Pre - Calculus 1.1 Arithmetic sequences (Partial Sum) s n=
n ( 2 s1 +( n−1 ) d ) 2
n a b (n−r ) r
n−r
1.7 Conics Section
n s n = ( s 1+ s n ) 2 1.7.1 Distance Formula
1.2 Arithmetic sequences
y 2− y 2 ¿ ¿ ¿2 (x 1−x 2)2 +¿ √¿
s n=a1+ ( n−1 ) d 1.3 Geometric sequences s n=a1 r
s n= s ∞=
n−1
a1 (1−r ) n
1−r
1.7.2 Standard Equation (Circle) n≠1
(x−h)2 +( y −k )2=r 2
a1 1−r
1.7.3 General Equation (Circle) 2
1.4 Mathematical Induction
1.7.4 Midpoint Formula (Circle)
A. Prove n = 1 B. Assume n = k
h=
x 1+ x2 2
k=
y1 + y1 2
C. Prove n = k+1
1.5 Binomial Theorem n ( a+b ) = n an + n a n−1 b+ n an−2 b2 0 1 2
() ()
nCr=
2
x + y + Dx+ Ey + F=0
()
n! r !(n−r )!
1.6 Finding the term that contains ar in the expansion (a+b)n
1.7.5 Standard Equation (Parabola) 2
( y−k) =4 p(x −h) opens to the right ( y−k)2=−4 p( x−h) opens to the left (x−h)2=4 p( y−k ) opens upward (x−h)2=−4 p ( y−k ) opens upward
P= distance of vertex to focus or vertex to directrix 4p = Latus rectum
1.7.6 Standard and General Equation (Ellipses)
COS
1
SEC
1
TAN
0
x2 y2 + =1 a2 b2 a = x-axis
1 √2
1 2
2 √3
√2
2
1 √3
1
√3
√3
1
1 √3
√3 2
0
b = y- axis COT
f 2=p 2−q 2 f = foci p = major axis
+¿ sin ¿ CSC
q= minor axis
1.7.7 Standard and General Equation (Hyperbola) 2
2
2
2
x y − 2 =1 opens to the left and right 2 a b
+¿ tan ¿ cot
x y − 2 =1 opens upward and downward 2 a b 1.8 Trigonometry 1.8.1 Special Triangles 0
SIN
CSC
°
0
30
°
°
°
45
60
1 2
1 √2
√3
2
√2
2 2 √3
°
90
1
1
ALL (+)
+¿ cos ¿ SEC
0
Radian = Degree (
π ¿ 180
2.2.3 Reciprocal Identities cotθ=
1 tanθ
tanθ=
1 cotθ
1 A= r 2 θ , θ must be in radians 2
sinθ=
1 cscθ
2.0 Linear Speed/ Angular Velocity
cscθ=
1 sinθ
cosθ=
1 secθ
secθ=
1 cosθ
Degree = Radian (
180 ¿ π
1.9 Area of a Circular Sector
V=
s t
V =rw 2.1 Angular Momentum θ W = , θ must be in radians t 2.2 Basic Trigonometric Identities 2.2.1 Pythagorean Identities 2
2
sin θ+cos θ=1 2
2
2
2
1+tan θ=sec θ
1+cot θ=csc θ
2.2.4 Half - Angle Formulas
√ √
sin
A 1−cosA =± 2 2
cos
A 1+cosA =± 2 2
2.2.5 Double - Angle Formula sin 2 A=2 sinAcosA
cos 2 A=cos2 A−sin 2 A 2
¿ 2 cos A−1 2
2.2.2 Quotient Identities sinθ tanθ= cosθ cosθ cotθ= sinθ
¿ 1−2 sin A tan 2 A=
2 tan A 1−tan A
2.2.6 Sum and Difference Formulas sin ( A + B )=sinA cosB+ cosA sinB
sin ( A−B ) =sinA cosB−cosA sinB
tan ( A+ B ) =
tanA +tanB 1−tanA tanB
cos ( A+ B ) =cosA cosB−sinA sinB
cos ( A−B )=cosA cosB+ sinA sinB
tan ( A−B )=
tanA+ tanB 1−tanA tanB
Basic Calculus 1.1 Solving Limits 1.1.1 Table Method lim ( x+ 1) x→ 0
¿1
As “x” approaches “0” from the positive side
x → c +¿ lim ¿
0.99
-0.0001
0.999
≈1
¿
x
-0.001
f(x)
1.1.1.1 Limit Theorem x → c−¿ x → c+¿ =lim ¿ ¿
0.5
1.5
0.01
1.01
0.001
1.001
0.0001
1.0001
lim f ( x ) =L , if and only if lim ¿ x→ c
¿
1.1.2 Analytical Method lim ( x+ 1) x→ 0
≈1 As “x” approaches “0” from the negative side
1.2 Properties of Limit Function
−¿
x→c lim ¿
1.2.1 The Limit of a Constant is itself
¿
x
x=0 , lim of x is ( 0+1 ) or 1
f(x)
lim k=k , where k is only constant x→ c
lim 20=20 -0.5
0.5
x→ 0
1.2.2 The Limit of a Function is “c” -0.01
0.9
lim x=c
lim f ( x ) f (x ) lim ( )= x→ c x→ c g ( x ) lim g ( x )
x→ c
lim x=8
x →c
x→ 8
1.2.3 Constant Multiple Theorem
lim [f ( x ) ] p=+[lim f ( x ) ] p
lim k∗f ( x)=k∗lim f (x) x→ c
x→ c
1.2.8 Radical/ Root Theorem lim √n f ( x )= n lim g ( x )
x 8(¿ ¿ 2+ x ) lim ¿
x→ c
x →1
x (¿¿ 2+ x) 8* lim ¿ x→ 1
x (¿¿ 2+ x) lim ¿ x→ 1
1 (¿¿ 2+1) ¿ =2
=8*2 | =16
1.2.4 Addition Theorem lim [f ( x )+ g ( x ) ]=lim f ( x ) + lim g ( x ) x→ c
x →c
1.2.5 Multiplication Theorem lim [f ( x )∗g ( x ) ]=lim f ( x )∗lim g ( x ) x→ c
x→c
x→ c
“k” means constant
x→ c
1.2.7 Power Theorem
x →c
1.2.6 Division Theorem
x →c
√
x →c