Trig Functions for the Unit Circle: Since r = 1: sin θ simplifies to the y value of the order pair. cos θ simplifies to the x value of the order pair. sin θ = y
csc θ = 1 y
cos θ = x
sec θ = 1 x
tan θ = y x
cot θ = x y
1
Graphing of Sine and Cosine: Sinusoids sin θ = y
Domain: Range: Continuous: Increasing: Decreasing: Symmetric: Bounded: Local Extrema: Asymtotes: End Behavior:
sin x = y
lim sin(x) = x ∞
lim sin(x) = x ∞
2
cos θ = x
Domain: Range: Continuous: Increasing: Decreasing: Symmetric: Bounded: Local Extrema: Asymtotes: End Behavior:
cos x = y
lim cos(x) = x ∞
lim cos(x) = x ∞ 3
Sinusoid A translation of f(x) = sin x that can be written in the form
f(x) = a sin (bx + c) + d .
sin x = y
cos x = y
cos (x π/2) = y
4
Amplitude The hight and depth of a wave. for
f(x) = a sin (bx + c) + d f(x) = a cos (bx + c) + d
a determines the Amplitude If a < 1 then vertical shrink If a > 1 then vertical stretch
ex: a) f(x) = 3 sin x
b)
f(x) = 1/2 cos x
c)
f(x) = 3/2 sin x
5
Period Length of one full cycle of the trig function. for
f(x) = a sin (bx + c) + d f(x) = a cos (bx + c) + d
ex:
a)
sin 2x = y
b)
2 cos 1/3 x = y
2π is the length of a cycle. b
Frequency Number cycles in one Unit Period. Frequency:
b 2π
6
Phase Shift A horizontal Shift of the function. for
f(x) = a sin (bx + c) + d f(x) = a cos (bx + c) + d
c determines the Amplitude
If c < 0 then horizontal shift to the right c units. If c > 0 then horizontal shift to the left c units. ex: a) f(x) = sin (x + 3π/2) + 2
b)
f(x) = cos (2x 4π)
7