrochloric acid, most organic acids, damp chlorine gas, and chloride solutions. Titanium metal is considered to be physiologically inert. Titanium is present in meteorites and in the sun. Some lunar rocks contain high concentrations of the dioxide, TiO2. Titanium oxide bands are prominent in the spectra of M-type stars. • • • • • •

Name: Titanium Symbol: Ti Atomic number: 22 Atomic weight: 47.867 (1) Standard state: solid at 298 K CAS Registry ID: 7440-32-6

• • • • • •

Group in periodic table: 4 Group name: (none) Period in periodic table: 4 Block in periodic table: d-block Colour: silvery metallic Classification: Metallic

Isolation 6

Isolation: titanium is readily available from commercial sources so preparation in the laboratory is not normally required. In industry, reduction of ores with carbon is not a useful option as intractable carbides are produced. The Kroll method is used on large scales and involves the action of chlorine and carbon upon ilmenite (TiFeO3) or rutile (TiO2). The resultant titanium tetrachloride, TiCl4, is separated from the iron trichloride, FeCl3, by fractional distillation. Finally TiCl4 is reduced to metallic titanium by reduction with magnesium, Mg. Air is excluded so as to prevent contamination of the product with oxygen or nitrogen. 2TiFeO3 + 7Cl2 + 6C (900°C) → 2TiCl4 + 2FeCl3 + 6CO TiCl4 + 2Mg (1100°C) → 2MgCl2 + Ti Excess magensium and magneium dichloride is removed from the product bytreatment with water and hydrochloric acid to leave a titanium "sponge". This can be melted under a helium or argon atmosphere to allow casting as bars.

Titanium adalah unsur kimia dalam jadual berkala yang mempunyai simbol Ti dan nombor atom 22. Ia sejenis logam peralihan berwarna putih keperakan yang ringan, kuat, berkilau, dan tahan kakisan (termasuklah

7

ketahanan terhadap air laut dan klorin). Titanium digunakan dalam aloi ringan dan kuat (terutamanya bersama besi dan aluminium) manakala sebatiannya yang paling lazim, titanium dioksida, digunakan dalam pewarna putih. Contoh-contoh pewarna putih yang mengandungi titanium oksida adalah cecair pemadam dan cat-cat putih yang biasa digunakan untuk mengecat kembali dinding. Ia juga digunakan dalam ubat gigi, cat putih penanda jalan, dan dalam bunga api putih. Bahan-bahan yang mengandungi titanium dipanggil titaniferus. Unsur ini wujud dalam pelbagai jenis mineral dan sumber utamanya adalah rutil dan ilmenit, yang teragih secara meluas atas permukaan Bumi. Terdapat dua bentuk alotrop dan lima isotop yang wujud secara semula jadi bagi unsur ini; 46Ti sehingga ke 50Ti dengan 48Ti merupakan yang paling berlimpah (73.8%). Salah satu ciri utama titanium adalah ia sekuat keluli walaupun dengan hanya 60% ketumpatannya. Sifat-sifat titanium adalah secara kimia dan fizikalnya serupa dengan zirkonium.

Sifat-sifat utama : Titanium dikenali kerana ketahannya yang baik terhadap kakisan; ia mempunyai daya tahan yang hampir sama seperti platinum, iaitu dapat menahan serangan asid, gas klorin lembap, dan larutan garam biasa. Titanium tulen tidak larut dalam air tetapi larut dalam asid pekat. Sebagai sejenis unsur logam, ia juga dikenali kerana nisbah kekuatan kepada beratnya yang tinggi. Ia adalah unsur ringan, kuat dan berketumpatan rendah sehinggakan, apabila berkeadaan tulen, adalah agak mulur (terutamanya dalam persekitaran bebas oksigen), mudah ditempa, berkilau dan berwarna putih kelogaman. Takat leburnya yang secara bandingannya agak tinggi membuatkannya sesuai sebagai logam refraktori. Titanium yang secara komersilnya bergred tulen mempunyai kekuatan tegangan muktamad yang setara dengan aloi keluli berkekuatan separa tinggi, tetapi adalah 43% lebih ringan; ia adalah 60% lebih berat daripada aluminium, tetapi lebih dua kali ganda lebih kuat berbanding aluminium aloi 6061-T6; angka-angka ini boleh berubah dengan ketaranya akibat komposisi aloi yang berbeza-beza dan pembolehubah pemprosesan. Ia dirangkumkan hanya sebagai garis panduan. Logam ini membentuk salutan oksida pelindung dan pasif (menyebabkannya tahan kakisan) apabila terdedah kepada suhu ternaik dalam udara, tetapi pada suhu bilik ia tahan sebam (kusam). Logam ini, yang terbakar apabila dipanaskan dalam udara bersuhu 610 °C atau lebih (membentuk titanium dioksida), juga adalah salah satu daripada sebilangan unsur yang terbakar dalam gas nitrogen tulen (terbakar pada 800 °C dan membentuk titanium nitrida). Titanium tahan terhadap asid sulfurik dan asid hidroklorik cair, dan juga gas klorin, larutan klorida, dan kebanyakan asid organik. Ia paramagnet (tertarik sedikit kepada magnet) dan mempunyai kerintangan elektrik dan kekonduksian haba yang sangat rendah.

8

Eksperimen menunjukkan bahawa titanium semulajadi menjadi sangat radioaktif apabila dibedil dengan deuteron, memancarkan kebanyakkannya positron dan sinar gama keras. Unsur ini merupakan alotrop dimorf dengan bentuk alfa heksagonalnya berubah menjadi beta kubus secara perlahanlahan pada sekitar 880 °C. Apabila ia merah membara, logam ini bergabung dengan oksigen, dan apabila menjangkau 550 °C akan bergabung dengan klorin. Ia bertindak balas dengan halogen-halogen lain dan menyerap hidrogen.

Penggunaan

:

jam tangan dengan penutup titanium Kira-kira 95% penghasilan titanium digunapakai dalam bentuk titanium dioxida (TiO2), sejenis pigmen putih terang yang kekal dengan kuasa liputan yang baik dalam cat, kertas, ubat gigi, dan plastik. Cat yang diperbuat daripada titanium dioksida adalah pemantul sinaran inframerah yang sangat baik dan oleh sebab itu digunakan secara meluas oleh ahli astronomi dan dalam cat luaran. Ia juga digunakan dalam simen, dalam batu permata, dan sebagai bahan pengisi penguat dalam kertas. Baru-baru ini, ia digunakan dalam penulen udara (sebagai salutan penuras) atau dalam saput tingkap pada bangunan, yang apabila terdedah kepada cahaya ultraungu (sama ada daripada matahari atau buatan manusia) dan kandungan lembapan dalam udara, akan mengubah pencemaran udara tidak berturas menjadi radikal hidroksil. Oleh sebab sifat-sifatnya seperti mempunyai kekuatan tegangan tinggi (walau pada suhu tinggi), ringan, daya tahan kakisan yang luar biasa, dan kebolehan untuk menahan suhu lampau; aloi titanium digunakan pada 9

pesawat, plat perisai, kapal angkatan laut, kapal angkasa lepas, dan peluru berpandu. Ia digunakan dalam aloi keluli untuk mengurangkan saiz butiran dan sebagai penyahoksida, dan dalam keluli tahan karat untuk mengurangkan kandungan karbon. Titanium sering dialoikan bersama aluminium (untuk menghaluskan saiz butiran), vanadium, tembaga (untuk mengeraskannya), besi, mangan, molibdenum dan logam-logam lain. Paip titanium terkimpal digunakan dalam industri kimia oleh sebab daya tahan kakisannya dan kini dilihat mempunyai penggunaan meningkat dalam penggerudian petroleum, terutamanya luar pesisir, oleh sebab kekuatan, keringanan dan daya tahan kakisannya. Titanium yang dialoikan bersama vanadium digunakan dalam kulit luaran pesawat terbang, pengadang bahang api, peralatan pendaratan, dan saluran hidraulik. Dijangkakan 58 ton logam ini digunakan dalam Boeing 777, 43 ton dalam 747, 18 ton dalam 737, 24 ton dalam Airbus A340, 17 ton dalam A330 dan 12 ton dalam A320, menurut laporan tahunan 2004 oleh Perbadanan Logam-logam Titanium (Titanium Metals Corporation). Secara amnya, model terbaru menggunakan lebih banyak dan badan lebar menggunakan terbanyak. A380 mungkin menggunakan 77 ton, termasuk kira-kira 10 or 11 ton pada enjin-enjinnya. Penggunaan titanium dalam barangan pengguna seperti raket tenis, kayu golf, basikal, radas makmal, cincin belah rotan, dan komputer riba menjadi semakin lazim. Pengunaan-penggunaan lain: •



