Pre-Cal Presentation 4 Connor McLaughlin Page 449: #112 Express each of the other trigonometric functions in terms of sin(x)
Cos(x)
To find cosine, you use a Pythagorean identity sin2(x)+cos2(x)=1 Do some re-arranging:
Take the square root of both sides
cos2(x)=1-sin2(x) √cos2(x)= √1-sin2(x)
Leaves you with
cos(x)=√1-sin2(x)
Tan(x)
Use the quotient identity of tangent
Substitute our known value of cos(x)
Tan(x)=sin(x)/cos(x) Tan(x)=sin(x)/√1-sin2(x)
Because square roots are not allowed to remain on the bottom, you must multiply the top and bottom by √1-sin2(x)
Tan(x)=[sin(x)√1-sin2 (x)]/1-sin2 (x)
Tan(x) cont.
Then square both top and bottom Tan2 (x)=sin2(x)[1-sin2(x)]/([1-sin2(x)][1-sin2 (x)] Cancel Tan2(x)=sin2(x)[1-sin2(x)]/([1-sin2(x)][1-sin2 (x)] Tan2(x)=sin2(x)/1-sin2(x) Make into two fractions Tan2(x)=[Sin2(x)/1]-[sin2(x)/sin2(x)] Tan2(x)=sin2(x)-1
Square root of both sides Tan(x)=√sin2(x)-1
Cot(x)
Use reciprocal identity of cotangent
Cot(x)=1/tan(x)
Insert our known value of tan(x)
Cot(x)=1/√sin2(x)-1
Csc(x)
For cosecant, you use the reciprocal identity of sine
csc(x)=1/sin(x)
That’s all that there is to that
Sec(x)
Use reciprocal identity of secant
Sec(x)=1/cos(x)
Insert known value of cosine
Sec(x)=1/√1-sin2(x)
Summary
Cos(x)=√1-sin2(x) Tan(x)=√sin2(x)-1 Cot(x)=1/√sin2(x)-1 Csc(x)= 1/sin(x) Sec(x)=1/√1-sin2(x)