Pre- Calculus & Basic Calculus.docx

  • Uploaded by: Alexis Justin Yap
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Pre- Calculus & Basic Calculus.docx as PDF for free.

More details

  • Words: 914
  • Pages: 6
Pre - Calculus 1.1 Arithmetic sequences (Partial Sum) s n=

n ( 2 s1 +( n−1 ) d ) 2

n a b (n−r ) r

n−r

1.7 Conics Section

n s n = ( s 1+ s n ) 2 1.7.1 Distance Formula

1.2 Arithmetic sequences

y 2− y 2 ¿ ¿ ¿2 (x 1−x 2)2 +¿ √¿

s n=a1+ ( n−1 ) d 1.3 Geometric sequences s n=a1 r

s n= s ∞=

n−1

a1 (1−r ) n

1−r

1.7.2 Standard Equation (Circle) n≠1

(x−h)2 +( y −k )2=r 2

a1 1−r

1.7.3 General Equation (Circle) 2

1.4 Mathematical Induction

1.7.4 Midpoint Formula (Circle)

A. Prove n = 1 B. Assume n = k

h=

x 1+ x2 2

k=

y1 + y1 2

C. Prove n = k+1

1.5 Binomial Theorem n ( a+b ) = n an + n a n−1 b+ n an−2 b2 0 1 2

() ()

nCr=

2

x + y + Dx+ Ey + F=0

()

n! r !(n−r )!

1.6 Finding the term that contains ar in the expansion (a+b)n

1.7.5 Standard Equation (Parabola) 2

( y−k) =4 p(x −h) opens to the right ( y−k)2=−4 p( x−h) opens to the left (x−h)2=4 p( y−k ) opens upward (x−h)2=−4 p ( y−k ) opens upward

P= distance of vertex to focus or vertex to directrix 4p = Latus rectum

1.7.6 Standard and General Equation (Ellipses)

COS

1

SEC

1

TAN

0

x2 y2 + =1 a2 b2 a = x-axis

1 √2

1 2

2 √3

√2

2

1 √3

1

√3

√3

1

1 √3

√3 2

0

b = y- axis COT

f 2=p 2−q 2 f = foci p = major axis

+¿ sin ¿ CSC

q= minor axis

1.7.7 Standard and General Equation (Hyperbola) 2

2

2

2

x y − 2 =1 opens to the left and right 2 a b

+¿ tan ¿ cot

x y − 2 =1 opens upward and downward 2 a b 1.8 Trigonometry 1.8.1 Special Triangles 0

SIN

CSC

°

0

30

°

°

°

45

60

1 2

1 √2

√3

2

√2

2 2 √3

°

90

1

1

ALL (+)

+¿ cos ¿ SEC

0

Radian = Degree (

π ¿ 180

2.2.3 Reciprocal Identities cotθ=

1 tanθ

tanθ=

1 cotθ

1 A= r 2 θ , θ must be in radians 2

sinθ=

1 cscθ

2.0 Linear Speed/ Angular Velocity

cscθ=

1 sinθ

cosθ=

1 secθ

secθ=

1 cosθ

Degree = Radian (

180 ¿ π

1.9 Area of a Circular Sector

V=

s t

V =rw 2.1 Angular Momentum θ W = , θ must be in radians t 2.2 Basic Trigonometric Identities 2.2.1 Pythagorean Identities 2

2

sin θ+cos θ=1 2

2

2

2

1+tan θ=sec θ

1+cot θ=csc θ

2.2.4 Half - Angle Formulas

√ √

sin

A 1−cosA =± 2 2

cos

A 1+cosA =± 2 2

2.2.5 Double - Angle Formula sin 2 A=2 sinAcosA

cos 2 A=cos2 A−sin 2 A 2

¿ 2 cos A−1 2

2.2.2 Quotient Identities sinθ tanθ= cosθ cosθ cotθ= sinθ

¿ 1−2 sin A tan 2 A=

2 tan A 1−tan A

2.2.6 Sum and Difference Formulas sin ( A + B )=sinA cosB+ cosA sinB

sin ( A−B ) =sinA cosB−cosA sinB

tan ( A+ B ) =

tanA +tanB 1−tanA tanB

cos ( A+ B ) =cosA cosB−sinA sinB

cos ( A−B )=cosA cosB+ sinA sinB

tan ( A−B )=

tanA+ tanB 1−tanA tanB

Basic Calculus 1.1 Solving Limits 1.1.1 Table Method lim ( x+ 1) x→ 0

¿1

As “x” approaches “0” from the positive side

x → c +¿ lim ¿

0.99

-0.0001

0.999

≈1

¿

x

-0.001

f(x)

1.1.1.1 Limit Theorem x → c−¿ x → c+¿ =lim ¿ ¿

0.5

1.5

0.01

1.01

0.001

1.001

0.0001

1.0001

lim f ( x ) =L , if and only if lim ¿ x→ c

¿

1.1.2 Analytical Method lim ( x+ 1) x→ 0

≈1 As “x” approaches “0” from the negative side

1.2 Properties of Limit Function

−¿

x→c lim ¿

1.2.1 The Limit of a Constant is itself

¿

x

x=0 , lim of x is ( 0+1 ) or 1

f(x)

lim k=k , where k is only constant x→ c

lim 20=20 -0.5

0.5

x→ 0

1.2.2 The Limit of a Function is “c” -0.01

0.9

lim x=c

lim f ( x ) f (x ) lim ( )= x→ c x→ c g ( x ) lim g ( x )

x→ c

lim x=8

x →c

x→ 8

1.2.3 Constant Multiple Theorem

lim [f ( x ) ] p=+[lim f ( x ) ] p

lim k∗f ( x)=k∗lim f (x) x→ c

x→ c

1.2.8 Radical/ Root Theorem lim √n f ( x )= n lim g ( x )

x 8(¿ ¿ 2+ x ) lim ¿

x→ c

x →1

x (¿¿ 2+ x) 8* lim ¿ x→ 1

x (¿¿ 2+ x) lim ¿ x→ 1

1 (¿¿ 2+1) ¿ =2

=8*2 | =16

1.2.4 Addition Theorem lim [f ( x )+ g ( x ) ]=lim f ( x ) + lim g ( x ) x→ c

x →c

1.2.5 Multiplication Theorem lim [f ( x )∗g ( x ) ]=lim f ( x )∗lim g ( x ) x→ c

x→c

x→ c

“k” means constant

x→ c

1.2.7 Power Theorem

x →c

1.2.6 Division Theorem

x →c



x →c

Related Documents


More Documents from "Examville.com"