• •



Oleh sebab daya tahannya yang baik terhadap air laut, ia digunakan untuk menghasilkan aci perejang dan pemasangan dan dalam penukar haba loji penyahgaram dan pemanas-pendingin akuarium air masin, dan baru-baru ini pisau juruselam. Kerana kekuatannya dan kelengaiannya terhadap air laut, dan juga kerana longgokan bijih yang besar di Russia, ia merupakan bahan utama dalam pembuatan kebanyakan kapal selam maju Russia, termasuklah kapal selam ketenteraan terdalam sehingga ke hari ini, kelas Alfa dan Mike, dan juga kelas Typhoon. Ia digunakan untuk menghasilkan batu permata buatan manusia yang secara relatifnya agak lembut. Titanium tetraklorida (TiCl4), sejenis cecair tak berwarna, digunakan untuk memendarrona kaca dan kerana ia mengeluarkan wasap dengan kuatnya dalam udara lembap, ia juga digunakan sebagai pengadang asap dan dalam penulisan pada langit. Di samping menjadi pigmen yang penting, titanium dioksida juga digunakan dalam pelindung matahari oleh sebab ketahannya terhadap ultraungu. 10



• • •





• • •

Kerana ia dianggap lengai secara fisiologi, logam ini digunakan dalam implan penggantian sendi seperti sendi lesung pinggul, pembuatan peralatan perubatan dan dalam lapis paip/tangki dalam pemprosesan makanan. Oleh sebab titanium tidak feromagnet, pesakit dengan implan titanium boleh diperiksa dengan selamatnya menggunakan pengimejan resonans magnet (sesuai untuk implan jangka panjang). Titanium juga digunakan untuk peralatan pembedahan yang digunakan dalam pembedahan dengan panduan imej. Kelengaiannya dan kebolehannya untuk menjadi warna yang menarik menyebabkan menjadi logam popular untuk menindik badan. Titanium mempunyai kemampuan luar biasa untuk berpadu dengan tulang hidup (osseointegrate), membolehkan penggunaan dalam implan gigi. Kemampuan ini juga dimanfaatkan dalam sesetengah implan ortopedik. Aplikasi ortopedik juga mempergunakan modulus kekenyalan titanium yang rendah untuk dipadankan lebih dekat dengan modulus tulang yang ingin dibetulkan oleh peralatan-peralatan tersebut. Hasilnya, bebanan rangka dikongsi dengan lebih sama rata antara tulang dan implan, menjurus kepada insidens lebih rendah dalam pemerosotan tulang akibat pemerisaian tegasan dan patah tulang periprostetik yang berlaku pada sempadan impan ortopedik yang bertindak sebagai penaik tegasan. Walau bagaimanapun, kekakuan aloi titanium adalah dua kali ganda kekakuan tulang, lambat laun akan menjurus kepada kemerosotan sendi. Aloi titanium digunakan dalam bingkai kaca mata. Bingkai-bingkai ini agak mahal, tetapi juga tahan lama. Aloi-aloi tradisional dan aloi ingatan bentuk digunakan dalam aplikasi ini. Kebanyakan backpacker menggunakan peralatan titanium, termasuk perkakas dapur, alat makan, lantera dan pancang khemah. Walaupun sedikit mahal berbanding alternatif keluli atau aluminium tradisional, bahan buatan titanium ini secara ketaranya lebih ringan tanpa menjejaskan kekuatan. Akan tetapi sifat terma perkakas dapur titanium membuatkannya tidak sesuai sebagai aplikasi memasak yang lebih khusus. Titanium mempunyai penggunaan yang meningkat dalam aci kayu lacrosse. Titanium digunakan dengan meningkatnya dalam kekisi topi keledar kriket. Titanium boleh dianodkan untuk menghasilkan beraneka warna.

Titanium kadang kala digunakan dalam pembinaan: tugu peringatan Yuri Gagarin, orang pertama yang menuju ke angkasa lepas, di Moscow yang bersaiz 150 kaki (45 m) diperbuat daripada titanium kerana warna logam yang menraik dan pengaitannya kepada bidang sains roket. Guggenheim Museum Bilbao dan Perpustakaan Cerritos masing-masing merupakan bangunan pertama di Eropah dan Amerika Utara, yang disalut panel titanium. 11

Sejarah : Titanium ditemui di Creed, Cornwall di England oleh ahli geologi amatur Reverend William Gregor pada 1791. Beliau mengiktiraf kehadiran unsur baru ini dalam iaitu ilmenit, dan menamakannya menachite (ejaan lain manaccanite), sempena mukim berdekatan Manaccan [3]. Pada sekitar masa yang sama, Franz Joseph Muller juga menghasilkan bahan yang sama, tetapi tidak dapat mengenalinya. Unsur ini ditemui kembali secara berasingan beberapa tahun kemudian oleh ahli kimia Jerman Martin Heinrich Klaproth dalam bijih rutil. Klaproth mengesahkannya sebagai unsur baru dan pada 1795 menamakannya sempena Titan dalam mitologi Yunani. Unsur ini amat sukar disarikan daripada bijihnya sejak bertahun lamanya. Logam titanium tulen (99.9%) pertama kalinya disediakan pada tahun 1910 oleh Matthew A. Hunter melalui pemanasan TiCl4 dengan natrium dalam bom keluli pada suhu 700–800 °C dalam proses Hunter. Logam titanium tidak digunakan di luar makmal sehinggalah 1946 apabila William Justin Kroll membuktikan bahawa titanium boleh dihasilkan secara komersil dengan menurunkan titanium tetraklorida dengan magnesium dalam proses Kroll, iaitu proses yang masih digunakan pada hari ini. Dalam tahun 1950–1960 Kesatuan Soviet cuba untuk memonopoli pasaran titanium dunia sebagai taktik dalam Perang Dingin untuk menghalang ketenteraan Amerika daripada memanfaatkannya.[perlu petikan] Walau dengan usaha-usaha ini, Amerika Syarikat memperoleh jumlah titanium yang besar apabila sebuah syarikat Eropah menubuhkan perwakilan bagi membolehkan agensi perisikan luar negeri A.S. untuk membelinya. Malahan, titanium bagi pesawat peninjau A.S. SR-71 yang sangat berjaya, diperolehi daripada Kesatuan Soviet pada kemuncak Perang Dingin. Sehingga 1956 penghasilan hasil keluaran kilang titanium adalah lebih daripada 6 million kg/setahun.(1)

Kewujudan

:

Logam titanium selalunya bergabung dengan unusr-unsur lain dalam alam semulajadi. Ia merupakan unsur kesembilan paling berlimpah pada kerak bumi (0.63% mengikut jisim) dan hadir dalam kebanyakan batuan igneus dan endapan yang diterbitkan daripadanya (termasuk juga hidupan dan jasad air semula jadi). Ia teragih dengan meluas dan wujud utamanya dalam mineral anatas, brukit, ilmenit, perovskit, rutil, titanit (sfen), dan juga dalam kebanyakan bijih besi. Antara mineral-mineral ini, hanya ilmenit dan rutil mempunyai kepentingan ekonomi yang ketara, namun kedua-dua mineral ini juga sukar untuk dijumpai dalam kepekatan yang tinggi. Oleh sebab titanium dengan mudahnya bertindak bersama oksigen dan karbon pada suhu tinggi,

12

adalah amat sukar sekali untuk menyediakan logam, hablur, atau serbuk titanium yang tulen. Mendapan bijih titanium yang besar boleh dijumpai di Australia, Skandinavia, Amerika Utara, dan Malaysia. Jumlah besar juga dikesan di rantau Kwale di Kenya, yang mana sebuah firma Kanada, Tiomin, mendapat hak perlombongan.

Vanadium Pure vanadium is a greyish silvery metal, and is soft and ductile. It has good corrosion resistance to alkalis, sulphuric acid, hydrochloric acid, and salt waters. The metal oxidizes readily above 660°C to form V2O5. Industrially, most vanadium produced is used as an additive to improve steels. • • • • • •

Name: Vanadium Symbol: V Atomic number: 23 Atomic weight: 50.9415 (1) Standard state: solid at 298 K CAS Registry ID: 7440-62-2

13

• • • • • •

Group in periodic table: 5 Group name: (none) Period in periodic table: 4 Block in periodic table: d-block Colour: silvery grey metallic Classification: Metallic

Isolation Isolation: vanadium is available commercially and production of a sample in the laboratory is not normally required. Commercially, routes leading to matallic vanadium as main product are not usually required as enough is produced as byproduct in other processes. In industry, heating of vanadium ore or residues from other processes with salt, NaCl, or sodium carbonate, Na2CO3, at about 850°C gives sodium vanadate, NaVO3. This is dissolved in water and acidified to give a red solid which in turn is melted to form a crude form of vanadium pentoxide, "V2O5". Reduction of vanadium pentoxide with calcium, Ca, gives pure vanadium. An alternative suitable for small scales is the reduction of vanadium pentachloride, VCl5, with hydrogen, H2, or magnesium, Mg. Many other methodsare also in use. Industrially, most vanadium is used as an additive to improve steels. Rather than proceed via pure vanadium metal it is often sufficient to react the crude of vanadium pentoxide, "V2O5", with crude iron. This produces ferrovanadium suitable for further work.

14

Vanadium adalah unsur kimia dalam jadual berkala yang mempunyai simbol V dan nombor atom 23. Sejenis unsur nadir, lembut dan mulur, vanadium dijumpai dalam bentuk campuran dalam sesetengah mineral dan digunakan terutamanya untuk menghasilkan sesetengah aloi. Ia merupakan salah satu daripada 26 unsur yang biasa dijumpai dalam benda hidup.

Sifat-sifat utama : Vanadium adalah logam berwarna putih kelabu yang lembut dan mulur. Ia mempunyai daya tahan kakisan yang baik terhadap alkali, asid sulfurik dan asid hidroklorik. Ia bersedia untuk teroksida pada kira-kira 933 K. Vanadium mempunyai kekuatan struktur yang baik dan keratan rentas belahan neutron yang rendah, menyebabkannya berguna dalam aplikasi nuklear. Walaupun ia sejenis logam, vanadium bersama dengan kromium dan mangan mempunyai ciri-ciri oksida valensi yang bersifat asid. Keadaan pengoksidaan lazim bagi vanadium termasuklah +2, +3, +4 and +5. Eksperimen terkenal menggunakan ammonium vanadat (NH4VO3), iaitu penurunan sebatian tersebut menggunakan logam zink, dapat menunjukkan

15

secara kolorimetri (sukat warna) keempat-empat keadaan pengoksidaan vanadium. Keadaan pengoksidaan +1 jarang sekali dijumpai.

Penggunaan

:

Kira-kira 80% vanadium yang dihasilkan, digunakan sebagai ferovanadium atau sebagai penambah keluli. Penggunaan-penggunaaan lain; •

• • • • • •



• • •

Dalam bentuk aloinya seperti: o keluli tahan karat khusus, contohnya penggunaan dalam peralatan bedah dan alat tukang. o keluli tahan karat dan keluli alat pertukangan kelajuan tinggi. o dicampurkan dengan aloi-aloi aluminium dan titanium untuk digunakan dalam enjin jet dan kerangka pesawat udara kelajuan tinggi. Aloi keluli vanadium digunakan pada gandar, aci engkol, gear dan komponen-komponen penting yang lain. Ia merupakan penstabil karbida yang penting dalam pembuatan keluli. Oleh kerana keratan rentas belahan neutron yang rendah, vanadium mempunyai kegunaan dalam bidang nuklear. Kerajang vanadium digunakan untuk menyalutkan titanium pada keluli. Pita Vanadium-gallium digunakan dalam magnet bersuperkonduksi (175,000 gauss). Vanadium(V) oksida (vanadium pentoksida, V2O5) digunakan sebagai mangkin dalam pembuatan asid sulfurik (melalui Proses Sentuh) dan maleik anhidrida. Ia digunakan dalam pembuatan seramik. Kaca yang disalut vanadium dioksida (VO2) boleh mengekang sinaran inframerah (tanpa menghalang cahaya tampak) pada suhu-suhu tertentu. Sel bahan api elektrik dan bateri simpanan seperti Bateri redoks vanadium. Ditambahkan dengan korundum untuk membuat manikam aleksandrit tiruan. Salutan perubahan elektrokimia vanadat untuk melindungi keluli daripada karat dan kakisan.

Sejarah :

Vanadium (dewi Skandinavia, Vanadis) asalnya ditemui oleh Andrés Manuel del Río (seorang ahli mineralogi Sepanyol) di Mexico City, dalam tahun 1801. Beliau memanggilnya plumbum coklat (sekarang dipanggil vanadinit). Melalui kaji selidik, warna vanadium mengingatkan beliau tentang kromium, maka dinamakan unsur itu pankromium. Beliau kemudian menamakan lagi sebatian ini sebagai eritronium, kerana kebanyakan garamnya bertukar

16

menjadi merah apabila dipanaskan. Ahli kimia Perancis Hippolyte Victor Collet-Descotils dengan salahnya mengumumkan bahawa unsur baru del Rio hanyalah kromium yang tak tulen. Del Rio juga mengingatkan bahawa beliau tersilap dan menerima kenyataan ahli kimia Perancis itu yang juga disokong oleh kawan Del Rio iaitu Baron Alexander von Humboldt Dalam tahun 1831, Sefström daripada Sweden menjumpa kembali vanadium dalam oksida baru yang dijumpai beliau semasa mengkaji beberapa bijih besi dan kemudiannya pada tahun yang sama Friedrich Wöhler mengesahkan hasil kerja del Rio yang lebih awal. Kemudian, George William Featherstonhaugh, salah satu daripada ahli geologi Amerika Syarikat yang pertama, mencadangkan unsur ini untuk dinamakan "rionium" sempena Del Rio, tetapi ini tidak pernah terjadi. Logam vanadium diasingkan oleh Henry Enfield Roscoe dalam tahun 1867, dan beliau telah menurunkan vanadium(III) klorida (VCl3) dengan hidrogen. Nama vanadium berasal daripada nama Vanadis, seorang dewi dalam mitologi Skandinavia, kerana unsur ini mempunyai sebatian kimia yang beraneka warna dan cantik.

Peranan biologi

:

Dalam biologi, atom vanadium adalah komponen penting bagi sesetengah enzim, khasnya bagi vanadium nitroginase yang digunakan oleh sesetengah mikroorganisma pengikat nitrogen. Vanadium adalah penting bagi askidian atau pemancut laut dalam Protein Kromagen Vanadium. Kepekatan vanadium dalam darah hidupan-hidupan ini adalah lebih 100 kali lebih tinggi daripada kepekatan vanadium dalam air laut sekeliling mereka. Tikus dan ayam juga diketahui memerlukan vanadium pada kandungan kecil dan kekurangan akan mengakibatkan pertumbuhan lambat dan gangguan pembiakan. Pemberian sebatian oksovanadium menunjukkan pengurangan gejala penyakit diabetis melitus pada sesetengah model binatang dan manusia. Sama seperti kesan kromiun pada metabolisme gula, mekanisme bagi kesan ini juga tidak diketahui.

Tambahan Mineral dalam Air Minuman Di Jepun, vanadium(V) oksida (V2O5) dipasarkan sebagai tambahan kesihatan mineral baik yang wujud secara asli dalam air minuman. Sumber utama air minuman ini adalah cerun Gunung Fuji. Kandungan vanadium pentoksida air ini adalah antara kira-kira 80ug/Liter hingga ke 130ug/Liter. Pemasarannya menggambarkannya sebagai berkesan menentang diabetis, ekzema, dan kegendutan. Tidak terdapat pernyataan tentang ketoksikan dalam pemasaran produk-produk ini 17

Kewujudan Vanadium belum pernah dijumpai dalam keadaan tulen dalam alam semulajadi, sebaliknya wujud dalam kira-kira 65 jenis mineral berlainan, antaranya patronit (VS4), vanadinit [Pb5(VO4)3Cl], dan karnotit [K2(UO2)2(VO4)2.3H2O]. Vanadium juga hadir dalam bauksit, dan endapan yang mengandungi karbon seperti minyak mentah, arang, syal minyak dan pasir tar. Spektrum vanadium juga dikesan pada cahaya daripada matahari dan sesetengah bintang. Pada masa kini, kebanyakan logam vanadium yang dihasilkan adalah melalui penurunan kalsium pada V2O5 dalam bekas tekanan. Vanadium biasanya diperolehi sebagai hasil sampingan atau koproduk, maka sumber dunia bagi unsur ini bukanlah penunjuk yang sebenar bagi bekalan yang boleh didapati.

Chromium Chromium is steel-gray, lustrous, hard, metallic, and takes a high polish. Its compounds are toxic. It is found as chromite ore. Siberian red lead (crocoite, PrCrO4) is a chromium ore prized as a red pigment for oil paints. Emerald is a form of beryl (a beryllium aluminium silicate) which is green because of the inclusion of a little chromium into the beryl crytal lattice in place of some of the aluminium ions. Similarly, traces of chromium incorporated into the crystal lattice of corundum (crystalline aluminium oxide, Al2O3) as a replacement for some of the Al3+ ions results in another highly coloured gem stone, in this case the red ruby. • • • • • •

Name: Chromium Symbol: Cr Atomic number: 24 Atomic weight: 51.9961 (6) Standard state: solid at 298 K CAS Registry ID: 7440-47-3

• • • •

Group in periodic table: 6 Group name: (none) Period in periodic table: 4 Block in periodic table: d-block

18

• •

Colour: silvery metallic Classification: Metallic

Isolation Isolation: it is not normally necessary to make chromium in the laboratory as it is so readily available commercially. The most useful source of chromium commercially is the ore chromite, FeCr2O4. Oxidation of this ore by air in molten alkali gives sodium chromate, Na2CrO4 in which the chromium is in the +6 oxidation state. This is converted to the Cr(III) oxide Cr2O3 by extraction into water, precipitation, and reduction with carbon. The oxide is then further reduced with aluminium or silicon to form chromium metal. Cr2O3 + 2Al → 2Cr + Al2O3 2Cr2O3 + 3Si → 4Cr + 3SiO2 Another kind of isolation is by electroplating processes. This involves the dissolution of Cr2O3 in sulphuric acid to give an electrolyte used for chromium electroplating.

19

Kromium adalah sebuah unsur kimia dalam tabel periodik yang memiliki lambang Cr dan nomor atom 24. Kromium trivalen (Cr(III), atau Cr3+) diperlukan dalam jumlah kecil dalam metabolisme gula pada manusia. Kekurangan kromium trivalen dapat menyebabkan penyakit yang disebut penyakit kekurangan kromium (chromium deficiency). Kromium merupakan logam tahan korosi (tahan karat) dan dapat dipoles menjadi mengkilat. Dengan sifat ini, kromium (krom) banyak digunakan sebagai pelapis pada ornamen-ornamen bangunan maupun pada komponen kendaraan, seperti knalpot pada sepeda motor. Perpaduan Kromium dengan besi dan nikel menghasilkan baja tahan karat.

20

Manganese The metal is gray-white, resembling iron, but is harder and very brittle. The metal is reactive chemically, and decomposes cold water slowly. Manganese is widely distributed throughout the animal kingdom. It is an important trace element and may be essential for utilisation of vitamin B. Manganese is present in quantity the floor of oceans. It is an important component of steel. • • • • • •

Name: Manganese Symbol: Mn Atomic number: 25 Atomic weight: 54.938045 (5) Standard state: solid at 298 K CAS Registry ID: 7439-96-5

• • • •

Group in periodic table: 7 Group name: (none) Period in periodic table: 4 Block in d-block Colour: metallic Classification

• •

periodic table: silvery : Metallic

21

Isolation Isolation: it is not normally necessary to make manganese in the laboratory as it is available commercially. Nearly all manganese produced commercially is used in the steel industry as ferromanganese. This made by the reduction of iron oxide, Fe2O3, and managanese dioxide, MnO2, in appropriate proportions with carbon (as coke) in a blast furnace. Pure manganese is available through the electrolysis of manganese sulphate, MnSO4,

Iron Iron is a relatively abundant element in the universe. It is found in the sun and many types of stars in considerable quantity. Iron nuclei are very stable. Iron is a vital constituent of plant and animal life, and is the key component of haemoglobin. The pure metal is not often encountered in commerce, but is usually alloyed with carbon or other metals. The pure metal is very reactive chemically, and rapidly corrodes, especially in moist air or at elevated temperatures. Any car owner knows this. Iron metal is a silvery, lustrous metal which has important magnetic properties.

Isolation

22

Isolation: it is not normally necessary to make iron in the laboratory as it is available commercially. Small amounts of pure iron can be made through the purification of crude iron with carbon monoxide. The intermediate in this process is iron pentacarbonyl, Fe(CO)5. The carbonyl decomposes on heatingto about 250°C to form pure iron powder. Fe + CO → Fe(CO)5 (250°C) → Fe + 5CO The Fe(CO)5 is a volatile oily complex which is easily flushed from the reaction vessel leaving the impurities behind. Other routes to small samples of pure iron include the reduction of iron oxide, Fe2O3, with hyrogen, H2. Nearly all iron produced commercially is used in the steel industry and made using a blast furnace. Most chemistry text books cover the blast furnace process. In essence, iron oxide, Fe2O3, is reduced with with carbon (as coke) although in the furnace the actual reducing agent is probably carbon monoxide, CO. 2Fe2O3 + 3C → 4Fe + 3CO2 This process is one of the most significant industrial processes in history and the origins of the modern process are traceable back to a small town called Coalbrookdale in Shropshire (England) around the year 1773.

Besi adalah unsur dalam jadual berkala yang mempunyai simbol Fe dan nombor atom 26. Besi merupakan logam yang berada dalam kumpulan 8 dan kala (period) 4.

Ciri-ciri jelas

:

Atom besi biasa mempunyai 56 ganda jisim atom hidrogen biasa. Besi adalah logam paling banyak, dan dipercayai unsur kimia kesepuluh paling banyak di alam sejagat. Besi juga merupakan unsur paling banyak (menurut jisim, 34.6%) membentuk Bumi; penumpuan besi pada lapisan berlainan di Bumi berbeza antara tinggi peratusannya pada lapisan dalam sehingga 5% pada kerak bumi; terdapat kemungkinan bahawa teras dalam Bumi mengandungi hablur besi tunggal walaupun ia berkemungkinan sebatian besi dan nikel; jumlah besar besi dalam Bumi dijangka menyumbang kepada medan magnet Bumi. Simbolnya adalah Fe ringkasan kepada ferrum, perkataan Latin bagi besi. Besi adalah logam yang dihasilkan dari bijih besi, dan jarang dijumpai dalam keadaan unsur bebas. Untuk mendapatkan unsur besi, campuran lain mesti disingkir melalui pengurangan kimia. Besi digunakan dalam penghasilan besi waja, yang bukannya unsur tetapi aloi, sebatian logam berlainan (dan sebahagian bukan-logam, terutamanya karbon). Nukleus besi adalah antara nukleus-nukleus yang mempunyai tenaga pengikat tertinggi per nukleon, dan hanya diatasi oleh isotop nikel 62Ni. 23

Nukleid stabil yang paling banyak di dalam alam semesta adalah 56Fe. Ini merupakan hasil daripada pelakuran nuklear pada bintang. Walaupun perolehan tenaga yang lebih tinggi boleh didapati dengan mensintesis 62Ni, namun proses ini tidak digemari kerana keadaan yang kurang sesuai pada bintang-bintang. Apabila bintang gergasi mengecut pada penghujung hayatnya, tekanan dalaman dan suhu akan meningkat, membolehkan bintang seterusnya menghasilkan unsur yang lebih berat, walaupun keadaan ini adalah kurang stabil berbanding dengan unsur-unsur pada sekitar nombor jisim 60 ("kumpulan besi"). Ini menjurus kepada berlakunya supernova. Model kosmologi dengan alam sejagat terbuka meramalkan bahawa terdapatnya fasa di mana semua benda akan bertukar menjadi besi, hasil daripada tindak balas pembelahan dan pelakuran yang perlahan.

Kegunaan

:

Besi merupakan logam paling biasa digunakan di antara semua logam, iaitu merangkumi sebanyak 95 peratus daripada semua tan logam yang dihasilkan di seluruh dunia. Gabungan harganya yang murah dengan kekuatannya menjadikan ia amat diperlukan, terutamanya dalam penggunaan seperti kereta, badan kapal bagi kapal besar, dan komponen struktur bagi bangunan. Besi waja merupakan aloi besi paling dikenali, dan sebahagian dari bentuk yang dibentuk oleh besi termasuk: •



Besi mentah atau Pig iron yang mengandungi 4% – 5% karbon dengan sejumlah bendasing seperti belerang, silikon dan fosforus. Kepentingannya adalah ia merupakan perantaraan daripada bijih besi kepada besi tuang dan besi waja. Besi tuang (Cast iron) mengandungi 2% – 3.5% karbon dan sejumlah kecil mangan. Bendasing yang terdapat di dalam besi mentah yang dapat memberikan kesan buruk kepada sifat bahan, seperti belerang dan fosforus, telah dikurangkan kepada tahap boleh diterima. Ia mempunyai takat lebur pada julat 1420–1470 K, yang lebih rendah berbanding dua komponen utamanya, dan menjadikannya hasil pertama yang melebur apabila karbon dan besi dipanaskan serentak. Sifat mekanikalnya berubah-ubah, bergantung kepada bentuk karbon yang diterap ke dalam aloi. Besi tuang 'putih' mengandungi karbon dalam bentuk cementite, atau besi karbida. Sebatian keras dan rapuh ini mendominasi sifat-sifat utama besi tuang 'putih', menyebabkannya keras, tetapi tidak tahan kejutan. Dalam besi tuang 'kelabu', karbon hadir dalam bentuk serpihan halus grafit, dan ini juga menyebabkan bahan menjadi rapuh kerana ciri-ciri grafit yang mempunyai pinggirpinggir tajam yang merupakan kawasan tegasan tinggi. Jenis besi

24

• •





kelabu yang baru, yang dinamakan 'besi mulur', adalah dicampur dengan kandungan surih magnesium untuk mengubah bentuk grafit menjadi sferoid, atau nodul, lantas meningkatkan ketegaran dan kekuatan besi. Besi karbon mengandungi antara 0.5% dan 1.5% karbon, dengan sejumlah kecil mangan, belerang, fosforus, dan silikon. Besi tempa (Wrought iron) mengandungi kurang daripada 0.5% karbon. Ia keras, mudah lentur, dan tidak mudah dilakurkan berbanding dengan besi mentah. Ia mempunyai sejumlah kecil karbon, beberapa persepuluh peratus. Jika ditajamkan menjadi tirus, ia cepat kehilangan ketajamannya. Besi aloi (Alloy steel) mengandungi kandungan karbon yang berubahubah dan juga logam-logam lain, seperti kromium, vanadium, molibdenum, nikel, tungsten dsb. Besi oksida (III) digunakan dalam penghasilan storan magnetik dalam komputer. Ia sering dicampurkan dengan bahan lain, dan mengekalkan ciri-ciri mereka dalam larutan.

Sejarah

:

Tanda-tanda pertama kegunaan besi datangnya dari Sumeria dan Mesir, di mana sekitar 4000 SM, benda kecil, seperti mata lembing dan perhiasan, dihasilkan dari besi yang didapati dari meteor. Oleh kerana meteor jatuh dari langit sebahagian ahli bahasa menjangkakan bahawa perkataan Inggeris iron, yang which has cognates in many northern and bahasa Eropah barat, terhasil dari perkataan Etruska aisar yang bererti "Dewa-dewa". Sekitar 3000 SM hingga 2000 SM, semakin banyak objek besi yang dikerjakan dihasilkan (dibezakan dengan besi meteor melalui ketiadaan nikel dalam barangan besi tersebut) di Mesopotamia, Anatolia, dan Mesir. Bagaimanapun, kegunaannya kemungkinannya untuk upacara tertentu, dan besi merupakan logam yang mahal, lebih mahal berbanding emas. Dalam epik Iliad, kebanyakan senjata merupakan gangsa, tetapi ketulan besi digunakan untuk perdagangan. Sebahagian sumber (lihat rujukan What Caused the Iron Age? di bawah) mencadangkan bahawa besi dihasilkan sebagai hasil sampingan dari penyucian tembaga ketika itu, sebagai besi span, dan tidak dihasilkan oleh pakar logam masa itu. Pada 1600 SM hingga 1200 SM, besi digunakan secara lebih meluas di Timur Tengah, tetapi tidak menggantikan kegunaan gangsa.

Kapak besi dari Zaman Besi Sweden yang ditemui di Gotland, Sweden.

25

Dari tempoh abad ke-12 SM hingga abad ke-10 SM, terdapat peralihan pantas di Timur Tengah dari segi peralatan dan senjata gangsa kepada besi. Faktor utama peralihan ini tidak kelihatannya sebagai kelebihan teknologi kerjabesi, tetapi sebaliknya disebabkan gangguan bekalan timah. Tempoh peralihan ini, yang berlaku pada tempoh berlainan ditempat berlainan di dunia, mengorak langkah ke zaman tamadun yang dikenali sebagai Zaman Besi. Serentak dengan peralihan dari gangsa kepada besi adalah jumpaan proses pengkarbonan, yang merupakan proses menambah karbon kepada besi masa itu. Besi yang dihasilkan adalah besi span, campuran besi dan sanga dengan karbon dan karbida, yang kemudiannya diketuk dan dilipat untuk membebaskan jismi slag dan mengoksidakan kandungan karbon, dengan itu menghasilkan besi tempa. Besi tempa amat kurang kandungan karbon dan tidak mudah dikeraskan melalui celupan. Orang-orang Timur Tengah mendapati bahawa hasil yang lebih keras boleh dihasilkan dengan memanaskan objek besi tempa dalam campuran arang untuk tempoh yang lama, dan kemudiannya dicelup dalam air atau minyak. Barangan yang terhasil, yang mempunyai permukaan besi waja, adalah lebih keras dan tahan berbanding gangsa yang digantikannya. Di negara China besi pertama digunakan juga adalah besi meteor, dengan bukti arkeologi mengenai barangan besi tempa muncul di barat laut, berhampiran Xinjiang, pada abad ke-8 SM. Barangan ini dibuat dengan besi tempa, dicipta melalui proses yang sama dengan yang digunakan di Timur Tengah dan Eropah, dan dipercayai diimport oleh penduduk bukan Cina. Pada tahun-tahun terakhir Dinasti Zhou (ca 550 BC), keupayaan penghasilan barangan besi bermula disebabkan teknologi tanur yang berkembang tinggi. Menghasilkan rerelau bagas (blast furnace) yang berupaya menghasilkan suhu melebihi 1,300 K, negara Cina telah memajukan penghasilan besi tuang, atau besi mentah Jika bijih besi dipanaskan serentak dengan karbon sehingga 1420–1470 K, cecair likat terbentuk, satu aloi sekitar 96.5% besi dan 3.5% karbon. Hasil ini kuat, boleh dibentuk menjadi bentuk halus, tetapi terlalu rapuh untuk dibentuk, kecuali ia dinyahkarbon (decarburized) untuk menyingkir kebanyakan karbon. Sebahagian besar penghasilan besi zaman Dinasti Zhou berikut, adalah besi tuang. Besi, bagaimanapun, kekal sebagai penghasilan orang bawahan, digunakan oleh peladang selama beberapa ratus tahun, dan tidak menarik minat kaum bangsawan China sehingga Sinasti Qin (sekitar 221 SM). Besi tuang mundur di Eropah, disebabkan pelebur Eropah hanya mampu mencapai suhu sekitar 1000 K. Sebahagian besar Abad Pertengahan, di Eropah Barat, besi masih dihasilkan dengan menggunakan besi sponge 26

menjadi besi tempa. Contoh besi tuang yang terawal di Eropah dijumpai dua tempat di Sweden, Lapphyttan dan Vinarhyttan, antara 1150 hingga 1350. Terdapat cadangan oleh para penyelidik bahawa ia mungkin diperkenalkan oleh puak Mongol menyeberangi Russia ketapak tersebut, tertapi tidak terdapat bukti kepada hipothesis ini. Bagaimanapun, menjelang akhir abad ke empat belas, pasaran bagi besi tuang mulai terbentuk, sebagai permintaan bagi peluru meriam yang diperbuat daripada besi tuang. Peleburan besi awal (sebagaimana proses ini dikenali) menggunakan arang sebagai sumber haba dan agen penurun. Pada abad ke-18 bekalan kayu di England kehabisan dan kok(arang), bahanapi fosil, digunakan sebagai ganti. Innovasi ini oleh Abraham Darby membekalkan tenaga untuk Revolusi Perindustrian di England.

Ragam Kewujudan

:

Warna merah pada air disebabkan oleh kehadiran bijih besi dalam batu Besi merupakan salah satu unsur paling biasa di Bumi, membentuk 5% daripada kerak Bumi. Kebanyakan besi ini hadir dalam pelbagai jenis oksida besi, seperti bahan galian hematit, magnetit, dan takonit. Sebahagian besar teras bumi dipercayai mengandungi aloi logam besi-nikel. Sekitar 5% daripada meteorit turut mengandungi aloi besi-nikel. Walaupun jarang, ini merupakan bentuk utama logam besi semulajadi dipermukaan bumi. Dalam perindustrian, besi dihasilkan daripada bijih, kebanyakannya hematit (sedikit Fe2O3) dan magnetit (Fe3O4), melalui penurunan oleh karbon dalam relau hembus (blast furnace) pada suhu sekitar 2000°C. Dalam relau hembus, bijih besi, karbon dalam bentuk kok, dan fluks seperti batu kapur diisikan di bahagian atas relau, sementara semburan udara panas dipaksa untuk masuk ke dalam relau di bahagian bawah. Dalam relau, kok bertindak balas dengan oksigen dalam hembusan udara untuk menghasilkan karbon monoksida:

27

2 C + O2 → 2 CO Karbon monoksida mengurangkan bijih besi (dalam persamaan kimia di bawah, hematit) kepada besi lebur, menjadi karbon dioksida di dalam proses tersebut: 3 CO + Fe2O3 → 2 Fe + 3 CO2 Fluks ditambah untuk meleburkan bendasing dalam bijih, terutamanya silikon dioksida pasir dan lain-lain silikat. Fluks biasa termasuklah batu kapur (terutamanya kalsium karbonat) dan dolomit (magnesium karbonat). Fluks yang lain boleh digunakan bergantung kepada jenis bendasing yang perlu diasingkan daripada bijih. Di bawah kepanasan relau, batu kapur mengurai menjadi kalsium oksida (kapur tohor): CaCO3 → CaO + CO2 Kalsium oksida bergabung dengan silikon dioksida untuk menghasilkan sanga. CaO + SiO2 → CaSiO3 Sanga melebur oleh kerana haba di dalam relau, berbanding dengan silikon dioksida yang tidak akan melebur di bawah haba yang sama. Pada dasar relau, sanga yang melebur terapung atas leburan besi yang lebih tumpat, dan hanyut ke tepi relau yang mungkin akan dibuka untuk mengalirkan sanga keluar daripada leburan besi. Besi ini, apabila disejukkan, akan dipanggil besi mentah, sementara sanga boleh digunakan sebagai bahan untuk pembinaan jalan raya atau untuk menyuburkan tanah yang kurang mineral untuk pertanian. Anggaran sebanyak 1,100 Jt (juta tan) bijih besi dihasilkan di seluruh dunia dalam tahun 2000, dengan nilai pasaran kasar mencecah lebih kurang 25 bilion dolar Amerika. Pengeluaran bijih berlangsung di 48 negara, dengan lima pengeluar terbesar merupakan China, Brazil, Australia, Rusia dan India, menghasilkan 70% daripada pengeluaran bijih besi dunia. 1100 Jt bijih besi digunakan untuk menghasilkan lebih kurang 572 Jt besi mentah.

28

Cobalt Cobalt is a brittle, hard, transition metal with magnetic properties similar to those of iron. Cobalt is present in meteorites. Ore deposits are found in Zaire, Morocco and Canada. Cobalt-60 (60Co) is an artificially produced isotope used as a source of γ rays (high energy radiation). Cobalt salts colour glass a beautiful deep blue colour. • • • • • •

Name: Cobalt Symbol: Co Atomic number: 27 Atomic weight: 58.933195 (5) Standard state: solid at 298 K CAS Registry ID: 7440-48-4

• • • • • •

Group in periodic table: 9 Group name: (none) Period in periodic table: 4 Block in periodic table: d-block Colour: lustrous, metallic, greyish tinge Classification: Metallic

Isolation 29

Isolation: it is not normally necessary to make cobalt in the laboratory as it is available readily commercially. Many ores contain cobalt but not many are of economic importance. These include the sulphides and arsenides linnaeite, Co3S4, cobaltite, CoAsS, and smaltite, CoAs2. Industrially, however, it is normally produced as a byproduct from the produstion of copper, nickel, and lead. Normally the ore is "roasted" to form a mixture of metals and metal oxides. Treatment with sulphuric acid leaves metallic copper as a residue and disolves out iron, cobalt, and nickel as the sulphates. Iron is obtained by precipitation with lime (CaO) while cobalt is produced as the hydroxide by precipitation with sodium hypochlorite (NaOCl) 2Co2+(aq) + NaOCl(aq) + 4OH-(aq) + H2O → 2Co(OH)3(s) + NaCl(aq) The trihydroxide Co(OH)3 is heated to form the oxide and then reduced with carbon (as charcoal) to form cobalt metal. 2Co(OH)3 (heat) → Co2O3 + 3H2O 2Co2O3 + 3C → Co + 3CO2

30

Kobal adalah suatu unsur kimia dalam tabel periodik yang memiliki lambang Co dan nomor atom 27. Warna: sedikit berkilauan, metalik, keabu-abuan Penggolongan: Metalik Ketersediaan: unsur kimia kobal tersedia di dalam banyak formulasi yang mencakup kertas perak, potongan, bedak, tangkai, dan kawat. contoh besar Dan kecil unsur kimia. Unsur kimia kobalt juga merupakan suatu unsure dengan sifat rapuh agak kerasdan mengandung metal serta kaya sifat magnetis yang serupa setrika. Unsur kimia kobalt adalah batu bintang. Deposit bijih. Cobalt-60 ( 60Co) adalah suatu isotop yang diproduksi menggunakan suatu sumber sinar ( radiasi energi tinggi). unsur kimia/kobalt mewarnai gelas/kaca serta memiliki suatu keindahan warna kebiruan. Secara umum dapat kita deskripsikan sebagai berikut : • Nama: unsur kimia kobal • Lambang: Co • Nomor-Atom: 27 • Berat atom: 58.933200 ( 9) • Golongkan nomor;jumlah: 9 • Nomor periode;Jumlah: 4 Salah satu makanan yang kita konsumsi ber sumber vitamin B12 yang merupakan suatu campuran yang berisi unsur kobalt, adalah marmite, tetapi unsure yang dikandung didalamnya tergolong unsur lebih lemah dan lembut. Di Australia dikenal dengan Vegemite, sedangkan di Amerika, Marmite dicampur dengan pindakas. Banyak bijih berisi unsur kimia kobalt, tetapi tidak memiliki arti penting untuk ekonomi. meliputi sulfid dan arsenides linnaeite, Co3S4, kobaltit, Coass, dan smaltite, Coas2. Digunakan untuk industri, secara normal diproduksi sebagai byproduct dari produstion tembaga, nikel Bijih yang dibakar Secara normal membentuk suatu campuran oksida metal. Perawatan dengan cuka sulphuric dapat meninggalkan tembaga metalik sebagai residu dan disolves. Besi diperoleh oleh hujan, timbulnya dengan lima kapur perekat ( Cao) sedang unsur kimia/kobalt diproduksi ketika hidroksida hujan hujan akantimbul hipoklorit sodium ( Naocl) 2Co2+(aq) + NaOCl(aq) + 4OH(aq) + H2O 2Co(OH)3(s) + NaCl(aq) Trihydroxide Co(OH)3 dipanaskan untuk membentuk oksida dan kemudian dikurangi dengan karbon akan untuk membentuk unsur kimia/kobalt metal. 2Co(OH)3 (heat) Co2O3 + 3H2O 2Co2O3 + 3C Co + 3CO2 berikut Penggunaan untuk unsur kobalt : 1. Dapat dicampur dengan besi, nikel dan batang-batang rel lain untuk membuat Alnico, suatu campuran logam memiliki kekuatan magnetis yang banyak digunakan mesin jet dan turbin gas mesin/motor.

31

2. Digunakan sebagai bahan baja tahan-karat dan baja magnit. 3. Digunakan di dalam campuran logamuntuk turbin gas generator dan turbin pancaran 4. Digunakan di dalam menyepuh listrik oleh karena penampilannya, kekerasan, dan perlawanan ke oksidasi 5. Digunakan untuk produksi warna biru permanen dan brilian untuk porselin, gelas/kaca, serta barang tembikar, pekerjaan ubin, dan email 6. Cobalt-60, merupakan artifical isotop, dimana sebagai suatu sumber sinar penting, dan secara ekstensif digunakan sebagai suatu pengusut serta agen radiotherapeutic. Sumber 60Co yang Ringkas dan mudah. 7. Digunakan sebagai campuran pigmen cat Senyawa biner : beberapa senyawa biner dengan halogen yang dikenal sebagai halides, oksigen dan hidrogen yang dikenal sebagai hydrides. Bagian ini Webelements akan diperluas di masa datang. Karena masing-masing campuran, yang didasarkan jumlah oksidasi, suatu bentuk wujud elektronik.. juga diberi campuran yang lebih eksotis. Istilah hydride digunakan di dalam suatu pengertian umum untuk menandai adanya campuran dan tidak harus menunjukkan campuran yang didaftar secara kimiawi. Di dalam campuran unsur kimia kobalt dikenal angka-angka oksidasi unsur kimia yang paling umum adalah: 3, dan 2. Hydrides Istilah hydride digunakan untuk menandai adanya campuran secara kimiawi. Fluorides • CoF2: cobalt (II) fluoride unsur kimia/kobalt ( II) fluoride " Rumusan [sebagai/ketika] biasanya [di]tertulis: Cof2 " sistem bukit Rumusan: Co1F2 " CAS nomor;jumlah pencatatan: [ 10026-17-2] " Rumusan menimbang: 96.93 " Kelas: fluoride

32

Nickel Nickel is found as a constituent in most meteorites and often serves as one of the criteria for distinguishing a meteorite from other minerals. Iron meteorites, or siderites, may contain iron alloyed with from 5 to nearly 20% nickel. The USA 5-cent coin (whose nickname is "nickel") contains just 25% nickel. Nickel is a silvery white metal that takes on a high polish. It is hard, malleable, ductile, somewhat ferromagnetic, and a fair conductor of heat and electricity. Nickel carbonyl, [Ni(CO)4], is an extremely toxic gas and exposure should not exceed 0.007 mg M-3. • • • • • •

Name: Nickel Symbol: Ni Atomic number: 28 Atomic weight: 58.6934 (2) Standard state: solid at 298 K CAS Registry ID: 7440-02-0

• • • • • •

Group in periodic table: 10 Group name: (none) Period in periodic table: 4 Block in periodic table: d-block Colour: lustrous, metallic, silvery tinge Classification: Metallic

Isolation Isolation: it is not normally necessary to make nickel in the laboratory as it is available readily commercially. Small amounts of pure nickel can be islated in the laborotory through the purification of crude nickel with carbon monoxide. The intermediate in this process is the highly toxic nickel tetracarbonyl, Ni(CO)4. The carbonyl decomposes on heating to about 250°C to form pure nickel powder. 33

Ni + 4CO (50°C) → Ni(CO)4 (230°C) → Ni + 4CO The Ni(CO)4 is a volatile complex which is easily flushed from the reaction vessel as a gas leaving the impurities behind. Industrially, the Mond process uses the same chemistry. Nickel oxides are reacted with "water gas", a mixture of CO + H2). Reduction of the oxide with the hydrogen results in impure nickel. This reacts with the CO component of the water gas to make Ni(CO)4 as above. Thermal decomposition leaves pure nickel metal.

Nikel (ialah unsur kimia logam dalam jadual kala yang mempunyai simbol Ni dan nombor atom 28.

34

Ciri-ciri

:

Nikel adalah logam berwarna putih keperak-perakan yang berkilat. Ia tergolong dalam logam peralihan, dan keras dan mulur. Ia wujud secara gabungan dengan belerang dalam millerite, dengan arsenik dalam galian niccolite, dan dengan arsenik dan belerang dalam (nickel glance). Disebabkan ketahanannya pada udara dan pengoksidaan, ia digunakan dalam syiling, bagi menyalut besi, tembaga, dll, bagi kegunaan perkakasan kimia, dan dalam aloi tertentu seperti perak Jerman. Ia bermagnet, dan sering kali bersama kobalt, kedua-duanya terdapat pada besi tahi bintang. Kepentingannya dalam bentuk sebatian, terutamanya kebanyakan sebatian adi, dan terutamanya dalam besi waja. Nikel adalah satu dari lima unsur Feromagnet. Bagaimanapun, wang nikel Amerika Syarikat tidak bermagnet kerana ia sebenarnya kebanyakannya (75%) tembaga. Nikel matawang Kanada yang dikilangkan pada tempoh pelbagai natara 1922-81 adalah 99.9% nikel, dan ini boleh ditarik magnet. Keadaan teroksida paling biasa bagi nikel adalah sebatian +2, walaupun sebatian 0, +1, +3 dan +4 Ni pernah dijumpai. Ia juga dipercayai bahawa pengoksidaan +6 mungkin wujud, bagaimanapun, tidak disahkan. Sel unit nikel adalah FCC dengan tatarajah kekisi sekitar 0.356 nm memberi jejari atom sekitar 0.126 nm. Nikel-62 adalah nuklid paling stabil di kalangan semua unsur yang wujud; malah ia lebih stabil berbanding Besi-56.

Sejarah : Kegunaan nikel adalah secara tidak sengaja, dan boleh dikesan sehingga 3500 SM. Gangsa dari kini dikenali sebagai Syria mempunyai kandungan nikel sehingga dua peratus. Tambahan lagi, manuskrip Cina membayangkan bahawa "tembaga putih" (contoh. baitung) telah digunakan di Timur antara 1700 SM dan 1400 SM. Bagaimanapun, disebabkan bijih nikel mudah dikelirukan denga bijih perak, sebarang salah faham mengenai hal ini dan kegunaannya lebih ditumpukan kepada masa kini. Galian yang mengandungi nikel (contoh. kupfernikel, bererti tembaga setan ("Nick"), atau tembaga palsu) digunakan bagi mewarnakan kaca menjadi hijau. Pada tahun 1751, Baron Axel Fredrik Cronstedt sedang cuba menghasilkan tembaga dari kupfernikel (kini dikenali sebagai nikolit), dan sebaliknya dapat logam putih yang digelar olehnya sebagai nikel. Di Amerika Syarikat, istilah "nikel" atau "nick" pada asalnya digunakan untuk duit syiling tembaga-nikel sen Indian yang diperkenalkan pada tahun 1859 dan kemudiannya, untuk duit syiling tiga sen yang diperkenalkan pada tahun 35

1865. Pada tahun berikutnya, nama itu dipergunakan untuk nikel perisai lima sen sehingga hari ini. Duit-duit syiling yang diperbuat daripada nikel tulen digunakan buat pertama kali pada tahun 1881 di Switzerland.

Copper Copper is one of the most important metals. Copper is reddish with a bright metallic lustre. It is malleable, ductile, and a good conductor of heat and electricity (second only to silver in electrical conductivity). Its alloys, brass and bronze, are very important. Monel and gun metals

36

also contain copper. Apparently the reason that policemen in the USA are nicknamed "cops" or "coppers" is to do with their uniforms which used to have copper buttons. The most important compounds are the oxide and the sulphate, (blue vitriol). • • • • • •

Name: Copper Symbol: Cu Atomic number: 29 Atomic weight: 63.546 (3) [see note r] Standard state: solid at 298 K CAS Registry ID: 7440-50-8

• • • • • •

Group in periodic table: 11 Group name: Coinage metal Period in periodic table: 4 Block in periodic table: d-block Colour: copper, metallic Classification: Metallic

Isolation Isolation: copper metal is readily available commercially so it is not normally necesary to make it in the laboratory. Most copper production is based upon sulphide ores containing little copper but quite a lot of iron. New cleaner technologies are now important but older processes present major environmental problems. Complex procedures are used initially to form a form of copper sulphide appropriate for final reduction via a copper(I) oxide. The resulting crude copper is purified using an electrolytic procedure involving plating onto pure copper cathodes. 2Cu2S + 3O2 → 2Cu2O + 2SO2 2Cu2O + Cu2S → 6Cu + SO2

37

Notably, the purification step leaves an "anode slime" which contains useful amounts of silver and gold.

Tembaga (daripada Bahasa Sanskrit: tàmra) atau kuprum (L.: Cuprum) adalah unsur kimia dalam jadual berkala yang mempunyai simbol Cu dan nombor atom 29. Ia merupakan logam mulur yang mempunyai kekonduksian elektrik yang sangat baik, dan digunakan secara meluas sebagai pengalir elektrik, bahan pembinaan, dan sebagai juzuk sesetengah aloi.

Sifat-sifat utama

:

Tembaga adalah logam kemerahan, dengan kekonduksian elektrik dan kekonduksian haba yang tinggi (antara semua logam-logam tulen dalam

38

suhu bilik, hanya perak mempunyai kekonduksian elektrik yang lebih tinggi daripadanya). Apabila dioksidakan, tembaga adalah bes lemah. Tembaga memiliki ciri warnanya itu oleh sebab struktur jalurnya, iaitu ia memantulkan cahaya merah dan jingga dan menyerap frekuensi-frekuensi lain dalam spektrum tampak. Bandingkan ciri-ciri optik ini dengan ciri-ciri optik perak, emas dan aluminium. Tembaga terletak dalam keluarga yang sama seperti perak dan emas dalam jadual berkala, oleh itu ia mempunyai sifat-sifat yang serupa dengan keduadua logam itu. Kesemuanya mempunyai kekonduksian elektrik dan haba yang tinggi. Kesemua adalah logam yang mudah tertempa. Dalam keadaan cecair, suatu permukaan jelas (apabila tiada cahaya sekitar) logam itu kelihatan agak kehijauan, dan begitu juga dengan emas. Perak tidak memiliki sifat ini, maka ia bukan merupakan warna pelengkap untuk warna pijar jingga. Apabila tembaga lebur berada dalam keadaan cahaya terang, kita dapat melihat kilau merah jambunya. Logam lebur tembaga tidak membasahkan permukaan dan mempunyai tegangan permukaan yang sangat kuat dan membentuk titisan hampir sfera apabila dituangkan atas suatu permukaan. Tembaga tidak larut dalam air (H2O) dan isopropanol, atau isopropil alkohol. Terdapatnya dua isotop stabil, 63Cu dan 65Cu, dan berpuluhan jenis radioisotop. Kebanyakan radioisotop-radioisotop ini mempunyai separuh hayat pada tertib minit atau kurang daripada itu; dan yang mempunyai hayat terpanjang, 64Cu, mempunyai separah hayat selama 12.7 jam, dengan dua mod reputan, menjurus kepada dua hasil yang berbeza. Terdapat sebilangan jenis aloi tembaga—logam spekulum adalah aloi tembaga/timah, loyang adalah aloi tembaga/zink, dan gangsa adalah aloi tembaga/timah. Logam monel merupakan aloi tembaga/nikel, dan juga dipanggil kupronikel. Sementara gangsa biasanya merujuk kepada aloi tembaga/timah, ia juga merupakan istilah umum bagi bermacam-macam jenis aloi tembaga, contohnya gangsa aluminium, gangsa silikon, dan gangsa mangan. Ketulenan tembaga dinyatakan sebagai 4N bagi yang mempunyai ketulenan 99.9999% dan 7N bagi 99.9999999%. Angka menunjukkan bilangan nombor sembilan selepas titik perpuluhan.

Penggunaan

:

Tembaga adalah boleh tempa dan mulur, pengalir haba yang baik, dan apabila sangat tulen, merupakan pengalir elektrik yang baik. Ia digunakan secara meluas, dalam hasil keluaran seperti: 39



Elektronik: o Wayar tembaga. o Elektromagnet. o Mesin elektrik, terutamanya motor elektromagnet dan penjana. o Geganti elektrik, palang bas elektrik, dan suis elektrik. o Tiub vakum, tiub sinar katod, dan magnetron dalam ketuhar gelombang mikro. o Pandu gelombang untuk sinaran gelombang mikro. o Litar bersepadu, semakin banyak menggantikan aluminium oleh sebab kekonduksiannya yang lebih baik. o Sebagai bahan dalam pembikinan penenggelam haba komputer, kerana keupayaan pelesapan haba yang lebih baik berbanding aluminium.



Kejuruteraan struktur: o Patung: Statue of Liberty, contohnya, mengandungi 179,200 paun (81.3 tan) tembaga. o Dialoikan bersama nikel, sebagai contoh kupronikel dan Monel, digunakan sebagai bahan tahan kakisan dalam perusahaan membuat kapal. o Enjin stim Watt.



Barang keluaran rumah: o Kerja paip menggunakan tembaga. o Tombol pintu dan lekapan-lekapan lain dalam rumah. o Pengatapan, peparitan, pemancut air dalam bangunan. o Perkakas memasak, seperti kuali leper. o Kebanyakan kutleri (pisau, garpu, sudu) mengandungi sedikit tembaga (perak nikel). o Perak sterling, sekiranya digunakan sebagai peralatan makan malam, akan mengandungi beberapa peratus tembaga. o Tembaga kadang kala digunakan oleh orang Inuit untuk membuat bilah pemotong untuk ulu.



Pensyilingan: o Sebagai juzuk dalam duit syiling, biasanya dalam bentuk aloi kupronikel. o Duit syiling Malaysia yang bernilai 50 sen, 20 sen, 10 sen dan 5 sen mengandungi komposisi 75% tembaga dan 25% nikel. Duit syiling RM 1 yang tidak lagi diedarkan mengandungi komposisi 84% tembaga, 12% zink dan 4% timah. o Syiling Euro terdiri daripada bermacam jenis aloi tembaga



Penggunaan dalam bidang bioperubatan: o Sebagai permukaan biostatik dalam hospital, dan untuk melapik bahagian-bahagian dalam kapal laut untuk melindunginya 40

o

daripada teritip dan kupang, pada asalnya digunakan dalam keadaan tulen, tetapi telah digantikan dengan logam Muntz. Bakteria tidak dapat tumbuh pada permukaan tembaga kerana ia adalah biostatik. Tombol pintu tembaga digunakan oleh pihak hospital untuk mengurangkan penyebaran penyakit, dan penyebaran Penyakit Legion disekat dengan menggunakan tiub tembaga dalam sistem penghawa udara. Kuprum(II) sulfat digunakan sebagai racun kulat dan pengawal alga dalam tasik dan kolam perumahan. Ia digunakan dalam serbuk dan semburan kebun untuk membunuh kulapuk.



Penggunaan dalam bidang kimia: o Sebatian, contohnya larutan Fehling, mempunyai kegunaan dalam bidang kimia. o Sebagai juzuk dalam sepuh seramik, dan untuk mewarnakan kaca.



Lain-lain: o Alat muzik, terutamanya bras dan simbal.

Sejarah

:

Pada zaman Yunani, logam ini dikenal dengan nama chalkos (χαλκός). Tembaga merupakan sumber penting bagi orang-orang Rom dan Yunani. Pada zaman Rom, ia dikenali sebagai aes Cyprium (aes merupakan istilah umum Latin bagi aloi tembaga seperti gangsa dan logam-logam lain, dan Cyprium kerana kebanyakannya dilombong di Cyprus.) Daripada itu, perkataan ini menjadi cuprum dan dalam Bahasa Melayu kuprum. Perkataan tembaga pula berasal dari perkataan Sanskrit bagi tembaga iaitu tàmra.[1] Tembaga dikaitkan dengan dewi Aphrodite/Venus dalam mitologi dan alkimia, kerana rupanya yang cantik berkilau, kegunaan lamanya dalam pembuatan cermin, dan pengaitannya dengan Cyprus, tempat yang suci bagi dewi tersebut. Dalam bidang alkimia, simbol bagi tembaga adalah juga simbol yang digunakan untuk planet Venus. Tembaga dalam bentuk aslinya adalah salah satu daripada hanya sebilangan logam yang wujud secara semula jadi sebagai mineral yang tidak bersebati. Tembaga diketahui oleh manusia daripada tamadun yang paling lama pernah dicatatkan, dan mempunyai sejarah penggunaan sekurang-kurangnya 10,000 tahun lamanya. Satu loket tembaga ditemui di kawasan yang pada masa kininya Iraq utara dan bertarikh 8700 SM. Pada sekitar 5000 SM, terdapat tanda-tanda peleburan tembaga, penyarian tembaga daripada sebatian tembaga ringkas seperti malakit atau azurit. Antara tapak-tapak arkeologi seperti di Anatolia, Çatal Höyük 41

(~6000 SM) menunjukkan artifak manik-manik tembaga asli dan plumbum yang telah dilebur, tetapi tiada tembaga yang dilebur. Can Hasan pula (~5000 SM) mempunyai laluan kepada tembaga lebur; dalam tapak ini dijumpai artifak tembaga tuang tertua pernah diketahui, iaitu sebuah cokmar kepala tembaga. Peleburan tembaga nampaknya telah berkembang secara berasingan dalam beberapa bahagian dunia. Di samping perkembangan di Anatolia pada 5000 SM, ia dikembangkan di China sebelum 2800 SM, Amerika Tengah sekitar 600 TM, dan Afrika Barat sekitar 900 TM.[2] Terdapat artifak-artifak tembaga dan gangsa daripada kota-kota Sumeria yang bertarikh 3000 SM, manakala artifak-artifak Mesir dalam bentuk tembaga dan tembaga yang dialoikan bersama timah juga mempunyai usia yang sama. Dalam satu piramid, satu sistem pempaipan tembaga ditemui berusia 5000 tahun. Orang-orang Mesir mendapati bahawa dengan mencampurkan sejumlah kecil timah akan membuatkan logam tembaga lebih mudah untuk dituang, oleh itu aloi gangsa ditemui di Mesir hampir-hampir sewaktu dengan penemuan tembaga. Penggunaan tembaga dalam zaman China kuno bertarikh sekurang-kurangnya 2000 SM. Pada 1200 SM, gangsagangsa yang baik mutunya telah dihasilkan di China. Perhatikan bahawa tarikh-tarikh ini dipengaruhi oleh waktu-waktu peperangan dan penaklukan, kerana tembaga sangat mudah untuk dilebur dan digunakan kembali. Di Eropah, Oetzi si orang Ais, mayat lelaki yang diawet dengan baik yang bertarikh 3200 SM, ditemui dengan kapak berbucu tembaga yang berketulenan 99.7%. Kandungan tinggi arsenik pada rambutnya mencadangkan bahawa dia terlibat dalam peleburan tembaga. Loyang, sejenis aloi zink dan tembaga, diketahui oleh orang Yunani tetapi julung kali digunakan dengan meluasnya oleh orang Rom. Penggunaan gangsa sangatlah berleluasa pada suatu zaman ketamadunanan sehinggakan ia dinamakan Zaman Gangsa. Zaman peralihan dalam sebahagian kawasan antara zaman Neolitik yang sebelumnya dan Zaman Gangsa, adalah dinamakan Kalkolitik, iaitu beberapa peralatan tembaga berketulenan tinggi digunakan bersamasama dengan peralatan batu. Di Asia Tenggara, tapak arkeologi di Phumi Mlu Prey, Kemboja menemui tanda-tanda kegiatan penuangan gangsa dan besi yang diusahakan sebelum abad pertama Masihi. Di tapak tamadun Dong Son, Vietnam pula terdapatnya artifak-artifak gangsa yang bertarikh antara 500 SM ke 100 SM. Di Malaysia, artifak gangsa tertua ditemui di daerah Klang dalam bentuk genta {loceng) manakala artifak tembaga tetua iaitu sebuah gong, yang ditemui di Terengganu. 42

Zinc Zinc-deficient animals require 50% more food to gain the same weight of an animal supplied with adequate amounts of zinc. Zinc is not particularly toxic and is an essential element in the growth of all animals and plants. Plating thin layers of zinc on to iron or steel is known as galvanising and helps to protect the iron from corrosion. • • • • • •

Name: Zinc Symbol: Zn Atomic number: 30 Atomic weight: 65.409 (4) [see note g] Standard state: solid at 298 K CAS Registry ID: 7440-66-6

• • •

Group in periodic table: 12 Group name: (none) Period in periodic table: 4

43

• • •

Block in periodic table: d-block Colour: bluish pale grey Classification: Metallic

Zinc is a bluish-white, lustrous metal. It is brittle at ambient temperatures but is malleable at 100 to 150°C. It is a reasonable conductor of electricity, and burns in air at high red heat with evolution of white clouds of the oxide.

Isolation Isolation: zinc metal is readily available commercially so it is not normally necesary to make it in the laboratory. Most zinc production is based upon sulphide ores. These are roasted in industrial plants to form zinc oxide, ZnO. This may be reduced with carbon to form zinc metal, but in practice ingenious technology is required to ensure that the resulting zinc does not contain oxide impurities. ZnO + C → Zn + CO ZnO + CO → Zn + CO2 CO2 + C → 2CO The other type of extraction is electrolytic. Dissolution of crude zinc oxide, ZnO, in sulphuric acid gives zinc sulphate, ZnSO4 in solution. Cadmium is an impurity and this is removed as a precipitate of cadmium sulphate by the addition of zinc dust. Electrolysis of the ZnSO4 solution using aluminium cathodes and lead alloyed with silver anodes gives pure zinc metal coated on the aluminium. Oxygen gas is liberated at the anode.

44

Very pure zinc may be formed from crude zinc by zone refining and single crystals can be grown with purities of better than 99.9999%.

Seng (atau zinc) adalah unsur kimia dengan lambang kimia Zn, nomor atom 30, dan massa atom relatif 65,39. Seng tidak diperoleh dengan bebas di alam, melainkan dalam bentuk terikat. Mineral yang mengandung seng di alam bebas antara lain kalamin, franklinit, smithsonit, willenit dan zinkit. Dalam industri zink mempunyai arti penting: • • • • • •

melapisi besi atau baja untuk mencegah proses karat digunakan untuk bahan batere zink dan alinasenya digunakan untuk cetakan logam, penyepuhan listrik dan metalurgi bubuk zink dalam bentuk oksida digunakan untuk industri kosmetik, plastik, karet, sabun, pigmen dalam cat dan tinta zink dalam bentuk sulfida digunakan untuk industri tabung televisi dan lampu pendar zink dalam bentuk klorida digunakan untuk pengawetan kayu.

45

Dalam bahasa sehari-hari, seng juga dimaksudkan sebagai pelat seng yang digunakan sebagai bahan bangunan.

46

Related Documents